首页 > 最新文献

Journal of Fluid Mechanics最新文献

英文 中文
Transport scaling in porous media convection 多孔介质对流中的传输缩放
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-08-20 DOI: 10.1017/jfm.2024.528
Xiaojue Zhu, Yifeng Fu, Marco De Paoli

{"title":"Transport scaling in porous media convection","authors":"Xiaojue Zhu, Yifeng Fu, Marco De Paoli","doi":"10.1017/jfm.2024.528","DOIUrl":"https://doi.org/10.1017/jfm.2024.528","url":null,"abstract":"<p><img href=\"S0022112024005287_figAb.png\" mimesubtype=\"png\" mimetype=\"image\" orientation=\"\" position=\"\" src=\"https://static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0022112024005287/resource/name/S0022112024005287_figAb.png?pub-status=live\" type=\"\"/></p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"7 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical study of a generic ship's airwake for understanding bi‐stability mechanism 为了解双稳态机制而对一般船舶气浪进行的数值研究
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-08-20 DOI: 10.1017/jfm.2024.511
Kewei Xu, Xinchao Su, Isak Jonsson, Rickard Bensow, Sinisa Krajnovic

{"title":"Numerical study of a generic ship's airwake for understanding bi‐stability mechanism","authors":"Kewei Xu, Xinchao Su, Isak Jonsson, Rickard Bensow, Sinisa Krajnovic","doi":"10.1017/jfm.2024.511","DOIUrl":"https://doi.org/10.1017/jfm.2024.511","url":null,"abstract":"<p><img href=\"S0022112024005111_figAb.png\" mimesubtype=\"png\" mimetype=\"image\" orientation=\"\" position=\"\" src=\"https://static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0022112024005111/resource/name/S0022112024005111_figAb.png?pub-status=live\" type=\"\"/></p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"5 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermoelectrohydrodynamic convection in a finite cylindrical annulus under microgravity 微重力条件下有限圆柱环内的热电流体动力对流
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-08-20 DOI: 10.1017/jfm.2024.538
Changwoo Kang, Innocent Mutabazi, Harunori N. Yoshikawa

{"title":"Thermoelectrohydrodynamic convection in a finite cylindrical annulus under microgravity","authors":"Changwoo Kang, Innocent Mutabazi, Harunori N. Yoshikawa","doi":"10.1017/jfm.2024.538","DOIUrl":"https://doi.org/10.1017/jfm.2024.538","url":null,"abstract":"<p><img href=\"S002211202400538X_figAb.png\" mimesubtype=\"png\" mimetype=\"image\" orientation=\"\" position=\"\" src=\"https://static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS002211202400538X/resource/name/S002211202400538X_figAb.png?pub-status=live\" type=\"\"/></p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"28 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-dimensional generative adversarial networks for turbulent flow estimation from wall measurements 根据壁面测量结果估算湍流的三维生成对抗网络
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-08-20 DOI: 10.1017/jfm.2024.432
Antonio Cuéllar, Alejandro Güemes, Andrea Ianiro, Óscar Flores, Ricardo Vinuesa, Stefano Discetti

{"title":"Three-dimensional generative adversarial networks for turbulent flow estimation from wall measurements","authors":"Antonio Cuéllar, Alejandro Güemes, Andrea Ianiro, Óscar Flores, Ricardo Vinuesa, Stefano Discetti","doi":"10.1017/jfm.2024.432","DOIUrl":"https://doi.org/10.1017/jfm.2024.432","url":null,"abstract":"<p><img href=\"S0022112024004324_figAb.png\" mimesubtype=\"png\" mimetype=\"image\" orientation=\"\" position=\"\" src=\"https://static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0022112024004324/resource/name/S0022112024004324_figAb.png?pub-status=live\" type=\"\"/></p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"10 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical validation of scaling laws for stratified turbulence 分层湍流比例定律的数值验证
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-08-20 DOI: 10.1017/jfm.2024.531
Pascale Garaud, Gregory P. Chini, Laura Cope, Kasturi Shah, Colm-cille P. Caulfield

{"title":"Numerical validation of scaling laws for stratified turbulence","authors":"Pascale Garaud, Gregory P. Chini, Laura Cope, Kasturi Shah, Colm-cille P. Caulfield","doi":"10.1017/jfm.2024.531","DOIUrl":"https://doi.org/10.1017/jfm.2024.531","url":null,"abstract":"<p><img href=\"S0022112024005317_figAb.png\" mimesubtype=\"png\" mimetype=\"image\" orientation=\"\" position=\"\" src=\"https://static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0022112024005317/resource/name/S0022112024005317_figAb.png?pub-status=live\" type=\"\"/></p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"17 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Jet mixing enhancement with Bayesian optimization, deep learning and persistent data topology 利用贝叶斯优化、深度学习和持久数据拓扑增强喷气混合效果
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-08-20 DOI: 10.1017/jfm.2024.525
Yiqing Li, Bernd R. Noack, Tianyu Wang, Guy Y. Cornejo Maceda, Ethan Pickering, Tamir Shaqarin, Artur Tyliszczak

{"title":"Jet mixing enhancement with Bayesian optimization, deep learning and persistent data topology","authors":"Yiqing Li, Bernd R. Noack, Tianyu Wang, Guy Y. Cornejo Maceda, Ethan Pickering, Tamir Shaqarin, Artur Tyliszczak","doi":"10.1017/jfm.2024.525","DOIUrl":"https://doi.org/10.1017/jfm.2024.525","url":null,"abstract":"<p><img href=\"S0022112024005251_figAb.png\" mimesubtype=\"png\" mimetype=\"image\" orientation=\"\" position=\"\" src=\"https://static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0022112024005251/resource/name/S0022112024005251_figAb.png?pub-status=live\" type=\"\"/></p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"2017 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transition delay in a Mach 6 boundary layer using steady blowing and suction strips 利用稳定吹气和吸气条在马赫数 6 边界层中的过渡延迟
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-08-20 DOI: 10.1017/jfm.2024.468
Christoph Hader, Hermann F. Fasel

{"title":"Transition delay in a Mach 6 boundary layer using steady blowing and suction strips","authors":"Christoph Hader, Hermann F. Fasel","doi":"10.1017/jfm.2024.468","DOIUrl":"https://doi.org/10.1017/jfm.2024.468","url":null,"abstract":"<p><img href=\"S0022112024004683_figAb.png\" mimesubtype=\"png\" mimetype=\"image\" orientation=\"\" position=\"\" src=\"https://static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0022112024004683/resource/name/S0022112024004683_figAb.png?pub-status=live\" type=\"\"/></p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"17 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inertial particle focusing in fluid flow through spiral ducts: dynamics, tipping phenomena and particle separation 流体流经螺旋管道时的惯性颗粒聚焦:动力学、倾倒现象和颗粒分离
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-08-14 DOI: 10.1017/jfm.2024.487
Rahil N. Valani, Brendan Harding, Yvonne M. Stokes
Small finite-size particles suspended in fluid flow through an enclosed curved duct can focus to points or periodic orbits in the two-dimensional duct cross-section. This particle focusing is due to a balance between inertial lift forces arising from axial flow and drag forces arising from cross-sectional vortices. The inertial particle focusing phenomenon has been exploited in various industrial and medical applications to passively separate particles by size using purely hydrodynamic effects. A fixed size particle in a circular duct with a uniform rectangular cross-section can have a variety of particle attractors, such as stable nodes/spirals or limit cycles, depending on the radius of curvature of the duct. Bifurcations occur at different radii of curvature, such as pitchfork, saddle-node and saddle-node infinite period (SNIPER), which result in variations in the location, number and nature of these particle attractors. By using a quasi-steady approximation, we extend the theoretical model of Harding et al. (J. Fluid Mech., vol. 875, 2019, pp. 1–43) developed for the particle dynamics in circular ducts to spiral duct geometries with slowly varying curvature, and numerically explore the particle dynamics within. Bifurcations of particle attractors with respect to radius of curvature can be traversed within spiral ducts and give rise to a rich nonlinear particle dynamics and various types of tipping phenomena, such as bifurcation-induced tipping (B-tipping), rate-induced tipping (R-tipping) and a combination of both, which we explore in detail. We discuss implications of these unsteady dynamical behaviours for particle separation and propose novel mechanisms to separate particles by size in a non-equilibrium manner.
在流体流经封闭的弯曲管道时,悬浮的有限尺寸小颗粒会在二维管道横截面上聚焦成点或周期性轨道。这种颗粒聚焦现象是由于轴向流动产生的惯性升力和横截面涡流产生的阻力之间的平衡造成的。惯性颗粒聚焦现象已在各种工业和医疗应用中得到开发,利用纯粹的流体动力学效应按颗粒大小进行被动分离。在一个具有均匀矩形截面的圆形管道中,一个固定大小的颗粒会有多种颗粒吸引器,如稳定节点/螺旋或极限循环,这取决于管道的曲率半径。在不同曲率半径处会出现分岔,如叉形分岔、鞍形节点分岔和鞍形节点无限周期分岔(SNIPER),从而导致这些粒子吸引子的位置、数量和性质发生变化。通过使用准稳近似方法,我们将 Harding 等人(《流体力学》,第 875 卷,2019 年,第 1-43 页)针对圆形管道中粒子动力学建立的理论模型扩展到曲率缓慢变化的螺旋管道几何结构中,并对其中的粒子动力学进行了数值探索。粒子吸引子相对于曲率半径的分岔可以在螺旋管道内穿越,并产生丰富的非线性粒子动力学和各种类型的倾覆现象,如分岔诱导倾覆(B-倾覆)、速率诱导倾覆(R-倾覆)以及两者的结合,我们将对此进行详细探讨。我们讨论了这些不稳定动力学行为对颗粒分离的影响,并提出了以非平衡方式按大小分离颗粒的新机制。
{"title":"Inertial particle focusing in fluid flow through spiral ducts: dynamics, tipping phenomena and particle separation","authors":"Rahil N. Valani, Brendan Harding, Yvonne M. Stokes","doi":"10.1017/jfm.2024.487","DOIUrl":"https://doi.org/10.1017/jfm.2024.487","url":null,"abstract":"Small finite-size particles suspended in fluid flow through an enclosed curved duct can focus to points or periodic orbits in the two-dimensional duct cross-section. This particle focusing is due to a balance between inertial lift forces arising from axial flow and drag forces arising from cross-sectional vortices. The inertial particle focusing phenomenon has been exploited in various industrial and medical applications to passively separate particles by size using purely hydrodynamic effects. A fixed size particle in a circular duct with a uniform rectangular cross-section can have a variety of particle attractors, such as stable nodes/spirals or limit cycles, depending on the radius of curvature of the duct. Bifurcations occur at different radii of curvature, such as pitchfork, saddle-node and saddle-node infinite period (SNIPER), which result in variations in the location, number and nature of these particle attractors. By using a quasi-steady approximation, we extend the theoretical model of Harding <jats:italic>et al.</jats:italic> (<jats:italic>J. Fluid Mech.</jats:italic>, vol. 875, 2019, pp. 1–43) developed for the particle dynamics in circular ducts to spiral duct geometries with slowly varying curvature, and numerically explore the particle dynamics within. Bifurcations of particle attractors with respect to radius of curvature can be traversed within spiral ducts and give rise to a rich nonlinear particle dynamics and various types of tipping phenomena, such as bifurcation-induced tipping (B-tipping), rate-induced tipping (R-tipping) and a combination of both, which we explore in detail. We discuss implications of these unsteady dynamical behaviours for particle separation and propose novel mechanisms to separate particles by size in a non-equilibrium manner.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"57 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism of vortex oscillation around a hemisphere–cylinder body 围绕半球形圆柱体的涡旋振荡机制
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-08-14 DOI: 10.1017/jfm.2024.526
Zhou-Yang Wang, Bao-Feng Ma
Previous studies have shown that low-frequency vortex oscillations occur around a hemisphere–cylinder body at different angles of attack, but the underlying mechanism is still unclear. In this study, we examine the origin of the vortex oscillation using numerical simulations and global linear stability analysis. The vortex oscillation is reproduced using numerical simulations, and the oscillatory modes are computed through dynamic mode decomposition (DMD). We obtain the base flow through a selective frequency damping method, which exhibits a pair of steady leeward vortices over the body. The four unstable modes are computed using a modified Arnoldi iteration. The antisymmetric mode with a Strouhal number of 0.105 is discovered to be responsible for the alternate oscillation of the vortex pair, and the mode with a Strouhal number of 0.220 corresponds to the in-phase vortex oscillation. Their frequencies have good agreement with the modes of DMD. The other two unstable modes with higher frequencies, one antisymmetric and one symmetric, are harmonic frequencies of the above two modes. The study conclusively verifies that the vortex oscillation over a hemisphere–cylinder body originates from a global flow instability.
以往的研究表明,在不同的攻角下,半球形气缸体周围会出现低频涡旋振荡,但其基本机制仍不清楚。在本研究中,我们利用数值模拟和全局线性稳定性分析研究了涡旋振荡的起源。通过数值模拟再现了涡旋振荡,并通过动态模式分解(DMD)计算了振荡模式。我们通过选择性频率阻尼法获得了基流,基流在主体上方呈现出一对稳定的背风涡旋。四种不稳定模态采用改进的阿诺德迭代法计算。发现斯特劳哈尔数为 0.105 的非对称模态负责涡旋对的交替振荡,斯特劳哈尔数为 0.220 的模态对应于同相涡旋振荡。它们的频率与 DMD 的模式十分吻合。另外两个频率较高的不稳定模式,一个是反对称模式,一个是对称模式,是上述两个模式的谐波频率。这项研究最终验证了半球形圆柱体上的涡旋振荡源于全局流动不稳定性。
{"title":"Mechanism of vortex oscillation around a hemisphere–cylinder body","authors":"Zhou-Yang Wang, Bao-Feng Ma","doi":"10.1017/jfm.2024.526","DOIUrl":"https://doi.org/10.1017/jfm.2024.526","url":null,"abstract":"Previous studies have shown that low-frequency vortex oscillations occur around a hemisphere–cylinder body at different angles of attack, but the underlying mechanism is still unclear. In this study, we examine the origin of the vortex oscillation using numerical simulations and global linear stability analysis. The vortex oscillation is reproduced using numerical simulations, and the oscillatory modes are computed through dynamic mode decomposition (DMD). We obtain the base flow through a selective frequency damping method, which exhibits a pair of steady leeward vortices over the body. The four unstable modes are computed using a modified Arnoldi iteration. The antisymmetric mode with a Strouhal number of 0.105 is discovered to be responsible for the alternate oscillation of the vortex pair, and the mode with a Strouhal number of 0.220 corresponds to the in-phase vortex oscillation. Their frequencies have good agreement with the modes of DMD. The other two unstable modes with higher frequencies, one antisymmetric and one symmetric, are harmonic frequencies of the above two modes. The study conclusively verifies that the vortex oscillation over a hemisphere–cylinder body originates from a global flow instability.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"2 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-flexibility reconstruction of small-scale motions in wall turbulence using a generalized zero-shot learning 利用广义零点学习高灵活性地重建壁面湍流中的小尺度运动
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-08-14 DOI: 10.1017/jfm.2024.521
Haokai Wu, Kai Zhang, Dai Zhou, Wen-Li Chen, Zhaolong Han, Yong Cao
This study proposes a novel super-resolution (or SR) framework for generating high-resolution turbulent boundary layer (TBL) flow from low-resolution inputs. The framework combines a super-resolution generative adversarial neural network (SRGAN) with down-sampling modules (DMs), integrating the residual of the continuity equation into the loss function. The DMs selectively filter out components with excessive energy dissipation in low-resolution fields prior to the super-resolution process. The framework iteratively applies the SRGAN and DM procedure to fully capture the energy cascade of multi-scale flow structures, collectively termed the SRGAN-based energy cascade reconstruction framework (EC-SRGAN). Despite being trained solely on turbulent channel flow data (via ‘zero-shot transfer’), EC-SRGAN exhibits remarkable generalization in predicting TBL small-scale velocity fields, accurately reproducing wavenumber spectra compared to direct numerical simulation (DNS) results. Furthermore, a super-resolution core is trained at a specific super-resolution ratio. By leveraging this pretrained super-resolution core, EC-SRGAN efficiently reconstructs TBL fields at multiple super-resolution ratios from various levels of low-resolution inputs, showcasing strong flexibility. By learning turbulent scale invariance, EC-SRGAN demonstrates robustness across different TBL datasets. These results underscore the potential of EC-SRGAN for generating and predicting wall turbulence with high flexibility, offering promising applications in addressing diverse TBL-related challenges.
本研究提出了一种新型超分辨率(或 SR)框架,用于从低分辨率输入生成高分辨率湍流边界层(TBL)流动。该框架将超分辨率生成对抗神经网络(SRGAN)与下采样模块(DMs)相结合,将连续性方程的残差整合到损失函数中。在进行超分辨率处理之前,DMs 会选择性地过滤掉低分辨率场中能量消耗过大的成分。该框架迭代应用 SRGAN 和 DM 程序,以全面捕捉多尺度流动结构的能量级联,统称为基于 SRGAN 的能量级联重建框架(EC-SRGAN)。尽管 EC-SRGAN 仅在湍流通道流数据上进行训练(通过 "零点转移"),但它在预测 TBL 小尺度速度场方面表现出显著的普适性,与直接数值模拟(DNS)结果相比,它准确地再现了波谱。此外,超分辨率核心是按照特定的超分辨率比率训练的。通过利用这一预先训练的超分辨率核心,EC-SRGAN 可以从不同层次的低分辨率输入中高效地重建多种超分辨率比率的 TBL 场,显示出很强的灵活性。通过学习湍流尺度不变性,EC-SRGAN 在不同的 TBL 数据集上都表现出鲁棒性。这些结果凸显了 EC-SRGAN 以高度灵活性生成和预测壁面湍流的潜力,为解决与 TBL 相关的各种挑战提供了前景广阔的应用。
{"title":"High-flexibility reconstruction of small-scale motions in wall turbulence using a generalized zero-shot learning","authors":"Haokai Wu, Kai Zhang, Dai Zhou, Wen-Li Chen, Zhaolong Han, Yong Cao","doi":"10.1017/jfm.2024.521","DOIUrl":"https://doi.org/10.1017/jfm.2024.521","url":null,"abstract":"This study proposes a novel super-resolution (or SR) framework for generating high-resolution turbulent boundary layer (TBL) flow from low-resolution inputs. The framework combines a super-resolution generative adversarial neural network (SRGAN) with down-sampling modules (DMs), integrating the residual of the continuity equation into the loss function. The DMs selectively filter out components with excessive energy dissipation in low-resolution fields prior to the super-resolution process. The framework iteratively applies the SRGAN and DM procedure to fully capture the energy cascade of multi-scale flow structures, collectively termed the SRGAN-based energy cascade reconstruction framework (EC-SRGAN). Despite being trained solely on turbulent channel flow data (via ‘zero-shot transfer’), EC-SRGAN exhibits remarkable generalization in predicting TBL small-scale velocity fields, accurately reproducing wavenumber spectra compared to direct numerical simulation (DNS) results. Furthermore, a super-resolution core is trained at a specific super-resolution ratio. By leveraging this pretrained super-resolution core, EC-SRGAN efficiently reconstructs TBL fields at multiple super-resolution ratios from various levels of low-resolution inputs, showcasing strong flexibility. By learning turbulent scale invariance, EC-SRGAN demonstrates robustness across different TBL datasets. These results underscore the potential of EC-SRGAN for generating and predicting wall turbulence with high flexibility, offering promising applications in addressing diverse TBL-related challenges.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"1 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Fluid Mechanics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1