首页 > 最新文献

Journal of Fluid Mechanics最新文献

英文 中文
Hydrodynamic coupling of a cilia–mucus system in Herschel–Bulkley flows 赫歇尔-布尔克利流中纤毛-粘液系统的水动力耦合
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-18 DOI: 10.1017/jfm.2024.600
Q. Mao, U. D'Ortona, J. Favier
The yield stress and shear thinning properties of mucus are identified as critical for ciliary coordination and mucus transport in human airways. We use here numerical simulations to explore the hydrodynamic coupling of cilia and mucus with these two properties using the Herschel–Bulkley model, in a lattice Boltzmann solver for the fluid flow. Three mucus flow regimes, i.e. a poorly organized regime, a swirly regime, and a fully unidirectional regime, are observed and analysed by parametric studies. We systematically investigate the effects of ciliary density, interaction length, Bingham number and flow index on the mucus flow regime formation. The underlying mechanism of the regime formation is analysed in detail by examining the variation of two physical quantities (polarization and integral length) and the evolution of the flow velocity, viscosity and shear-rate fields. Mucus viscosity is found to be the dominant parameter influencing the regime formation when enhancing the yield stress and shear thinning properties. The present model is able to reproduce the solid body rotation observed in experiments (Loiseau et al., Nat. Phys., vol. 16, 2020, pp. 1158–1164). A more precise prediction can be achieved by incorporating non-Newtonian properties into the modelling of mucus as proposed by Gsell et al. (Sci. Rep., vol. 10, 2020, 8405).
粘液的屈服应力和剪切稀化特性被认为是人体气道中纤毛协调和粘液运输的关键。在此,我们使用赫歇尔-布克利模型,在流体流动的晶格玻尔兹曼求解器中进行了数值模拟,以探索具有这两种特性的纤毛和粘液的流体力学耦合。通过参数研究观察和分析了三种粘液流动状态,即组织不良状态、漩涡状态和完全单向状态。我们系统地研究了纤毛密度、相互作用长度、宾汉数和流动指数对粘液流态形成的影响。通过研究两个物理量(极化和积分长度)的变化以及流速、粘度和剪切率场的演变,详细分析了该机制形成的基本机制。研究发现,当屈服应力和剪切稀化特性增强时,粘液粘度是影响流态形成的主要参数。本模型能够再现实验中观察到的固体旋转(Loiseau 等人,《自然物理》,第 16 卷,2020 年,第 1158-1164 页)。根据 Gsell 等人的建议(《科学报告》,第 10 卷,2020 年,第 8405 期),将非牛顿特性纳入粘液模型可以实现更精确的预测。
{"title":"Hydrodynamic coupling of a cilia–mucus system in Herschel–Bulkley flows","authors":"Q. Mao, U. D'Ortona, J. Favier","doi":"10.1017/jfm.2024.600","DOIUrl":"https://doi.org/10.1017/jfm.2024.600","url":null,"abstract":"The yield stress and shear thinning properties of mucus are identified as critical for ciliary coordination and mucus transport in human airways. We use here numerical simulations to explore the hydrodynamic coupling of cilia and mucus with these two properties using the Herschel–Bulkley model, in a lattice Boltzmann solver for the fluid flow. Three mucus flow regimes, i.e. a poorly organized regime, a swirly regime, and a fully unidirectional regime, are observed and analysed by parametric studies. We systematically investigate the effects of ciliary density, interaction length, Bingham number and flow index on the mucus flow regime formation. The underlying mechanism of the regime formation is analysed in detail by examining the variation of two physical quantities (polarization and integral length) and the evolution of the flow velocity, viscosity and shear-rate fields. Mucus viscosity is found to be the dominant parameter influencing the regime formation when enhancing the yield stress and shear thinning properties. The present model is able to reproduce the solid body rotation observed in experiments (Loiseau <jats:italic>et al.</jats:italic>, <jats:italic>Nat. Phys.</jats:italic>, vol. 16, 2020, pp. 1158–1164). A more precise prediction can be achieved by incorporating non-Newtonian properties into the modelling of mucus as proposed by Gsell <jats:italic>et al.</jats:italic> (<jats:italic>Sci. Rep.</jats:italic>, vol. 10, 2020, 8405).","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"18 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collision of liquid drops: bounce or merge? 液滴碰撞:反弹还是合并?
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-18 DOI: 10.1017/jfm.2024.722
Peter Lewin-Jones, Duncan A. Lockerby, James E. Sprittles
Whether colliding drops will merge with or bounce off each other is critical to numerous processes, and the physics involved is notoriously complex. In particular, experiments show that both sufficiently slow and fast head-on drop collisions lead to merging, but that there is often an intermediate regime in which bouncing is observed; these transitions in behaviour were recently discovered to be surprisingly sensitive to the radius of the drops and the ambient gas pressure. We show here that these transitions between bouncing and merging are governed by nanoscale phenomena; namely, gas-kinetic and disjoining pressure effects. To capture these crucial effects, a novel, open-source computational model is developed for the simulation of colliding drops. The model uses a hybrid approach, based on solving the Navier–Stokes equations in the drop with a lubrication approach for the unconventional physics of the gas film. Our simulations show remarkably good agreement with experiments of head-on collisions and also provide new experimentally verifiable predictions.
碰撞的液滴是相互融合还是相互弹开对许多过程都至关重要,而其中涉及的物理学也是出了名的复杂。特别是,实验表明,足够慢和足够快的液滴正面碰撞都会导致并合,但往往存在一个中间状态,即观察到反弹;最近发现,这些行为的转变对液滴半径和环境气体压力非常敏感。我们在此表明,弹跳与合并之间的这些转变受纳米级现象的支配,即气体动力学效应和脱节压力效应。为了捕捉这些关键效应,我们开发了一种用于模拟碰撞液滴的新型开源计算模型。该模型采用混合方法,基于液滴中的纳维-斯托克斯方程求解,并针对气膜的非常规物理特性采用润滑方法。我们的模拟结果与正面碰撞的实验结果非常吻合,同时还提供了新的可通过实验验证的预测结果。
{"title":"Collision of liquid drops: bounce or merge?","authors":"Peter Lewin-Jones, Duncan A. Lockerby, James E. Sprittles","doi":"10.1017/jfm.2024.722","DOIUrl":"https://doi.org/10.1017/jfm.2024.722","url":null,"abstract":"Whether colliding drops will merge with or bounce off each other is critical to numerous processes, and the physics involved is notoriously complex. In particular, experiments show that both sufficiently slow and fast head-on drop collisions lead to merging, but that there is often an intermediate regime in which bouncing is observed; these transitions in behaviour were recently discovered to be surprisingly sensitive to the radius of the drops and the ambient gas pressure. We show here that these transitions between bouncing and merging are governed by nanoscale phenomena; namely, gas-kinetic and disjoining pressure effects. To capture these crucial effects, a novel, open-source computational model is developed for the simulation of colliding drops. The model uses a hybrid approach, based on solving the Navier–Stokes equations in the drop with a lubrication approach for the unconventional physics of the gas film. Our simulations show remarkably good agreement with experiments of head-on collisions and also provide new experimentally verifiable predictions.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"2 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A numerical study on the turbulence characteristics in an air–water upward bubbly pipe flow 空气-水上升气泡管流中湍流特性的数值研究
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-18 DOI: 10.1017/jfm.2024.652
Ingu Lee, Jaehee Chang, Kiyoung Kim, Haecheon Choi
A high-resolution numerical simulation of an air–water turbulent upward bubbly flow in a pipe is performed to investigate the turbulence characteristics and bubble interaction with the wall. We consider three bubble equivalent diameters and three total bubble volume fractions. The bulk and bubble Reynolds numbers are <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024006529_inline1.png"/> <jats:tex-math>$Re_{bulk}= u_{bulk} D/nu _w = 5300$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024006529_inline2.png"/> <jats:tex-math>$Re_{bub}= (langle u_{bub}rangle - u_{bulk}) d_{eq}/nu _w = 533unicode{x2013}1000$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, respectively, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024006529_inline3.png"/> <jats:tex-math>$u_{bulk}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the water bulk velocity, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024006529_inline4.png"/> <jats:tex-math>$langle u_{bub}rangle$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the overall bubble mean velocity, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024006529_inline5.png"/> <jats:tex-math>$D$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the pipe diameter and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024006529_inline6.png"/> <jats:tex-math>$nu _w$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the water kinematic viscosity. The mean water velocity near the wall significantly increases due to bubble interaction with the wall, and the root-mean-square water velocity fluctuations are proportional to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024006529_inline7.png"/> <jats:tex-math>$bar {psi }(r)^{0.4}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024006529_inline8.png"/> <jats:tex-math>$bar {psi } (r)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the mean bubble volume fraction. For the cases considered, the bubble-induced turbulence suppresses the shear-induced turbulence and becomes the dominant flow characteristic at all
我们对管道中的空气-水湍流向上气泡流进行了高分辨率数值模拟,以研究湍流特性以及气泡与管壁的相互作用。我们考虑了三种气泡等效直径和三种气泡总体积分数。体积和气泡的雷诺数为 $Re_{bulk}= u_{bulk}D/nu _w = 5300$ 和 $Re_{bub}= (langle u_{bub}rangle - u_{bulk}) d_{eq}/nu _w = 533unicode{x2013}1000$ ,其中 $u_{bulk}$ 是水的体积速度、 $langle u_{bub}rangle$ 是整个气泡的平均速度,$D$ 是管道直径,$nu _w$ 是水的运动粘度。由于气泡与管壁的相互作用,管壁附近的平均水流速度显著增加,且均方根水流速度波动与 $bar {psi }(r)^{0.4}$ 成正比,其中 $bar {psi } (r)$ 是平均气泡速度。(r)$ 是平均气泡体积分数。在所考虑的情况下,气泡引起的湍流抑制了剪切引起的湍流,并成为所有径向位置(包括靠近壁面)的主要流动特征。靠近壁面的上升气泡大多会反弹到壁面上,而不是沿着壁面滑动或悬挂在壁面周围而不发生碰撞。由于气泡的反弹,在没有气泡的近壁区域观察到的低速条纹几乎消失。这些反弹气泡在其尾部产生反向旋转漩涡,并通过将高速水流卷向壁面来增加表皮摩擦力。我们还提出了一个代数雷诺平均纳维-斯托克斯模型,该模型考虑了剪切诱导湍流和气泡诱导湍流之间的相互作用。该模型可对各种液体体积雷诺数进行精确预测。
{"title":"A numerical study on the turbulence characteristics in an air–water upward bubbly pipe flow","authors":"Ingu Lee, Jaehee Chang, Kiyoung Kim, Haecheon Choi","doi":"10.1017/jfm.2024.652","DOIUrl":"https://doi.org/10.1017/jfm.2024.652","url":null,"abstract":"A high-resolution numerical simulation of an air–water turbulent upward bubbly flow in a pipe is performed to investigate the turbulence characteristics and bubble interaction with the wall. We consider three bubble equivalent diameters and three total bubble volume fractions. The bulk and bubble Reynolds numbers are &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006529_inline1.png\"/&gt; &lt;jats:tex-math&gt;$Re_{bulk}= u_{bulk} D/nu _w = 5300$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006529_inline2.png\"/&gt; &lt;jats:tex-math&gt;$Re_{bub}= (langle u_{bub}rangle - u_{bulk}) d_{eq}/nu _w = 533unicode{x2013}1000$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, respectively, where &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006529_inline3.png\"/&gt; &lt;jats:tex-math&gt;$u_{bulk}$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; is the water bulk velocity, &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006529_inline4.png\"/&gt; &lt;jats:tex-math&gt;$langle u_{bub}rangle$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; is the overall bubble mean velocity, &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006529_inline5.png\"/&gt; &lt;jats:tex-math&gt;$D$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; is the pipe diameter and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006529_inline6.png\"/&gt; &lt;jats:tex-math&gt;$nu _w$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; is the water kinematic viscosity. The mean water velocity near the wall significantly increases due to bubble interaction with the wall, and the root-mean-square water velocity fluctuations are proportional to &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006529_inline7.png\"/&gt; &lt;jats:tex-math&gt;$bar {psi }(r)^{0.4}$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, where &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006529_inline8.png\"/&gt; &lt;jats:tex-math&gt;$bar {psi } (r)$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; is the mean bubble volume fraction. For the cases considered, the bubble-induced turbulence suppresses the shear-induced turbulence and becomes the dominant flow characteristic at all ","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"8 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation of three-dimensional Rayleigh–Taylor instability of a gaseous interface 气态界面的三维瑞利-泰勒不稳定性实验研究
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-18 DOI: 10.1017/jfm.2024.754
Yu Liang, Ahmed Alkindi, Khalid Alzeyoudi, Lili Liu, Mohamed Ali, Nader Masmoudi
Validating the theoretical work on Rayleigh–Taylor instability (RTI) through experiments with an exceptionally clean and well-characterized initial condition has been a long-standing challenge. Experiments were conducted to study the three-dimensional RTI of an SF $_6$ –air interface at moderate Atwood numbers. A novel soap film technique was developed to create a discontinuous gaseous interface with controllable initial conditions. Spectrum analysis revealed that the initial perturbation of the soap film interface is half the size of an entire single-mode perturbation. The correlation between the initial interface perturbation and Atwood numbers was determined. Due to the steep and highly curved feature of the initial soap film interface, the early-time evolution of RTI exhibits significant nonlinearity. In the quasi-steady regime, various potential flow models accurately predict the late-time bubble velocities by considering the channel width as the perturbation wavelength. Differently, the late-time spike velocities are described by these potential flow models using the wavelength of the entire single-mode perturbation. These findings indicate that the bubble evolution is influenced primarily by the spatial constraint imposed by walls, while the spike evolution is influenced mainly by the initial curvature of the spike tip. Consequently, a recent potential flow model was adopted to describe the time-varying amplitude growth induced by RTI. Furthermore, the self-similar growth factors for bubbles and spikes were determined from experiments and compared with existing studies, revealing that a large amplitude in the initial soap film interface promotes the spike development.
通过实验验证雷利-泰勒不稳定性(RTI)方面的理论研究工作,并使用异常干净和特征明确的初始条件,一直是一个长期存在的挑战。实验研究了中等阿特伍德数下 SF $_6$ - 空气界面的三维 RTI。研究人员开发了一种新颖的肥皂膜技术,以创建具有可控初始条件的不连续气态界面。频谱分析表明,皂膜界面的初始扰动是整个单模扰动的一半。确定了初始界面扰动与阿特伍德数之间的相关性。由于初始皂膜界面的陡峭和高度弯曲特征,RTI 的早期时间演化表现出明显的非线性。在准稳定体系中,各种势流模型通过将通道宽度视为扰动波长,准确预测了后期的气泡速度。不同的是,这些势流模型使用整个单模扰动的波长来描述晚期尖峰速度。这些研究结果表明,气泡的演变主要受到壁的空间限制的影响,而尖峰的演变主要受到尖峰顶端初始曲率的影响。因此,采用了最新的势流模型来描述 RTI 诱导的时变振幅增长。此外,实验还确定了气泡和尖峰的自相似生长因子,并与现有研究进行了比较,结果表明初始皂膜界面的大振幅会促进尖峰的发展。
{"title":"Experimental investigation of three-dimensional Rayleigh–Taylor instability of a gaseous interface","authors":"Yu Liang, Ahmed Alkindi, Khalid Alzeyoudi, Lili Liu, Mohamed Ali, Nader Masmoudi","doi":"10.1017/jfm.2024.754","DOIUrl":"https://doi.org/10.1017/jfm.2024.754","url":null,"abstract":"Validating the theoretical work on Rayleigh–Taylor instability (RTI) through experiments with an exceptionally clean and well-characterized initial condition has been a long-standing challenge. Experiments were conducted to study the three-dimensional RTI of an SF<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007547_inline1.png\"/> <jats:tex-math>$_6$</jats:tex-math> </jats:alternatives> </jats:inline-formula>–air interface at moderate Atwood numbers. A novel soap film technique was developed to create a discontinuous gaseous interface with controllable initial conditions. Spectrum analysis revealed that the initial perturbation of the soap film interface is half the size of an entire single-mode perturbation. The correlation between the initial interface perturbation and Atwood numbers was determined. Due to the steep and highly curved feature of the initial soap film interface, the early-time evolution of RTI exhibits significant nonlinearity. In the quasi-steady regime, various potential flow models accurately predict the late-time bubble velocities by considering the channel width as the perturbation wavelength. Differently, the late-time spike velocities are described by these potential flow models using the wavelength of the entire single-mode perturbation. These findings indicate that the bubble evolution is influenced primarily by the spatial constraint imposed by walls, while the spike evolution is influenced mainly by the initial curvature of the spike tip. Consequently, a recent potential flow model was adopted to describe the time-varying amplitude growth induced by RTI. Furthermore, the self-similar growth factors for bubbles and spikes were determined from experiments and compared with existing studies, revealing that a large amplitude in the initial soap film interface promotes the spike development.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"8 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crowding accelerates the rotation of a bacterial rotor 拥挤加速了细菌转子的旋转
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-18 DOI: 10.1017/jfm.2024.725
Haoxin Huang, Bokai Zhang, Shuo Guo
Understanding the propulsion of a swimmer in a large group of individuals holds the key to unravelling the intriguing dynamics of active matter collective motion. Here, we develop a two-dimensional (2-D) self-assembled rotor, powered by bacterial flagella. At a water–air interface, the average direction of rotation of a rotor is fixed. When the chiral rotor is put into a 2-D bacterial suspension, we examine the average and fluctuation of the angular velocity of the rotor. Remarkably, the average angular velocity of a rotor is found to increase up to 3 times when the density of surrounding bacterial suspension increases and the increase is nonlinear. In a dense suspension of bacteria, the existence of a rotor disrupts vortices in the surrounding active turbulence, and the acceleration of the rotor is independent of the activity level of the surrounding free bacteria. The nonlinear acceleration thus results from hydrodynamic interaction with surrounding crowdedness that can be quantitatively explained by hydrodynamic simulation. The simultaneity between the acceleration of rotor and free bacteria in active turbulence suggests that crowding-induced acceleration may promote the onset of instability. The result will inspire new active-matter-based microfluidic devices with improved transport properties.
了解一大群个体中游泳者的推进力,是揭示活动物质集体运动的奇妙动力学的关键。在这里,我们开发了一种由细菌鞭毛驱动的二维(2-D)自组装转子。在水气界面上,转子的平均旋转方向是固定的。当手性转子被放入二维细菌悬浮液中时,我们研究了转子角速度的平均值和波动情况。值得注意的是,当周围细菌悬浮液的密度增加时,转子的平均角速度最多会增加 3 倍,而且这种增加是非线性的。在致密的细菌悬浮液中,转子的存在破坏了周围活跃湍流中的涡流,转子的加速度与周围游离细菌的活性水平无关。因此,非线性加速度是流体动力与周围拥挤度相互作用的结果,可以通过流体动力模拟进行定量解释。在活跃湍流中,转子和游离细菌的加速度是同时发生的,这表明拥挤引起的加速度可能会促进不稳定性的发生。这一结果将启发新的基于活性物质的微流体设备,使其具有更好的传输特性。
{"title":"Crowding accelerates the rotation of a bacterial rotor","authors":"Haoxin Huang, Bokai Zhang, Shuo Guo","doi":"10.1017/jfm.2024.725","DOIUrl":"https://doi.org/10.1017/jfm.2024.725","url":null,"abstract":"Understanding the propulsion of a swimmer in a large group of individuals holds the key to unravelling the intriguing dynamics of active matter collective motion. Here, we develop a two-dimensional (2-D) self-assembled rotor, powered by bacterial flagella. At a water–air interface, the average direction of rotation of a rotor is fixed. When the chiral rotor is put into a 2-D bacterial suspension, we examine the average and fluctuation of the angular velocity of the rotor. Remarkably, the average angular velocity of a rotor is found to increase up to 3 times when the density of surrounding bacterial suspension increases and the increase is nonlinear. In a dense suspension of bacteria, the existence of a rotor disrupts vortices in the surrounding active turbulence, and the acceleration of the rotor is independent of the activity level of the surrounding free bacteria. The nonlinear acceleration thus results from hydrodynamic interaction with surrounding crowdedness that can be quantitatively explained by hydrodynamic simulation. The simultaneity between the acceleration of rotor and free bacteria in active turbulence suggests that crowding-induced acceleration may promote the onset of instability. The result will inspire new active-matter-based microfluidic devices with improved transport properties.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"50 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Attracting dynamical modes of highly elastic fibres settling under gravity in a viscous fluid 高弹性纤维在重力作用下在粘性流体中沉降的吸引动力学模式
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-18 DOI: 10.1017/jfm.2024.729
Yevgen Melikhov, Maria L. Ekiel-Jeżewska
The dynamics of a single highly elastic fibre settling under gravity in a very viscous fluid is studied numerically. We employ the bead model and multipole expansion of the Stokes equations, corrected for lubrication that is implemented in the precise Hydromultipole numerical codes. Four attracting regular dynamical modes of highly elastic fibres are found: two stationary shapes (one translating and the other rotating and translating), and two periodic oscillations around such shapes. The phase diagram of these modes is presented. It illustrates that the existence of each mode depends not only on the elasto-gravitation number but also on the fibre aspect ratio. Characteristic time scales, fibre deformation patterns and motion in the different modes are determined.
我们用数值方法研究了单根高弹性纤维在重力作用下沉降在粘性很强的流体中的动力学过程。我们采用了珠子模型和斯托克斯方程的多极扩展,并在精确的 Hydromultipole 数值代码中对润滑进行了修正。我们发现了高弹性纤维的四种吸引规律动力学模式:两种静止形状(一种平移,另一种旋转和平移),以及围绕这些形状的两种周期性振荡。本文展示了这些模式的相图。它表明,每种模式的存在不仅取决于弹性重力数,还取决于纤维的长宽比。确定了不同模式的特征时间尺度、纤维变形模式和运动。
{"title":"Attracting dynamical modes of highly elastic fibres settling under gravity in a viscous fluid","authors":"Yevgen Melikhov, Maria L. Ekiel-Jeżewska","doi":"10.1017/jfm.2024.729","DOIUrl":"https://doi.org/10.1017/jfm.2024.729","url":null,"abstract":"The dynamics of a single highly elastic fibre settling under gravity in a very viscous fluid is studied numerically. We employ the bead model and multipole expansion of the Stokes equations, corrected for lubrication that is implemented in the precise <jats:sc>Hydromultipole</jats:sc> numerical codes. Four attracting regular dynamical modes of highly elastic fibres are found: two stationary shapes (one translating and the other rotating and translating), and two periodic oscillations around such shapes. The phase diagram of these modes is presented. It illustrates that the existence of each mode depends not only on the elasto-gravitation number but also on the fibre aspect ratio. Characteristic time scales, fibre deformation patterns and motion in the different modes are determined.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"28 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Internal heating profiles for which downward conduction is impossible 不可能向下传导的内部加热曲线
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-18 DOI: 10.1017/jfm.2024.590
Ali Arslan, Giovanni Fantuzzi, John Craske, Andrew Wynn
We consider an internally heated fluid between parallel plates with fixed thermal fluxes. For a large class of heat sources that vary in the direction of gravity, we prove that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024005901_inline1.png"/> <jats:tex-math>$smash { smash {{langle {delta T} rangle _h}} } geq sigma R^{-1/3} - mu$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024005901_inline2.png"/> <jats:tex-math>$smash { smash {{langle {delta T} rangle _h}} }$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the average temperature difference between the bottom and top plates, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024005901_inline3.png"/> <jats:tex-math>$R$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a ‘flux’ Rayleigh number and the constants <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024005901_inline4.png"/> <jats:tex-math>$sigma,mu >0$</jats:tex-math> </jats:alternatives> </jats:inline-formula> depend on the geometric properties of the internal heating. This result implies that mean downward conduction (for which <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024005901_inline5.png"/> <jats:tex-math>$smash { smash {{langle {delta T} rangle _h}} }< 0$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) is impossible for a range of Rayleigh numbers smaller than a critical value <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024005901_inline6.png"/> <jats:tex-math>$R_0:=(sigma /mu )^{3}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The bound demonstrates that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024005901_inline7.png"/> <jats:tex-math>$R_0$</jats:tex-math> </jats:alternatives> </jats:inline-formula> depends on the heating distribution and can be made arbitrarily large by concentrating the heating near the bottom plate. However, for any given fixed heating profile of the class we consider, the corresponding value of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024005901_inline8.png"/> <jats:tex-math>$R_0$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is always finite. This points to a fundamental differenc
我们考虑了具有固定热通量的平行板之间的内部加热流体。对于一大类在重力方向上变化的热源,我们证明 $smash { smash {{langle {delta T} }rangle _h}}}geq sigma R^{-1/3}- mu$ , where $smash { smash { langle { delta T}rangle _h}}}$ 是底板和顶板之间的平均温差,$R$ 是 "通量 "瑞利数,常数 $sigma,mu >0$ 取决于内部加热的几何特性。这一结果意味着,在雷利数小于临界值 $R_0:=(sigma /mu )^{3}$ 的范围内,平均向下传导(对其而言,$smash { langle {delta T} rangle _h}} }< 0$ )是不可能的。该临界值表明 $R_0$ 取决于加热分布,并且可以通过将加热集中在底板附近而任意增大。然而,对于我们所考虑的任何给定的固定加热曲线,相应的 $R_0$ 值总是有限的。这指出了内加热对流与具有固定流量边界条件的瑞利-贝纳德对流的极限情况之间的根本区别,对于后者,$smash {{langle {delta T}rangle _h}}$ 对于所有 $R$ 都是正值。
{"title":"Internal heating profiles for which downward conduction is impossible","authors":"Ali Arslan, Giovanni Fantuzzi, John Craske, Andrew Wynn","doi":"10.1017/jfm.2024.590","DOIUrl":"https://doi.org/10.1017/jfm.2024.590","url":null,"abstract":"We consider an internally heated fluid between parallel plates with fixed thermal fluxes. For a large class of heat sources that vary in the direction of gravity, we prove that &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline1.png\"/&gt; &lt;jats:tex-math&gt;$smash { smash {{langle {delta T} rangle _h}} } geq sigma R^{-1/3} - mu$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, where &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline2.png\"/&gt; &lt;jats:tex-math&gt;$smash { smash {{langle {delta T} rangle _h}} }$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; is the average temperature difference between the bottom and top plates, &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline3.png\"/&gt; &lt;jats:tex-math&gt;$R$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; is a ‘flux’ Rayleigh number and the constants &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline4.png\"/&gt; &lt;jats:tex-math&gt;$sigma,mu &gt;0$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; depend on the geometric properties of the internal heating. This result implies that mean downward conduction (for which &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline5.png\"/&gt; &lt;jats:tex-math&gt;$smash { smash {{langle {delta T} rangle _h}} }&lt; 0$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;) is impossible for a range of Rayleigh numbers smaller than a critical value &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline6.png\"/&gt; &lt;jats:tex-math&gt;$R_0:=(sigma /mu )^{3}$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. The bound demonstrates that &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline7.png\"/&gt; &lt;jats:tex-math&gt;$R_0$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; depends on the heating distribution and can be made arbitrarily large by concentrating the heating near the bottom plate. However, for any given fixed heating profile of the class we consider, the corresponding value of &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline8.png\"/&gt; &lt;jats:tex-math&gt;$R_0$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; is always finite. This points to a fundamental differenc","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"16 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subcritical transitional flow in two-dimensional plane Poiseuille flow 二维平面 Poiseuille 流中的次临界过渡流
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-18 DOI: 10.1017/jfm.2024.752
Z. Huang, R. Gao, Y.Y. Gao, G. Xi
Recently, subcritical transition to turbulence in the quasi-two-dimensional (quasi-2-D) shear flow with strong linear friction (Camobreco <jats:italic>et al.</jats:italic>, <jats:italic>J. Fluid Mech.</jats:italic>, vol. 963, 2023, R2) has been demonstrated by the 2-D mechanism at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024007523_inline1.png"/> <jats:tex-math>$Re = 71,211$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the nonlinear Tollmien–Schlichting (TS) waves related to the edge state were approached independently of initial optimal disturbances. For 2-D plane Poiseuille flow, transition to the fully developed turbulence requires that the Reynolds number is several times larger than the critical Reynolds number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024007523_inline2.png"/> <jats:tex-math>$Re_c$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (Markeviciute & Kerswell, <jats:italic>J. Fluid Mech.</jats:italic>, vol. 917, 2021, A57). In this paper, we observed the subcritical transitional flow in 2-D plane Poiseuille flow driven by the nonlinear TS waves by both linear and nonlinear optimal disturbances (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024007523_inline3.png"/> <jats:tex-math>$Re < Re_c$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) with different quantitative edge states. The nonlinear optimal disturbances could trigger the sustained subcritical transitional flow for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024007523_inline4.png"/> <jats:tex-math>$Re geqslant 2400$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The initial energy for nonlinear optimal disturbance is more efficient than the linear optimal disturbance in reaching the subcritical transitional flow for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024007523_inline5.png"/> <jats:tex-math>$2400 leqslant Re leqslant 5000$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Moreover, the initial energy of linear optimal disturbance is larger than the energy of its edge state. The nonlinear TS waves along the edge state are formed by the nonlinear optimal disturbances to trigger transitional flow, which agrees well with the main conclusions of Camobreco <jats:italic>et al.</jats:italic> (<jats:italic>J. Fluid Mech.</jats:italic>, vol. 963, 2023, R2), while the required <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xli
最近,在具有强线性摩擦的准二维(quasi-2-D)剪切流(Camobreco et al., J. Fluid Mech., vol. 963, 2023, R2)中,在 $Re = 71,211$ 时的二维机制证明了向湍流的亚临界过渡,并且与边缘状态相关的非线性 Tollmien-Schlichting (TS) 波与初始最佳扰动无关。对于 2-D 平面 Poiseuille 流,过渡到充分发展的湍流需要雷诺数比临界雷诺数 $Re_c$ 大几倍(Markeviciute & Kerswell, J. Fluid Mech.,第 917 卷,2021 年,A57 期)。在本文中,我们观察了由线性和非线性最优扰动($Re < Re_c$)驱动的非线性 TS 波在二维平面波瓦流中的亚临界过渡流,其边缘状态不同。非线性最优扰动可在 $Re geqslant 2400$ 时引发持续的亚临界过渡流。在 $2400 leqslant Re leqslant 5000$ 时,非线性最优扰动的初始能量比线性最优扰动更有效地达到亚临界过渡流。此外,线性最优扰动的初始能量大于其边缘状态的能量。非线性最优扰动沿边缘态形成的非线性TS波引发过渡流,这与Camobreco等(J. Fluid Mech.,vol. 963, 2023, R2)的主要结论一致,而二维平面Poiseuille流所需的Re$要小得多。
{"title":"Subcritical transitional flow in two-dimensional plane Poiseuille flow","authors":"Z. Huang, R. Gao, Y.Y. Gao, G. Xi","doi":"10.1017/jfm.2024.752","DOIUrl":"https://doi.org/10.1017/jfm.2024.752","url":null,"abstract":"Recently, subcritical transition to turbulence in the quasi-two-dimensional (quasi-2-D) shear flow with strong linear friction (Camobreco &lt;jats:italic&gt;et al.&lt;/jats:italic&gt;, &lt;jats:italic&gt;J. Fluid Mech.&lt;/jats:italic&gt;, vol. 963, 2023, R2) has been demonstrated by the 2-D mechanism at &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007523_inline1.png\"/&gt; &lt;jats:tex-math&gt;$Re = 71,211$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, and the nonlinear Tollmien–Schlichting (TS) waves related to the edge state were approached independently of initial optimal disturbances. For 2-D plane Poiseuille flow, transition to the fully developed turbulence requires that the Reynolds number is several times larger than the critical Reynolds number &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007523_inline2.png\"/&gt; &lt;jats:tex-math&gt;$Re_c$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; (Markeviciute &amp; Kerswell, &lt;jats:italic&gt;J. Fluid Mech.&lt;/jats:italic&gt;, vol. 917, 2021, A57). In this paper, we observed the subcritical transitional flow in 2-D plane Poiseuille flow driven by the nonlinear TS waves by both linear and nonlinear optimal disturbances (&lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007523_inline3.png\"/&gt; &lt;jats:tex-math&gt;$Re &lt; Re_c$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;) with different quantitative edge states. The nonlinear optimal disturbances could trigger the sustained subcritical transitional flow for &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007523_inline4.png\"/&gt; &lt;jats:tex-math&gt;$Re geqslant 2400$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. The initial energy for nonlinear optimal disturbance is more efficient than the linear optimal disturbance in reaching the subcritical transitional flow for &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007523_inline5.png\"/&gt; &lt;jats:tex-math&gt;$2400 leqslant Re leqslant 5000$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. Moreover, the initial energy of linear optimal disturbance is larger than the energy of its edge state. The nonlinear TS waves along the edge state are formed by the nonlinear optimal disturbances to trigger transitional flow, which agrees well with the main conclusions of Camobreco &lt;jats:italic&gt;et al.&lt;/jats:italic&gt; (&lt;jats:italic&gt;J. Fluid Mech.&lt;/jats:italic&gt;, vol. 963, 2023, R2), while the required &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xli","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"44 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stratified Resistive Tearing Instability 分层电阻撕裂不稳定性
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-18 DOI: 10.1017/jfm.2024.621
Scott J. Hopper, Toby S. Wood, Paul J. Bushby
Resistive tearing instabilities are common in fluids that are highly electrically conductive and carry strong currents. We determine the effect of stable stratification on the tearing instability under the Boussinesq approximation. Our results generalise previous work that considered only specific parameter regimes, and we show that the length scale of the fastest-growing mode depends non-monotonically on the stratification strength. We confirm our analytical results by solving the linearised equations numerically, and we discuss whether the instability could operate in the solar tachocline.
电阻撕裂不稳定性常见于高导电性和携带强电流的流体中。我们确定了稳定分层对布西尼斯克近似下撕裂不稳定性的影响。我们的结果概括了以往只考虑特定参数区的工作,并表明增长最快的模式的长度尺度与分层强度非单调相关。我们通过数值求解线性化方程证实了我们的分析结果,并讨论了这种不稳定性是否可能在日冕层中发生作用。
{"title":"Stratified Resistive Tearing Instability","authors":"Scott J. Hopper, Toby S. Wood, Paul J. Bushby","doi":"10.1017/jfm.2024.621","DOIUrl":"https://doi.org/10.1017/jfm.2024.621","url":null,"abstract":"Resistive tearing instabilities are common in fluids that are highly electrically conductive and carry strong currents. We determine the effect of stable stratification on the tearing instability under the Boussinesq approximation. Our results generalise previous work that considered only specific parameter regimes, and we show that the length scale of the fastest-growing mode depends non-monotonically on the stratification strength. We confirm our analytical results by solving the linearised equations numerically, and we discuss whether the instability could operate in the solar tachocline.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"72 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular kinetic modelling of non-equilibrium evaporative flows 非平衡蒸发流的分子动力学建模
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-18 DOI: 10.1017/jfm.2024.605
Shaokang Li, Wei Su, Baochao Shan, Zuoxu Li, Livio Gibelli, Yonghao Zhang
Recent years have seen the emergence of new technologies that exploit nanoscale evaporation, ranging from nanoporous membranes for distillation to evaporative cooling in electronics. Despite the increasing depth of fundamental knowledge, there is still a lack of simulation tools capable of capturing the underlying non-equilibrium liquid–vapour phase changes that are critical to these and other such technologies. This work presents a molecular kinetic theory model capable of describing the entire flow field, i.e. the liquid and vapour phases and their interface, while striking a balance between accuracy and computational efficiency. In particular, unlike previous kinetic models based on the isothermal assumption, the proposed model can capture the temperature variations that occur during the evaporation process, yet does not require the computational resources of more complicated mean-field kinetic approaches. We assess the present kinetic model in three test cases: liquid–vapour equilibrium, evaporation into near-vacuum condition, and evaporation into vapour. The results agree well with benchmark solutions, while reducing the simulation time by almost two orders of magnitude on average in the cases studied. The results therefore suggest that this work is a stepping stone towards the development of an accurate and efficient computational approach to optimising the next generation of nanotechnologies based on nanoscale evaporation.
近年来,利用纳米级蒸发的新技术不断涌现,从用于蒸馏的纳米多孔膜到电子器件中的蒸发冷却,不一而足。尽管基础知识越来越深入,但仍然缺乏能够捕捉对这些技术和其他此类技术至关重要的基本非平衡液-气相变化的模拟工具。本研究提出的分子动力学理论模型能够描述整个流场,即液相和汽相及其界面,同时在准确性和计算效率之间取得平衡。特别是,与以往基于等温假设的动力学模型不同,所提出的模型可以捕捉到蒸发过程中出现的温度变化,而且不需要更复杂的平均场动力学方法的计算资源。我们在三个测试案例中对本动力学模型进行了评估:液汽平衡、近真空条件下的蒸发和蒸汽蒸发。结果与基准解决方案非常吻合,同时在所研究的案例中,模拟时间平均缩短了近两个数量级。因此,研究结果表明,这项工作为开发精确高效的计算方法、优化基于纳米尺度蒸发的下一代纳米技术奠定了基础。
{"title":"Molecular kinetic modelling of non-equilibrium evaporative flows","authors":"Shaokang Li, Wei Su, Baochao Shan, Zuoxu Li, Livio Gibelli, Yonghao Zhang","doi":"10.1017/jfm.2024.605","DOIUrl":"https://doi.org/10.1017/jfm.2024.605","url":null,"abstract":"Recent years have seen the emergence of new technologies that exploit nanoscale evaporation, ranging from nanoporous membranes for distillation to evaporative cooling in electronics. Despite the increasing depth of fundamental knowledge, there is still a lack of simulation tools capable of capturing the underlying non-equilibrium liquid–vapour phase changes that are critical to these and other such technologies. This work presents a molecular kinetic theory model capable of describing the entire flow field, i.e. the liquid and vapour phases and their interface, while striking a balance between accuracy and computational efficiency. In particular, unlike previous kinetic models based on the isothermal assumption, the proposed model can capture the temperature variations that occur during the evaporation process, yet does not require the computational resources of more complicated mean-field kinetic approaches. We assess the present kinetic model in three test cases: liquid–vapour equilibrium, evaporation into near-vacuum condition, and evaporation into vapour. The results agree well with benchmark solutions, while reducing the simulation time by almost two orders of magnitude on average in the cases studied. The results therefore suggest that this work is a stepping stone towards the development of an accurate and efficient computational approach to optimising the next generation of nanotechnologies based on nanoscale evaporation.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"203 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Fluid Mechanics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1