We have measured the absolute cross section for L-MM Auger electron emission in chlorinated methanes and benzene chloride molecules in collision with keV energy protons. The measurements have been performed with four different chlorine containing organic molecules viz CCl, CHCl, CHCl and CHCl. We have measured the angular distribution of chlorine L-MM Auger electrons at backward emission angles (90° – 150°). The angular distribution shows an isotropic character. We also studied the projectile energy dependence of the total L-MM Auger yield for proton energy ranging from 125 keV to 275 keV. Carbon K-LL Auger yield was also obtained in the same experiments.
{"title":"L-MM Auger electron emission from chlorinated organic molecules under proton impact: Angular distribution and total cross section measurement","authors":"Rohit Tyagi , Abhijeet Bhogale , Sandeep Bari , L.C. Tribedi , A.H. Kelkar","doi":"10.1016/j.elspec.2023.147407","DOIUrl":"https://doi.org/10.1016/j.elspec.2023.147407","url":null,"abstract":"<div><p><span>We have measured the absolute cross section for L-MM Auger electron emission<span> in chlorinated methanes and benzene chloride molecules in collision with keV energy protons. The measurements have been performed with four different chlorine containing organic molecules viz CCl</span></span><span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>, CHCl<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, CH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Cl<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and C<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>Cl. We have measured the angular distribution of chlorine L-MM Auger electrons at backward emission angles (90° – 150°). The angular distribution shows an isotropic character. We also studied the projectile energy dependence of the total L-MM Auger yield for proton energy ranging from 125 keV to 275 keV. Carbon K-LL Auger yield was also obtained in the same experiments.</p></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"269 ","pages":"Article 147407"},"PeriodicalIF":1.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138467963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2022-03-11DOI: 10.23736/S0031-0808.22.04612-2
Zuhier Awan, Alhanuf Batran, Faisal A Al-Allaf, Raneem S Alharbi, Gehan A Hegazy, Bassam Jamalalail, Majid Almansouri, Abdulhadi I Bima, Haifa Almukadi, Hussam I Kutbi, Ahmed E Altayar, Babajan Banaganapalli, Noor A Shaik
Background: Familial hypercholesterolemia (FH) is a globally underdiagnosed inherited metabolic disorder. Owing to limited published data from Arab world, this study was conducted with the aim of identifying the genetic and molecular basis of FH in highly consanguineous Saudi population.
Methods: We performed clinical screening, biochemical profiling, whole exome sequencing and variant segregation analysis of two Saudi FH families. Additionally, 500 normolipic individuals were screened to ensure the absence of FH variant in general Saudi population. Functional characterization of FH variants on secondary structure characteristics of RNA and protein molecules was performed using different bioinformatics modelling approaches.
Results: WES analysis identified two independent rare LDLR gene stop gain variants (p.C231* and p.R744*) consistent to the clinical presentation of FH patients from two different families. RNAfold analysis has shown that both variants were predicted to disturb the free energy dynamics of LDLR mRNA molecule and destabilize its folding pattern and function. PSIPRED based structural modelling analysis has suggested that both variants bring drastic changes disturbing the secondary structural elements of LDLR molecule. The p.C231* and p.R744* variants are responsible for partial or no protein product, thus they are class 1 variants causing loss of function (LoF) LDLR variants.
Conclusions: This study highlights the effectiveness of the WES, sanger sequencing, and computational analysis in expanding FH variant spectrum in culturally distinct populations like Saudi Arabia. Genetic testing of FH patients is very essential in better clinical diagnosis, screening, treatment, and management and prevention of cardiovascular disease burden in the society.
{"title":"Identification and functional characterization of two rare LDLR stop gain variants (p.C231* and p.R744*) in Saudi familial hypercholesterolemia patients.","authors":"Zuhier Awan, Alhanuf Batran, Faisal A Al-Allaf, Raneem S Alharbi, Gehan A Hegazy, Bassam Jamalalail, Majid Almansouri, Abdulhadi I Bima, Haifa Almukadi, Hussam I Kutbi, Ahmed E Altayar, Babajan Banaganapalli, Noor A Shaik","doi":"10.23736/S0031-0808.22.04612-2","DOIUrl":"10.23736/S0031-0808.22.04612-2","url":null,"abstract":"<p><strong>Background: </strong>Familial hypercholesterolemia (FH) is a globally underdiagnosed inherited metabolic disorder. Owing to limited published data from Arab world, this study was conducted with the aim of identifying the genetic and molecular basis of FH in highly consanguineous Saudi population.</p><p><strong>Methods: </strong>We performed clinical screening, biochemical profiling, whole exome sequencing and variant segregation analysis of two Saudi FH families. Additionally, 500 normolipic individuals were screened to ensure the absence of FH variant in general Saudi population. Functional characterization of FH variants on secondary structure characteristics of RNA and protein molecules was performed using different bioinformatics modelling approaches.</p><p><strong>Results: </strong>WES analysis identified two independent rare LDLR gene stop gain variants (p.C231* and p.R744*) consistent to the clinical presentation of FH patients from two different families. RNAfold analysis has shown that both variants were predicted to disturb the free energy dynamics of LDLR mRNA molecule and destabilize its folding pattern and function. PSIPRED based structural modelling analysis has suggested that both variants bring drastic changes disturbing the secondary structural elements of LDLR molecule. The p.C231* and p.R744* variants are responsible for partial or no protein product, thus they are class 1 variants causing loss of function (LoF) LDLR variants.</p><p><strong>Conclusions: </strong>This study highlights the effectiveness of the WES, sanger sequencing, and computational analysis in expanding FH variant spectrum in culturally distinct populations like Saudi Arabia. Genetic testing of FH patients is very essential in better clinical diagnosis, screening, treatment, and management and prevention of cardiovascular disease burden in the society.</p>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"161 1","pages":"479-490"},"PeriodicalIF":4.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75975972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We have studied the absolute double differential cross section (DDCS) of electrons ejected from the methane molecule (CH) under the impact of highly charged fast projectile ions. The energy and angular distributions of electrons have been measured in interactions with 70 MeV Si ions. These DDCS data together with the derived single differential cross sections and the total cross section (TCS) have been compared with predictions of the continuum distorted wave-eikonal initial state model using different approaches for the molecular orbitals. It has been found that the theories overestimate the measured DDCS values at low ejection energies, which may indicate shortcomings of the model in the case of strong perturbation. At the same time, applying the model to a previous measurement using fast C ions having a lower perturbation strength, excellent agreements have been obtained with the experimental data. Considering the scaling properties, the available TCS data have been plotted with a scaled parameter, namely the perturbation strength, q/v (where q= charge state, v=velocity of the projectile). The KLL Auger e-emission as well as the KLL hyper-satellite peaks are analyzed for different emission angles. The double K-vacancy production shows a considerable enhancement i.e. 37% of the single production cross section which is consistent with some of the recent experiments on K-ionization using x-ray techniques.
{"title":"Ionization of CH4 under fast He-like Si-ion impact","authors":"Debasmita Chakraborty , Sanjeev Maurya , Laszlo Gulyás , Abhijit Bhogale , Chandan Bagdia , Nilesh Mhatre , Debashis Biswas , Lokesh C. Tribedi","doi":"10.1016/j.elspec.2023.147405","DOIUrl":"https://doi.org/10.1016/j.elspec.2023.147405","url":null,"abstract":"<div><p>We have studied the absolute double differential cross section (DDCS) of electrons ejected from the methane molecule (CH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>) under the impact of highly charged fast projectile ions. The energy and angular distributions of electrons have been measured in interactions with 70 MeV Si<span><math><msup><mrow></mrow><mrow><mn>12</mn><mo>+</mo></mrow></msup></math></span><span> ions. These DDCS data together with the derived single differential cross sections and the total cross section (TCS) have been compared with predictions of the continuum distorted wave-eikonal initial state model using different approaches for the molecular orbitals<span>. It has been found that the theories overestimate the measured DDCS values at low ejection energies, which may indicate shortcomings of the model in the case of strong perturbation. At the same time, applying the model to a previous measurement using fast C ions having a lower perturbation strength, excellent agreements have been obtained with the experimental data. Considering the scaling properties, the available TCS data have been plotted with a scaled parameter, namely the perturbation strength, q/v (where q= charge state, v=velocity of the projectile). The KLL Auger e-emission as well as the KLL hyper-satellite peaks are analyzed for different emission angles. The double K-vacancy production shows a considerable enhancement i.e. 37% of the single production cross section which is consistent with some of the recent experiments on K-ionization using x-ray techniques.</span></span></p></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"269 ","pages":"Article 147405"},"PeriodicalIF":1.9,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138230227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-30DOI: 10.1016/j.elspec.2023.147402
A. Alsawi , C.R.J. Sait , D. Hesp , P. Unsworth , M.J. Ashwin , V.R. Dhanak , T.D. Veal , P. Weightman
The application of a potential model to the analysis of differences between the Auger parameters of InSb and the elemental materials yields a value for the core hole screening distance in InSb. It also yields a value of 0.22 ± 0.49 e for the charge transfer in InSb. Shifts in the Auger parameters of elements between their metallic states and in a compound semiconductor are interpreted using a novel method based on quantifying atomic core potential, as a quantum mechanical observable, in terms of its dependence on the valence charge and the number of atomic core holes. The core hole screening distance is larger than half the interatomic distance between the nearest neighbors and, by the equivalent cores model, is expected to be the screening radius of Sn and Te impurities in InSb.
{"title":"Core hole electron screening in InSb","authors":"A. Alsawi , C.R.J. Sait , D. Hesp , P. Unsworth , M.J. Ashwin , V.R. Dhanak , T.D. Veal , P. Weightman","doi":"10.1016/j.elspec.2023.147402","DOIUrl":"https://doi.org/10.1016/j.elspec.2023.147402","url":null,"abstract":"<div><p>The application of a potential model to the analysis of differences between the Auger parameters of InSb and the elemental materials yields a value <span><math><mrow><mn>1.82</mn><mo>±</mo><mn>0.07</mn><mi>Å</mi></mrow></math></span> for the core hole screening distance in InSb. It also yields a value of 0.22 ± 0.49 e for the charge transfer in InSb. Shifts in the Auger parameters of elements between their metallic states and in a compound semiconductor are interpreted using a novel method based on quantifying atomic core potential, as a quantum mechanical observable, in terms of its dependence on the valence charge and the number of atomic core holes. The core hole screening distance is <span><math><mrow><mo>∼</mo><mn>30</mn><mo>%</mo></mrow></math></span> larger than half the interatomic distance between the nearest neighbors and, by the equivalent cores model, is expected to be the screening radius of Sn and Te impurities in InSb.</p></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"269 ","pages":"Article 147402"},"PeriodicalIF":1.9,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0368204823001196/pdfft?md5=c19093087514c482a0ac37a11e9846c0&pid=1-s2.0-S0368204823001196-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92013246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1016/j.elspec.2023.147395
Xiangli Wang , Lan Yang , Baixing Liu , Guoheng Zhang , Xiaoyong Li , Cairang LiMao
The radiative and Auger decay of K-shell hole states of argon ions with configuration 1s2sm2pn3 s23p6 (m=0–2; n = 0–6) are studied theoretically using the flexible atomic code. The effect of L-shell spectator vacancies on the competition of filling the K, L1, and L23 vacancies is discussed for the first time. We find the K or L1 vacancy is preferred to be filled first when there is 0 or 1 vacancy in the L23 shell, but the L23 vacancy becomes the priority when the number of the L23 vacancies is larger than 2, and the total branching ratio of the L23 vacancy is as high as 66.98%, 74.66%, and 80.95% when the L23 shell has 4 vacancies and there are 2, 1 and 0 vacancies in the L1 shell, respectively. In addition, the natural widths of the K, L1, and L23 vacancies with different L-shell vacancy distributions are also calculated. The results show that they all first increase and then decrease with the number of L23 vacancies. It is expected that the present study will be useful for the qualitative analysis of the decay processes of multiple hole states, the understanding of ion yields and the production of satellites in x-ray and Auger spectra.
{"title":"Effect of L-shell spectator vacancies on the competition of filling the K, L1 and L23 vacancies and the natural widths of K-shell hole states of argon ions","authors":"Xiangli Wang , Lan Yang , Baixing Liu , Guoheng Zhang , Xiaoyong Li , Cairang LiMao","doi":"10.1016/j.elspec.2023.147395","DOIUrl":"https://doi.org/10.1016/j.elspec.2023.147395","url":null,"abstract":"<div><p><span>The radiative and Auger decay of K-shell hole states of argon ions with configuration 1s2s</span><sup>m</sup>2p<sup>n</sup>3 s<sup>2</sup>3p<sup>6</sup> (m=0–2; n = 0–6) are studied theoretically using the flexible atomic code. The effect of <span>L</span>-shell spectator vacancies on the competition of filling the K, L<sub>1</sub>, and L<sub>23</sub> vacancies is discussed for the first time. We find the K or L<sub>1</sub> vacancy is preferred to be filled first when there is 0 or 1 vacancy in the L<sub>23</sub> shell, but the L<sub>23</sub> vacancy becomes the priority when the number of the L<sub>23</sub> vacancies is larger than 2, and the total branching ratio of the L<sub>23</sub> vacancy is as high as 66.98%, 74.66%, and 80.95% when the L<sub>23</sub> shell has 4 vacancies and there are 2, 1 and 0 vacancies in the L<sub>1</sub> shell, respectively. In addition, the natural widths of the K, L<sub>1</sub>, and L<sub>23</sub> vacancies with different <span>L</span>-shell vacancy distributions are also calculated. The results show that they all first increase and then decrease with the number of L<sub>23</sub><span> vacancies. It is expected that the present study will be useful for the qualitative analysis of the decay processes of multiple hole states, the understanding of ion yields and the production of satellites in x-ray and Auger spectra.</span></p></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"268 ","pages":"Article 147395"},"PeriodicalIF":1.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49901089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1016/j.elspec.2023.147386
H. Ebert , S. Mankovsky , A. Marmodoro , E. Simon
The magnetic circular X-ray dichroism (XMCD) in X-ray absorption spectroscopy (XAS) is extensively used to monitor the response of a magnetic system to an external perturbation. Application of a static external electric field to control its magnetic properties may just lead to a charge rearrangement or to a steady electric current dependent on the geometry. As it is demonstrated, the first situation can be handled with minor modifications of the standard well established schemes to calculate XAS and XMCD spectra. For the second case, however, more advanced schemes have to be used that account for the steady-state out-of-equilibrium situation. It is shown, that this can indeed be achieved by making use of the Keldysh non-equilibrium Green function formalism that allows in particular to express the X-ray absorption coefficient in terms of the corresponding greater Green function . As an alternative approach, a bi-linear response formalism is presented that can be used to calculate the modification of the XMCD spectra due to the electric field directly.
{"title":"Influence of a static electric field on magnetic materials monitored by X-ray magnetic circular dichroism","authors":"H. Ebert , S. Mankovsky , A. Marmodoro , E. Simon","doi":"10.1016/j.elspec.2023.147386","DOIUrl":"https://doi.org/10.1016/j.elspec.2023.147386","url":null,"abstract":"<div><p><span>The magnetic circular X-ray dichroism (XMCD) in X-ray absorption spectroscopy (XAS) is extensively used to monitor the response of a magnetic system to an external perturbation. Application of a static<span><span> external electric field to control its magnetic properties may just lead to a charge rearrangement or to a steady </span>electric current<span> dependent on the geometry. As it is demonstrated, the first situation can be handled with minor modifications of the standard well established schemes to calculate XAS and XMCD spectra. For the second case, however, more advanced schemes have to be used that account for the steady-state out-of-equilibrium situation. It is shown, that this can indeed be achieved by making use of the Keldysh non-equilibrium Green function formalism that allows in particular to express the X-ray absorption coefficient in terms of the corresponding greater Green function </span></span></span><span><math><mrow><msup><mrow><mi>G</mi></mrow><mrow><mo>></mo></mrow></msup><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span>. As an alternative approach, a bi-linear response formalism is presented that can be used to calculate the modification of the XMCD spectra due to the electric field directly.</p></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"268 ","pages":"Article 147386"},"PeriodicalIF":1.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49901088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1016/j.elspec.2023.147387
J.G. Tobin
The second derivative mode of peak analysis in electron energy loss spectroscopy (EELS) in a Transmission Electron Microscope (TEM) has been quantitatively evaluated in terms of the accuracy of the method. This includes a demonstration of the importance of the second derivative peak width, the second order dependency of the accuracy upon that peak width and effect of high frequency noise in the spectra. It is shown that while the second derivative method is an efficacious and powerful mode of analysis, there are limitations in terms of the number of significant digits in both the spectral values and derived electronic quantities. The case of uranium N4,5 spectral peaks and the 5f population is presented as an example, with UO2 X-ray Absorption Spectroscopy used as a benchmark.
{"title":"A quantitative evaluation of the 2nd derivative mode in electron energy loss spectroscopy","authors":"J.G. Tobin","doi":"10.1016/j.elspec.2023.147387","DOIUrl":"10.1016/j.elspec.2023.147387","url":null,"abstract":"<div><p><span><span>The second derivative mode of peak analysis in electron energy loss spectroscopy (EELS) in a Transmission </span>Electron Microscope (TEM) has been quantitatively evaluated in terms of the accuracy of the method. This includes a demonstration of the importance of the second derivative peak width, the second order dependency of the accuracy upon that peak width and effect of high frequency noise in the spectra. It is shown that while the second derivative method is an efficacious and powerful mode of analysis, there are limitations in terms of the number of significant digits in both the spectral values and derived electronic quantities. The case of uranium N</span><sub>4,5</sub> spectral peaks and the 5f population is presented as an example, with UO<sub>2</sub><span> X-ray Absorption Spectroscopy used as a benchmark.</span></p></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"268 ","pages":"Article 147387"},"PeriodicalIF":1.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47068322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work focuses on the EXAFS investigation of the local environment of lead and iron sorbed onto volcanic ash materials previously studied using XANES technique. Different compounds found in the composition of volcanic ash were used as the models in the EXAFS fitting procedure of the experimental EXAFS spectra collected at the Fe K edge and Pb L3 edge in the Fe- and Pb-sorbed volcanic ash samples. The results showed two types of interactions involving in the adsorption process of both samples. The first is related to iron or lead absorber with oxygen atoms in the first coordination shell. The second interaction occurred between the absorbers (Fe or Pb) and the backscatters (Fe or Pb) in the second shell. The local environment of the iron-sorbed element may have a cubic geometry with different crystallographic sites related to oxygen and iron atoms. On the other hand, the lead-sorbed element may be in orthorhombic geometry with different sites related to oxygen atoms and lead atoms. The adsorption mechanisms involved in the process of iron and lead sorption are ion exchange with probable chemisorption for iron and microprecipitation for lead.
{"title":"EXAFS study of the local environment of lead and iron sorbed onto volcanic ash","authors":"Bridinette Thiodjio Sendja , Duclair Tchana Kamgne , Rene Loredo Portales , Giuliana Aquilanti","doi":"10.1016/j.elspec.2023.147379","DOIUrl":"10.1016/j.elspec.2023.147379","url":null,"abstract":"<div><p><span>This work focuses on the EXAFS<span> investigation of the local environment of lead and iron sorbed onto volcanic ash materials previously studied using XANES<span> technique. Different compounds found in the composition of volcanic ash were used as the models in the EXAFS fitting procedure of the experimental EXAFS spectra collected at the Fe K edge and Pb L3 edge in the Fe- and Pb-sorbed volcanic ash samples. The results showed two types of interactions involving in the adsorption process of both samples. The first is related to iron or lead absorber with oxygen atoms in the first coordination shell. The second interaction occurred between the absorbers (Fe or Pb) and the backscatters (Fe or Pb) in the second shell. The local environment of the iron-sorbed element may have a cubic geometry with different crystallographic sites related to oxygen and iron atoms. On the other hand, the lead-sorbed element may be in orthorhombic geometry with different sites related to oxygen atoms and lead atoms. The adsorption mechanisms involved in the process of iron and lead </span></span></span>sorption<span> are ion exchange with probable chemisorption for iron and microprecipitation for lead.</span></p></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"267 ","pages":"Article 147379"},"PeriodicalIF":1.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49327745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1016/j.elspec.2023.147367
Joseph Stitsky , Jian Wang , Stephen Urquhart
Spectroptychography is being used to realize a significant improvement in the spatial resolution of x-ray spectromicroscopy, allowing chemical microanalysis at finer spatial scales. The chemical sensitivity of near edge X-ray absorption fine structure (NEXAFS) is familiar to most researchers who use x-ray spectromicroscopy for chemical microanalysis. However, the additional phase information available through ptychography provides additional and tantalizing data, and potentially additional chemical information. This paper explores the chemical information available in phase for a system of silicon dioxide nanospheres.
{"title":"Making chemical sense of phase in soft X-ray spectroptychography","authors":"Joseph Stitsky , Jian Wang , Stephen Urquhart","doi":"10.1016/j.elspec.2023.147367","DOIUrl":"10.1016/j.elspec.2023.147367","url":null,"abstract":"<div><p>Spectroptychography is being used to realize a significant improvement in the spatial resolution of x-ray spectromicroscopy, allowing chemical microanalysis at finer spatial scales. The chemical sensitivity of near edge X-ray absorption fine structure (NEXAFS) is familiar to most researchers who use x-ray spectromicroscopy for chemical microanalysis. However, the additional phase information available through ptychography provides additional and tantalizing data, and potentially additional chemical information. This paper explores the chemical information available in phase for a system of silicon dioxide nanospheres.</p></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"267 ","pages":"Article 147367"},"PeriodicalIF":1.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46662251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1016/j.elspec.2023.147385
A. Yamaguchi , S. Ikeda , M. Nakaya , Y. Kobayashi , Y. Haruyama , S. Suzuki , K. Kanda , Y. Utsumi , T. Ohkochi , H. Sumida , M. Oura
The F, C, O, and N elemental distribution maps at the exfoliated surfaces of Cu plate after peeling the fluoropolymers from Fluorinated ethylene propylene (FEP)/Cu and Perfluoroalkoxyalkane (PFA)/Cu pieces which were bonded by plasma treatment including amino acid were performed by microscopic synchrotron radiation (SR) spectroscopic imaging measurements. The spatial elemental distribution pattern of exfoliated Cu after peeling PFA/Cu piece was not detectable by scanning electron microscopy with energy dispersive X-ray spectroscopy imaging alone, was revealed by SR-based soft X-ray microspectroscopy. We also obtained the microprobe X-ray fluorescence spectra and microprobe near-edge X-ray absorption fine structure spectra. Based on these measurement results, it is considered that the delamination of FEP/Cu piece mainly caused by resin failure, while the delamination of PFA/Cu is caused by interfacial delamination in addition to resin failure. The Hard X-ray photoelectron spectroscopy was also performed to confirm that the bonding via nitrogen is formed. Our SR-based analyses provided confirmation that fluoropolymers and Cu plates are bonded by N-mediated chemical bonding. The present study insists that the technique and plasma bonding process reported are expected to contribute to the development of new devices and systems consisting of fluoropolymers and metals.
{"title":"Soft X-ray microspectroscopic imaging studies of exfoliated surface between fluoropolymer and Cu plate directly bonded by plasma irradiation with ammonia gas","authors":"A. Yamaguchi , S. Ikeda , M. Nakaya , Y. Kobayashi , Y. Haruyama , S. Suzuki , K. Kanda , Y. Utsumi , T. Ohkochi , H. Sumida , M. Oura","doi":"10.1016/j.elspec.2023.147385","DOIUrl":"10.1016/j.elspec.2023.147385","url":null,"abstract":"<div><p>The F, C, O, and N elemental distribution maps at the exfoliated surfaces of Cu plate after peeling the fluoropolymers from Fluorinated ethylene propylene<span><span> (FEP)/Cu and Perfluoroalkoxyalkane (PFA)/Cu pieces which were bonded by plasma treatment including amino acid were performed by microscopic </span>synchrotron radiation<span> (SR) spectroscopic imaging<span> measurements. The spatial elemental distribution pattern of exfoliated Cu after peeling PFA/Cu piece was not detectable by scanning electron microscopy with energy dispersive X-ray spectroscopy imaging alone, was revealed by SR-based soft X-ray microspectroscopy. We also obtained the microprobe X-ray fluorescence spectra and microprobe near-edge X-ray absorption fine structure spectra. Based on these measurement results, it is considered that the delamination of FEP/Cu piece mainly caused by resin failure, while the delamination of PFA/Cu is caused by interfacial delamination in addition to resin failure. The Hard X-ray photoelectron spectroscopy was also performed to confirm that the bonding via nitrogen is formed. Our SR-based analyses provided confirmation that fluoropolymers and Cu plates are bonded by N-mediated chemical bonding. The present study insists that the technique and plasma bonding process reported are expected to contribute to the development of new devices and systems consisting of fluoropolymers and metals.</span></span></span></p></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"267 ","pages":"Article 147385"},"PeriodicalIF":1.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47542453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}