首页 > 最新文献

Journal of Fluid Mechanics最新文献

英文 中文
Modon solutions in an N-layer quasi-geostrophic model N 层准地转模型中的模子解法
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-18 DOI: 10.1017/jfm.2024.619
Matthew N. Crowe, Edward R. Johnson
Modons, or dipolar vortices, are common and long-lived features of the upper ocean, consisting of a pair of counter-rotating monopolar vortices moving through self-advection. Such structures remain stable over long times and may be important for fluid transport over large distances. Here, we present a semi-analytical method for finding fully nonlinear modon solutions in a multi-layer quasi-geostrophic model with arbitrarily many layers. Our approach is to reduce the problem to a multi-parameter linear eigenvalue problem which can be solved using numerical techniques from linear algebra. The method is shown to replicate previous results for one- and two-layer models and is applied to a three-layer model to find a solution describing a mid-depth propagating, topographic vortex.
漩涡(Modons)或双极漩涡是海洋上层常见的长寿特征,由一对通过自平流运动的反向旋转单极漩涡组成。这种结构在很长时间内保持稳定,可能对流体的远距离传输非常重要。在这里,我们提出了一种半分析方法,用于在具有任意多层的多层准地转模型中寻找全非线性模态解。我们的方法是将问题简化为多参数线性特征值问题,利用线性代数中的数值技术求解。结果表明,该方法复制了以前对单层和双层模型的研究结果,并应用于三层模型,找到了描述中深度传播的地形涡旋的解。
{"title":"Modon solutions in an N-layer quasi-geostrophic model","authors":"Matthew N. Crowe, Edward R. Johnson","doi":"10.1017/jfm.2024.619","DOIUrl":"https://doi.org/10.1017/jfm.2024.619","url":null,"abstract":"Modons, or dipolar vortices, are common and long-lived features of the upper ocean, consisting of a pair of counter-rotating monopolar vortices moving through self-advection. Such structures remain stable over long times and may be important for fluid transport over large distances. Here, we present a semi-analytical method for finding fully nonlinear modon solutions in a multi-layer quasi-geostrophic model with arbitrarily many layers. Our approach is to reduce the problem to a multi-parameter linear eigenvalue problem which can be solved using numerical techniques from linear algebra. The method is shown to replicate previous results for one- and two-layer models and is applied to a three-layer model to find a solution describing a mid-depth propagating, topographic vortex.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"15 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the three-dimensional structure of instabilities beneath shallow-shoaling internal waves 浅层翔泳内波下不稳定性的三维结构
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-18 DOI: 10.1017/jfm.2024.703
Nicolas Castro-Folker, Marek Stastna
The stimulation of instability and transport in the bottom boundary layer by internal solitary waves has been documented for over twenty years. However, the challenge of shallow slopes and a disparity of scales between the large-scale wave and the small-scale boundary layer has proven challenging for simulations. We present laboratory scale simulations that resolve the three-dimensionalisation in the boundary layer during the entire shoaling process. We find that the late stage, in which the incoming wave fissions into boluses, provides the most consistent source of three-dimensionalisation. In the early stage of shoaling, three-dimensionalisation occurs not so much due to separation bubble instability, but due to the interaction of vortices shed from the separation bubble with the overlying pycnocline. This interaction overturns the pycnocline, and creates bursts in kinetic energy and viscous dissipation, suggesting that the shed vortices induce turbulent motion and sediment resuspension in the water column above and behind the separation bubble.
内孤波对海底边界层不稳定性和传输的激励作用已有二十多年的记录。然而,浅坡以及大尺度波和小尺度边界层之间的尺度差异给模拟带来了挑战。我们展示了实验室尺度的模拟结果,解决了整个浅滩过程中边界层的三维化问题。我们发现,在后期阶段,入射波裂变成波块,提供了最一致的三维化来源。在浅滩形成的早期阶段,三维化的发生与其说是由于分离气泡的不稳定性,不如说是由于分离气泡流出的涡流与上覆的pycnocline的相互作用。这种相互作用推翻了pycnocline,并产生了动能和粘性耗散的爆发,表明分离气泡上方和后方的水体中,脱落的涡流引起了湍流运动和沉积物的再悬浮。
{"title":"On the three-dimensional structure of instabilities beneath shallow-shoaling internal waves","authors":"Nicolas Castro-Folker, Marek Stastna","doi":"10.1017/jfm.2024.703","DOIUrl":"https://doi.org/10.1017/jfm.2024.703","url":null,"abstract":"The stimulation of instability and transport in the bottom boundary layer by internal solitary waves has been documented for over twenty years. However, the challenge of shallow slopes and a disparity of scales between the large-scale wave and the small-scale boundary layer has proven challenging for simulations. We present laboratory scale simulations that resolve the three-dimensionalisation in the boundary layer during the entire shoaling process. We find that the late stage, in which the incoming wave fissions into boluses, provides the most consistent source of three-dimensionalisation. In the early stage of shoaling, three-dimensionalisation occurs not so much due to separation bubble instability, but due to the interaction of vortices shed from the separation bubble with the overlying pycnocline. This interaction overturns the pycnocline, and creates bursts in kinetic energy and viscous dissipation, suggesting that the shed vortices induce turbulent motion and sediment resuspension in the water column above and behind the separation bubble.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"19 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resurrection of a superhydrophobic cylinder impacting onto liquid bath 超疏水性圆柱体撞击液槽后复活
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-18 DOI: 10.1017/jfm.2024.691
Wanqiu Zhang, Yaochen Mei, Chenyu Fu, Xinping Zhou
An interesting resurrection phenomenon (including the initial complete submersion, subsequent resurfacing and final rebounding) of a superhydrophobic sphere impacting onto a liquid bath was observed in experiments and direct numerical simulations by Galeano-Rios et al. (J. Fluid Mech., vol. 912, 2021, A17). We investigate the mechanisms of the liquid entry for a superhydrophobic cylinder in this paper. The superhydrophobic cylinder, commonly employed as supporting legs for insects and robots at the liquid surface, can exhibit liquid-entry mechanisms different from those observed with the sphere. The direct numerical simulation method is applied to the impact of a two-dimensional (2-D) superhydrophobic cylinder (modelled as a pseudo-solid) onto a liquid bath. We find that for the impacting cylinder the resurrection phenomenon can also exist, and the cylinder can either rebound (get detached from the liquid surface) or stay afloat after resurfacing. The cylinder impact behaviour is classified into four regimes, i.e. floating, bouncing, resurrecting (resurrecting-floating and resurrecting-bouncing) and sinking, dependent on the Weber number and the density ratio of the cylinder to the liquid. For the regimes of floating and bouncing, the force analysis indicates that the form drag dominates the motion of the cylinder in the very beginning of the impact, while subsequently the surface tension force also plays a role with the contact line pinning on the horizontal midline of the cylinder. For the critical states of the highlighted resurrecting regime, our numerical results show that the rising height for the completely submerged cylinder of different density ratios remains nearly unchanged. Accordingly, a relation between the maximum ascending velocity and the density ratio is derived to predict whether the completely submerged cylinder can resurface.
Galeano-Rios 等人在实验和直接数值模拟中观察到了超疏水球体撞击液槽后有趣的复活现象(包括最初的完全浸没、随后的重新浮出水面和最后的反弹)(《流体力学》,第 912 卷,2021 年,A17 期)。本文研究了超疏水圆柱体的液体进入机制。超疏水性圆柱体通常被用作昆虫和机器人在液体表面的支撑脚,它可以表现出与球体不同的液体进入机制。本文将直接数值模拟方法应用于二维(2-D)超疏水性圆柱体(模拟为伪固体)对液槽的冲击。我们发现,对于撞击的圆柱体来说,复活现象也可能存在,圆柱体既可能反弹(脱离液面),也可能在复活后保持漂浮状态。根据韦伯数和圆柱体与液体的密度比,圆柱体的撞击行为可分为四种状态,即漂浮、反弹、复活(复活-漂浮和复活-反弹)和下沉。对于浮动和弹跳状态,受力分析表明,在冲击开始时,形状阻力主导着圆柱体的运动,而随后表面张力也起了作用,接触线固定在圆柱体的水平中线上。我们的数值结果表明,在突出复活机制的临界状态下,不同密度比的完全浸没圆柱体的上升高度几乎保持不变。因此,我们推导出了最大上升速度与密度比之间的关系,以预测完全淹没的圆柱体是否能重新浮出水面。
{"title":"Resurrection of a superhydrophobic cylinder impacting onto liquid bath","authors":"Wanqiu Zhang, Yaochen Mei, Chenyu Fu, Xinping Zhou","doi":"10.1017/jfm.2024.691","DOIUrl":"https://doi.org/10.1017/jfm.2024.691","url":null,"abstract":"An interesting resurrection phenomenon (including the initial complete submersion, subsequent resurfacing and final rebounding) of a superhydrophobic sphere impacting onto a liquid bath was observed in experiments and direct numerical simulations by Galeano-Rios <jats:italic>et al.</jats:italic> (<jats:italic>J. Fluid Mech.</jats:italic>, vol. 912, 2021, A17). We investigate the mechanisms of the liquid entry for a superhydrophobic cylinder in this paper. The superhydrophobic cylinder, commonly employed as supporting legs for insects and robots at the liquid surface, can exhibit liquid-entry mechanisms different from those observed with the sphere. The direct numerical simulation method is applied to the impact of a two-dimensional (2-D) superhydrophobic cylinder (modelled as a pseudo-solid) onto a liquid bath. We find that for the impacting cylinder the resurrection phenomenon can also exist, and the cylinder can either rebound (get detached from the liquid surface) or stay afloat after resurfacing. The cylinder impact behaviour is classified into four regimes, i.e. floating, bouncing, resurrecting (resurrecting-floating and resurrecting-bouncing) and sinking, dependent on the Weber number and the density ratio of the cylinder to the liquid. For the regimes of floating and bouncing, the force analysis indicates that the form drag dominates the motion of the cylinder in the very beginning of the impact, while subsequently the surface tension force also plays a role with the contact line pinning on the horizontal midline of the cylinder. For the critical states of the highlighted resurrecting regime, our numerical results show that the rising height for the completely submerged cylinder of different density ratios remains nearly unchanged. Accordingly, a relation between the maximum ascending velocity and the density ratio is derived to predict whether the completely submerged cylinder can resurface.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"22 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupled unsteady actuator disc and linear theory of an oscillating foil propulsor 振荡箔推进器的耦合非稳态致动器圆盘和线性理论
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-18 DOI: 10.1017/jfm.2024.624
Amanda S.M. Smyth, Takafumi Nishino, Andhini N. Zurman-Nasution
Linear unsteady aerofoil theory, while successfully used for the prediction of unsteady aerofoil lift for many decades, has yet to be proven adequate for predicting the propulsive performance of oscillating aerofoils. In this paper we test the hypothesis that the central shortcoming of linear small-amplitude models, such as the Garrick function, is the failure to account for the flow acceleration caused by aerofoil thrust. A new analytical model is developed by coupling the Garrick function to a cycle-averaged actuator disc model, in a manner analogous to the blade-element momentum theory for wind turbines and propellers. This amounts to assuming the Garrick function to be locally valid and, in combination with a global control volume analysis, enables the prediction of flow acceleration at the aerofoil. The new model is demonstrated to substantially improve the agreement with large-eddy simulations of an aerofoil in combined heave and pitch motion.
几十年来,线性非稳态气膜理论虽然成功地用于预测非稳态气膜升力,但尚未被证明足以预测振荡气膜的推进性能。在本文中,我们验证了一个假设,即加里克函数等线性小振幅模型的核心缺陷是未能考虑气膜推力引起的流动加速。通过将加里克函数与周期平均致动器圆盘模型耦合,以类似于风力涡轮机和螺旋桨的叶片元素动量理论的方式,建立了一个新的分析模型。这相当于假定加里克函数在局部有效,结合全局控制体积分析,可以预测气膜处的流动加速度。事实证明,新模型大大提高了与大涡流模拟中的气膜联合起伏和变桨运动的一致性。
{"title":"Coupled unsteady actuator disc and linear theory of an oscillating foil propulsor","authors":"Amanda S.M. Smyth, Takafumi Nishino, Andhini N. Zurman-Nasution","doi":"10.1017/jfm.2024.624","DOIUrl":"https://doi.org/10.1017/jfm.2024.624","url":null,"abstract":"Linear unsteady aerofoil theory, while successfully used for the prediction of unsteady aerofoil lift for many decades, has yet to be proven adequate for predicting the propulsive performance of oscillating aerofoils. In this paper we test the hypothesis that the central shortcoming of linear small-amplitude models, such as the Garrick function, is the failure to account for the flow acceleration caused by aerofoil thrust. A new analytical model is developed by coupling the Garrick function to a cycle-averaged actuator disc model, in a manner analogous to the blade-element momentum theory for wind turbines and propellers. This amounts to assuming the Garrick function to be locally valid and, in combination with a global control volume analysis, enables the prediction of flow acceleration at the aerofoil. The new model is demonstrated to substantially improve the agreement with large-eddy simulations of an aerofoil in combined heave and pitch motion.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"72 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reactive experimental control of turbulent jets 湍流喷射的反应性实验控制
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-18 DOI: 10.1017/jfm.2024.569
Diego B.S. Audiffred, André V.G. Cavalieri, Igor A. Maia, Eduardo Martini, Peter Jordan
We present an experimental study of reactive control of turbulent jets, in which we target axisymmetric coherent structures, known to play a key role in the generation of sound. We first consider a forced jet, in which coherent structures are amplified above background levels, facilitating their detection, estimation and control. We then consider the more challenging case of an unforced jet. The linear control targets coherent structures in the region just downstream of the nozzle exit plane, where linear models are known to be appropriate for description of the lowest-order azimuthal modes of the turbulence. The control law is constructed in frequency space, based on empirically determined transfer functions. And the Wiener–Hopf formalism is used to enforce causality and to provide an optimal controller, as opposed to the sub-optimal control laws provided by simpler wave-cancellation methods. Significant improvements are demonstrated in the control of both forced and unforced jets. In the former case, order-of-magnitude reductions are achieved; and in the latter, turbulence levels are reduced by up to 60 %. The results open new perspectives for the control of turbulent flow at high Reynolds number.
我们介绍了对湍流喷流进行反应控制的实验研究,其中我们以轴对称相干结构为目标,众所周知,相干结构在声音的产生中起着关键作用。我们首先考虑的是强迫喷流,在这种情况下,相干结构会被放大到高于背景水平,从而有利于对其进行探测、估计和控制。然后,我们考虑更具挑战性的非强制射流情况。线性控制的目标是喷嘴出口平面下游区域的相干结构,众所周知,线性模型适用于描述湍流的最低阶方位角模式。控制法则是根据经验确定的传递函数在频率空间中构建的。维纳-霍普夫形式主义被用来强制执行因果关系,并提供一个最优控制器,而不是简单的消波方法所提供的次优控制法则。强制和非强制喷流的控制都有显著改善。在前一种情况下,可实现数量级的减少;而在后一种情况下,湍流水平最多可减少 60%。这些结果为控制高雷诺数湍流开辟了新的前景。
{"title":"Reactive experimental control of turbulent jets","authors":"Diego B.S. Audiffred, André V.G. Cavalieri, Igor A. Maia, Eduardo Martini, Peter Jordan","doi":"10.1017/jfm.2024.569","DOIUrl":"https://doi.org/10.1017/jfm.2024.569","url":null,"abstract":"We present an experimental study of reactive control of turbulent jets, in which we target axisymmetric coherent structures, known to play a key role in the generation of sound. We first consider a forced jet, in which coherent structures are amplified above background levels, facilitating their detection, estimation and control. We then consider the more challenging case of an unforced jet. The linear control targets coherent structures in the region just downstream of the nozzle exit plane, where linear models are known to be appropriate for description of the lowest-order azimuthal modes of the turbulence. The control law is constructed in frequency space, based on empirically determined transfer functions. And the Wiener–Hopf formalism is used to enforce causality and to provide an optimal controller, as opposed to the sub-optimal control laws provided by simpler wave-cancellation methods. Significant improvements are demonstrated in the control of both forced and unforced jets. In the former case, order-of-magnitude reductions are achieved; and in the latter, turbulence levels are reduced by up to 60 %. The results open new perspectives for the control of turbulent flow at high Reynolds number.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"106 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An experimental study of a quasi-impulsive backwards wave force associated with the secondary load cycle on a vertical cylinder 与垂直气缸二次载荷循环相关的准脉冲后向波力的实验研究
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-18 DOI: 10.1017/jfm.2024.648
Tianning Tang, Haoyu Ding, Saishuai Dai, Paul H. Taylor, Jun Zang, Thomas A.A. Adcock
Steep wave breaking on a vertical cylinder (a typical foundation supporting offshore wind turbines) will induce slam loads. Many questions on the important violent wave loading and the associated secondary load cycle remain unanswered. We use laboratory experiments with unidirectional waves to investigate the fluid loading on vertical cylinders. We use a novel three-phase decomposition approach that allows us to separate different types of nonlinearity. Our findings reveal the existence of an additional quasi-impulsive loading component that is associated with the secondary load cycle and occurs in the backwards direction against that of the incoming waves. This quasi-impulsive force occurs at the end of the secondary load cycle and close to the passage of the downward zero-crossing point of the undisturbed wave. Wavelet analysis showed that the impulsive force exhibits superficially similar behaviour to a typical wave-slamming event but in the reverse direction. To monitor the scattered wave field and extract run-up on the cylinder, we installed a four-camera synchronised video system and found a strong temporal correlation between the arrival time of the Type-II scattered wave onto the cylinder and the occurrence of this quasi-impulsive force. The temporal characteristics of this quasi-impulsive force can be approximated by the Goda wave impact model, taking the collision of the Type-II scattered waves at the rear stagnation point as the impact source.
垂直圆柱体(支撑海上风力涡轮机的典型地基)上的陡峭波浪会引起猛烈荷载。关于重要的剧烈波浪载荷和相关的二次载荷循环的许多问题仍未得到解答。我们利用单向波的实验室实验来研究垂直圆柱体上的流体载荷。我们采用了一种新颖的三相分解方法,该方法允许我们分离不同类型的非线性。我们的研究结果表明,存在一个额外的准脉冲加载分量,它与二次加载循环相关,并发生在与入射波相反的反方向上。这种准脉冲力发生在二次加载周期的末端,接近于未扰动波的向下零交叉点。小波分析表明,脉冲力的表现与典型的海浪冲击事件表面相似,但方向相反。为了监测散射波场并提取圆柱体上的上升力,我们安装了一个四摄像头同步视频系统,并发现 II 型散射波到达圆柱体的时间与这种准脉冲力的发生之间具有很强的时间相关性。这种准脉冲力的时间特征可以用 Goda 波撞击模型来近似表示,该模型以 II 型散射波在后停滞点的碰撞为撞击源。
{"title":"An experimental study of a quasi-impulsive backwards wave force associated with the secondary load cycle on a vertical cylinder","authors":"Tianning Tang, Haoyu Ding, Saishuai Dai, Paul H. Taylor, Jun Zang, Thomas A.A. Adcock","doi":"10.1017/jfm.2024.648","DOIUrl":"https://doi.org/10.1017/jfm.2024.648","url":null,"abstract":"Steep wave breaking on a vertical cylinder (a typical foundation supporting offshore wind turbines) will induce slam loads. Many questions on the important violent wave loading and the associated secondary load cycle remain unanswered. We use laboratory experiments with unidirectional waves to investigate the fluid loading on vertical cylinders. We use a novel three-phase decomposition approach that allows us to separate different types of nonlinearity. Our findings reveal the existence of an additional quasi-impulsive loading component that is associated with the secondary load cycle and occurs in the backwards direction against that of the incoming waves. This quasi-impulsive force occurs at the end of the secondary load cycle and close to the passage of the downward zero-crossing point of the undisturbed wave. Wavelet analysis showed that the impulsive force exhibits superficially similar behaviour to a typical wave-slamming event but in the reverse direction. To monitor the scattered wave field and extract run-up on the cylinder, we installed a four-camera synchronised video system and found a strong temporal correlation between the arrival time of the Type-II scattered wave onto the cylinder and the occurrence of this quasi-impulsive force. The temporal characteristics of this quasi-impulsive force can be approximated by the Goda wave impact model, taking the collision of the Type-II scattered waves at the rear stagnation point as the impact source.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"17 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Particle motion in a bed under a rigid plate, submerged and oscillated over its surface, and bed morphologies induced by flexible plates 颗粒在刚性板下的床面运动、浸没和在其表面摆动,以及柔性板诱导的床面形态
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-13 DOI: 10.1017/jfm.2024.705
Anna Prati, Michele Larcher, James T. Jenkins, Luigi La Ragione
We study the behaviour of a particle bed immersed in water when a flow generated by an oscillating plate is induced above it. We first consider a rigid plate submerged and oscillated over a particle bed. During upward motion of the plate, a portion of the bed fails, allowing particle displacement, and the bed surface to deform into a heap. We have already determined the flow of the fluid above and within the bed. This work describes the particle motion within the failed region of the bed: when the particles are mobile, they follow the fluid. We depth average the balance of mass and obtain an evolution equation for the displacement of the bed surface. We solve this equation and compare the predictions with the measurements of surface displacement in earlier experiments on rigid square plates. We carry out new experiments to measure the surface displacements under elongated plates. Elongated rigid plates behave similarly to the rigid square ones. Flexible plates produce multiple heaps. We determine that the peaks of these heaps are correlated with the flexural modes of the plates and occur at points along the bed at which the fluid pressure has its extreme values. Different plate flexural modes, resulting in different numbers of heaps, are produced by driving the plate at different frequencies. The particle motion within the bed and heap evolution under a flexible plate can be roughly described by regarding it as two or more rigid plates. We test the predictions of the theory against experiments.
我们研究了沉浸在水中的颗粒床在振荡板产生的气流作用下的表现。我们首先考虑一个刚性板浸没并在颗粒床上方摆动。在振荡板向上运动的过程中,床层的一部分失效,使颗粒发生位移,床层表面变形成堆。我们已经确定了床层上方和内部的流体流动情况。这项工作描述的是颗粒在床层失效区域内的运动情况:当颗粒移动时,它们会跟随流体运动。我们对质量平衡进行了深度平均,得到了床面位移的演化方程。我们对该方程进行求解,并将预测结果与之前在刚性方板上进行的表面位移测量结果进行比较。我们进行了新的实验来测量细长板下的表面位移。拉长的刚性平板的行为与刚性方形平板类似。柔性板会产生多个堆。我们确定这些堆的峰值与板的挠曲模式相关,并出现在流体压力达到极值的床面上。通过以不同频率驱动板,可产生不同的板挠曲模式,从而产生不同数量的堆。将柔性板视为两个或多个刚性板,就可以大致描述床层内的粒子运动以及柔性板下的堆积演化。我们通过实验检验了该理论的预测结果。
{"title":"Particle motion in a bed under a rigid plate, submerged and oscillated over its surface, and bed morphologies induced by flexible plates","authors":"Anna Prati, Michele Larcher, James T. Jenkins, Luigi La Ragione","doi":"10.1017/jfm.2024.705","DOIUrl":"https://doi.org/10.1017/jfm.2024.705","url":null,"abstract":"We study the behaviour of a particle bed immersed in water when a flow generated by an oscillating plate is induced above it. We first consider a rigid plate submerged and oscillated over a particle bed. During upward motion of the plate, a portion of the bed fails, allowing particle displacement, and the bed surface to deform into a heap. We have already determined the flow of the fluid above and within the bed. This work describes the particle motion within the failed region of the bed: when the particles are mobile, they follow the fluid. We depth average the balance of mass and obtain an evolution equation for the displacement of the bed surface. We solve this equation and compare the predictions with the measurements of surface displacement in earlier experiments on rigid square plates. We carry out new experiments to measure the surface displacements under elongated plates. Elongated rigid plates behave similarly to the rigid square ones. Flexible plates produce multiple heaps. We determine that the peaks of these heaps are correlated with the flexural modes of the plates and occur at points along the bed at which the fluid pressure has its extreme values. Different plate flexural modes, resulting in different numbers of heaps, are produced by driving the plate at different frequencies. The particle motion within the bed and heap evolution under a flexible plate can be roughly described by regarding it as two or more rigid plates. We test the predictions of the theory against experiments.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"4 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The instability of non-monotonic drag laws 非单调阻力定律的不稳定性
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-13 DOI: 10.1017/jfm.2024.635
Timour Radko
A series of recent studies has indicated that the component of the bottom drag caused by irregular small-scale topography in the ocean varies non-monotonically with the flow speed. The roughness-induced forcing increases with the speed of relatively slow abyssal currents but, somewhat counterintuitively, starts to decrease when flows are sufficiently swift. This reduction in drag at high speeds leads to the instability of laterally uniform currents, and the resulting evolutionary patterns are explored using numerical and analytical methods. The drag-law instability manifests in the spontaneous emergence of parallel jets, aligned in the direction of the basic flow and separated by relatively quiescent regions. We hypothesize that the mechanisms identified in this investigation could play a role in the dynamics of zonal striations commonly observed in the ocean.
最近的一系列研究表明,海洋中不规则的小尺度地形造成的海底阻力随流速的变化而非单调变化。在流速相对较慢的深海洋流中,由粗糙度引起的阻力随着流速的增加而增加,但与之相反的是,当流速足够快时,粗糙度引起的阻力却开始减小。高速时阻力的减小导致了横向均匀流的不稳定性,我们使用数值和分析方法探讨了由此产生的演变模式。阻力定律不稳定性表现为平行喷流的自发出现,这些喷流沿基本流向排列,并被相对静止的区域分隔开来。我们假设,这项研究发现的机制可能在海洋中常见的带状条纹动力学中发挥作用。
{"title":"The instability of non-monotonic drag laws","authors":"Timour Radko","doi":"10.1017/jfm.2024.635","DOIUrl":"https://doi.org/10.1017/jfm.2024.635","url":null,"abstract":"A series of recent studies has indicated that the component of the bottom drag caused by irregular small-scale topography in the ocean varies non-monotonically with the flow speed. The roughness-induced forcing increases with the speed of relatively slow abyssal currents but, somewhat counterintuitively, starts to decrease when flows are sufficiently swift. This reduction in drag at high speeds leads to the instability of laterally uniform currents, and the resulting evolutionary patterns are explored using numerical and analytical methods. The drag-law instability manifests in the spontaneous emergence of parallel jets, aligned in the direction of the basic flow and separated by relatively quiescent regions. We hypothesize that the mechanisms identified in this investigation could play a role in the dynamics of zonal striations commonly observed in the ocean.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"44 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The intrinsic scaling relation between pressure fluctuations and Mach number in compressible turbulent boundary layers 可压缩湍流边界层中压力波动与马赫数之间的内在比例关系
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-13 DOI: 10.1017/jfm.2024.566
Peng-Jun-Yi Zhang, Zhen-Hua Wan, De-Jun Sun, Xi-Yun Lu
The scaling relations mapping the turbulence statistics in compressible turbulent boundary layers (TBLs) onto their incompressible counterparts are of fundamental significance for turbulence modelling, such as the Morkovin scaling for velocity fields, while for pressure fluctuation fields, a corresponding scaling relation is currently absent. In this work, the underlying scaling relations of pressure fluctuations about Mach number ( $M$ ) contained in their generation mechanisms are explored by analysing a series of direct numerical simulation data of compressible TBLs over a wide Mach number range $(0.5leq M leq 8.0)$ . Based on the governing equation of pressure fluctuations, they are decomposed into components according to the properties of source terms. It is notable that the intensity of the compressible component, predominantly originating from the acoustic mode, obeys a monotonic distribution about the Mach number and wall distance; further, the intensity of the rest of the pressure components, which are mainly generated by the vorticity mode, demonstrates a uniform distribution consistent with its incompressible counterpart. Moreover, the coupling between the two components is negligibly weak. Based on the scaling relations, semiempirical models for the fluctuation intensity of both pressure and its components are constructed. Hence, a mapping relation is obtained that the profiles of pressure fluctuation intensities in compressible TBLs can be mapped onto their incompressible counterparts by removing the contribution from the acoustic mode, which can be provided by the model. The intrinsic scaling relation can provide some basic insight for pressure fluctuation modelling.
将可压缩湍流边界层(TBLs)中的湍流统计量映射到不可压缩湍流边界层中的湍流统计量的比例关系对于湍流建模具有重要意义,例如速度场的莫尔科文比例关系,而对于压力波动场,目前还没有相应的比例关系。在这项工作中,通过分析一系列马赫数范围为(0.5leq M leq8.0)的可压缩湍流层的直接数值模拟数据,探索了压力波动关于马赫数($M$)的基本缩放关系及其产生机制。基于压力波动的支配方程,根据源项的特性将其分解为若干部分。值得注意的是,主要由声波模式产生的可压缩分量的强度服从于马赫数和壁距的单调分布;此外,主要由涡度模式产生的其余压力分量的强度表现出与其不可压缩分量一致的均匀分布。此外,这两个分量之间的耦合微弱到可以忽略不计。根据比例关系,构建了压力及其分量波动强度的半经验模型。因此,可压缩 TBL 中的压力波动强度剖面可以通过去除声学模式的贡献映射到不可压缩的对应剖面上,这种映射关系可以由模型提供。这种内在的比例关系可以为压力波动建模提供一些基本启示。
{"title":"The intrinsic scaling relation between pressure fluctuations and Mach number in compressible turbulent boundary layers","authors":"Peng-Jun-Yi Zhang, Zhen-Hua Wan, De-Jun Sun, Xi-Yun Lu","doi":"10.1017/jfm.2024.566","DOIUrl":"https://doi.org/10.1017/jfm.2024.566","url":null,"abstract":"The scaling relations mapping the turbulence statistics in compressible turbulent boundary layers (TBLs) onto their incompressible counterparts are of fundamental significance for turbulence modelling, such as the Morkovin scaling for velocity fields, while for pressure fluctuation fields, a corresponding scaling relation is currently absent. In this work, the underlying scaling relations of pressure fluctuations about Mach number (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005664_inline1.png\"/> <jats:tex-math>$M$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) contained in their generation mechanisms are explored by analysing a series of direct numerical simulation data of compressible TBLs over a wide Mach number range <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005664_inline2.png\"/> <jats:tex-math>$(0.5leq M leq 8.0)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Based on the governing equation of pressure fluctuations, they are decomposed into components according to the properties of source terms. It is notable that the intensity of the compressible component, predominantly originating from the acoustic mode, obeys a monotonic distribution about the Mach number and wall distance; further, the intensity of the rest of the pressure components, which are mainly generated by the vorticity mode, demonstrates a uniform distribution consistent with its incompressible counterpart. Moreover, the coupling between the two components is negligibly weak. Based on the scaling relations, semiempirical models for the fluctuation intensity of both pressure and its components are constructed. Hence, a mapping relation is obtained that the profiles of pressure fluctuation intensities in compressible TBLs can be mapped onto their incompressible counterparts by removing the contribution from the acoustic mode, which can be provided by the model. The intrinsic scaling relation can provide some basic insight for pressure fluctuation modelling.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"13 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-scale circulation reversals explained by pendulum correspondence 用钟摆对应关系解释大尺度环流逆转
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-13 DOI: 10.1017/jfm.2024.584
Nicholas J. Moore, Jinzi Mac Huang
We introduce a low-order dynamical system to describe thermal convection in an annular domain. The model derives systematically from a Fourier–Laurent truncation of the governing Navier–Stokes Boussinesq equations and accounts for spatial dependence of the flow and temperature fields. Comparison with fully resolved direct numerical simulations (DNS) shows that the model captures parameter bifurcations and reversals of the large-scale circulation (LSC), including states of (i) steady circulating flow, (ii) chaotic LSC reversals and (iii) periodic LSC reversals. Casting the system in terms of the fluid's angular momentum and centre of mass (CoM) reveals equivalence to a damped pendulum with forcing that raises the CoM above the fulcrum. This formulation offers a transparent mechanism for LSC reversals, namely the inertial overshoot of a forced pendulum, and it yields an explicit formula for the frequency $f^*$ of regular LSC reversals in the high-Rayleigh-number (Ra) limit. This formula is shown to be in excellent agreement with DNS and produces the scaling law $f^* sim {Ra}^{0.5}$ .
我们引入了一个低阶动力学系统来描述环形域中的热对流。该模型系统地源自纳维-斯托克斯-布西内斯克方程的傅立叶-洛朗截断,并考虑了流动和温度场的空间依赖性。与完全解析直接数值模拟(DNS)的比较表明,该模型捕捉到了大尺度环流(LSC)的参数分岔和逆转,包括(i)稳定环流、(ii)混乱 LSC 逆转和(iii)周期性 LSC 逆转等状态。从流体角动量和质心(CoM)的角度来看,该系统等同于一个阻尼摆,迫使质心上升到支点之上。这种表述为 LSC 反转提供了一个透明的机制,即受迫摆的惯性过冲,并产生了高雷利数(Ra)极限下规则 LSC 反转频率 $f^*$ 的明确公式。结果表明,该公式与 DNS 非常吻合,并产生了缩放定律 $f^* sim {Ra}^{0.5}$ 。
{"title":"Large-scale circulation reversals explained by pendulum correspondence","authors":"Nicholas J. Moore, Jinzi Mac Huang","doi":"10.1017/jfm.2024.584","DOIUrl":"https://doi.org/10.1017/jfm.2024.584","url":null,"abstract":"We introduce a low-order dynamical system to describe thermal convection in an annular domain. The model derives systematically from a Fourier–Laurent truncation of the governing Navier–Stokes Boussinesq equations and accounts for spatial dependence of the flow and temperature fields. Comparison with fully resolved direct numerical simulations (DNS) shows that the model captures parameter bifurcations and reversals of the large-scale circulation (LSC), including states of (i) steady circulating flow, (ii) chaotic LSC reversals and (iii) periodic LSC reversals. Casting the system in terms of the fluid's angular momentum and centre of mass (CoM) reveals equivalence to a damped pendulum with forcing that raises the CoM above the fulcrum. This formulation offers a transparent mechanism for LSC reversals, namely the inertial overshoot of a forced pendulum, and it yields an explicit formula for the frequency <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005846_inline1.png\"/> <jats:tex-math>$f^*$</jats:tex-math> </jats:alternatives> </jats:inline-formula> of regular LSC reversals in the high-Rayleigh-number (<jats:italic>Ra</jats:italic>) limit. This formula is shown to be in excellent agreement with DNS and produces the scaling law <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005846_inline2.png\"/> <jats:tex-math>$f^* sim {Ra}^{0.5}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"6 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Fluid Mechanics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1