The low-frequency modal and non-modal linear dynamics of an incompressible, pressure-gradient-induced turbulent separation bubble (TSB) are investigated, with the objective of studying the mechanism responsible for the low-frequency contraction and expansion (breathing) commonly observed in experimental studies. The configuration of interest is a TSB generated on a flat test surface by a succession of adverse and favourable pressure gradients. The base flow selected for the analysis is the average TSB from the direct numerical simulation of Coleman et al. (J. Fluid Mech., vol. 847, 2018, pp. 28–70). Global mode analysis reveals that the eigenmodes of the linear operator are damped for all frequencies and wavenumbers. Furthermore, the least damped eigenmode appears to occur at zero frequency and low, non-zero spanwise wavenumber when scaled with the separation length. Resolvent analysis is then employed to examine the forced dynamics of the flow. At low frequency, a region of low, non-zero spanwise wavenumber is also discernible, where the receptivity appears to be driven by the identified weakly damped global mode. The corresponding optimal energy gain is shown to have the shape of a first-order, low-pass filter with a cut-off frequency consistent with the low-frequency unsteadiness in TSBs. The results from resolvent analysis are compared to the unsteady experimental database of Le Floc'h et al. (J. Fluid Mech., vol. 902, 2020, A13) in a similar TSB flow. The alignment between the optimal response and the first spectral proper orthogonal decomposition mode computed from the experiments is shown to be close to $95,%$, while the spanwise wavenumber of the optimal response is consistent with that of the low-frequency breathing motion captured experimentally. This indicates that the fluctuations observed experimentally at low frequency closely match the response computed from resolvent analysis. Based on these results, we propose that the forced dynamics of the flow, driven by the weakly damped global mode, serve as a plausible mechanism for the origin of the low-frequency breathing motion commonly observed in experimental studies of TSBs.
{"title":"On the low-frequency dynamics of turbulent separation bubbles","authors":"C. Cura, A. Hanifi, A.V.G. Cavalieri, J. Weiss","doi":"10.1017/jfm.2024.532","DOIUrl":"https://doi.org/10.1017/jfm.2024.532","url":null,"abstract":"The low-frequency modal and non-modal linear dynamics of an incompressible, pressure-gradient-induced turbulent separation bubble (TSB) are investigated, with the objective of studying the mechanism responsible for the low-frequency contraction and expansion (breathing) commonly observed in experimental studies. The configuration of interest is a TSB generated on a flat test surface by a succession of adverse and favourable pressure gradients. The base flow selected for the analysis is the average TSB from the direct numerical simulation of Coleman <jats:italic>et al.</jats:italic> (<jats:italic>J. Fluid Mech.</jats:italic>, vol. 847, 2018, pp. 28–70). Global mode analysis reveals that the eigenmodes of the linear operator are damped for all frequencies and wavenumbers. Furthermore, the least damped eigenmode appears to occur at zero frequency and low, non-zero spanwise wavenumber when scaled with the separation length. Resolvent analysis is then employed to examine the forced dynamics of the flow. At low frequency, a region of low, non-zero spanwise wavenumber is also discernible, where the receptivity appears to be driven by the identified weakly damped global mode. The corresponding optimal energy gain is shown to have the shape of a first-order, low-pass filter with a cut-off frequency consistent with the low-frequency unsteadiness in TSBs. The results from resolvent analysis are compared to the unsteady experimental database of Le Floc'h <jats:italic>et al.</jats:italic> (<jats:italic>J. Fluid Mech.</jats:italic>, vol. 902, 2020, A13) in a similar TSB flow. The alignment between the optimal response and the first spectral proper orthogonal decomposition mode computed from the experiments is shown to be close to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005329_inline1.png\"/> <jats:tex-math>$95,%$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, while the spanwise wavenumber of the optimal response is consistent with that of the low-frequency breathing motion captured experimentally. This indicates that the fluctuations observed experimentally at low frequency closely match the response computed from resolvent analysis. Based on these results, we propose that the forced dynamics of the flow, driven by the weakly damped global mode, serve as a plausible mechanism for the origin of the low-frequency breathing motion commonly observed in experimental studies of TSBs.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"242 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A high-resolution simulation of a thermal vortex ring is analysed from the point of view of the vortex dynamics. A power-spectrum analysis of vortex-ring sections suggests that the simulated flows are overall ‘two dimensional’ in the large-scale limit, being dominated by axisymmetric components, but with a substantial contribution from the non-axisymmetric component at small scales. Contribution of the non-axisymmetric components is negligible in budgets of volume integrals of the vorticity and potential vorticity as well as the impulse (moments of the vorticity weighted by $s^n$ with $n=-1$, 0, 1, where $s$ is the distance from the vertical axis of the vortex ring). A concise description of the dynamics is obtained as a function of geometrical factors together with these three integral variables. Analysis shows that the geometrical factors are fairly close to constant with time, and thus, a redundant closed description of the system is obtained in the similarity regime after spin up of the vortex ring. This redundancy leads to a constraint on the geometrical factors, which is reasonably satisfied by the simulation. A closed description is also obtained over the initial spin-up period of the vortex ring by adding a phenomenologically derived prognostic equation for the source for the volume integral of the potential vorticity (with $n=-1$). Analysis of the budget supports this description.
{"title":"Thermal vortex ring: vortex-dynamics analysis of a high-resolution simulation","authors":"Jun-Ichi Yano, Hugh Morrison","doi":"10.1017/jfm.2024.485","DOIUrl":"https://doi.org/10.1017/jfm.2024.485","url":null,"abstract":"A high-resolution simulation of a thermal vortex ring is analysed from the point of view of the vortex dynamics. A power-spectrum analysis of vortex-ring sections suggests that the simulated flows are overall ‘two dimensional’ in the large-scale limit, being dominated by axisymmetric components, but with a substantial contribution from the non-axisymmetric component at small scales. Contribution of the non-axisymmetric components is negligible in budgets of volume integrals of the vorticity and potential vorticity as well as the impulse (moments of the vorticity weighted by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024004853_inline1.png\"/> <jats:tex-math>$s^n$</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024004853_inline2.png\"/> <jats:tex-math>$n=-1$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, 0, 1, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024004853_inline3.png\"/> <jats:tex-math>$s$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the distance from the vertical axis of the vortex ring). A concise description of the dynamics is obtained as a function of geometrical factors together with these three integral variables. Analysis shows that the geometrical factors are fairly close to constant with time, and thus, a redundant closed description of the system is obtained in the similarity regime after spin up of the vortex ring. This redundancy leads to a constraint on the geometrical factors, which is reasonably satisfied by the simulation. A closed description is also obtained over the initial spin-up period of the vortex ring by adding a phenomenologically derived prognostic equation for the source for the volume integral of the potential vorticity (with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024004853_inline4.png\"/> <jats:tex-math>$n=-1$</jats:tex-math> </jats:alternatives> </jats:inline-formula>). Analysis of the budget supports this description.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"3 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hiroyuki Miyoshi, Toby L. Kirk, Marc Hodes, Darren G. Crowdy
{"title":"Fully developed flow through shrouded-fin arrays: exact and asymptotic solutions","authors":"Hiroyuki Miyoshi, Toby L. Kirk, Marc Hodes, Darren G. Crowdy","doi":"10.1017/jfm.2024.505","DOIUrl":"https://doi.org/10.1017/jfm.2024.505","url":null,"abstract":"<p><img href=\"S0022112024005056_figAb.png\" mimesubtype=\"png\" mimetype=\"image\" orientation=\"\" position=\"\" src=\"https://static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0022112024005056/resource/name/S0022112024005056_figAb.png?pub-status=live\" type=\"\"/></p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"32 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transport scaling in porous media convection","authors":"Xiaojue Zhu, Yifeng Fu, Marco De Paoli","doi":"10.1017/jfm.2024.528","DOIUrl":"https://doi.org/10.1017/jfm.2024.528","url":null,"abstract":"<p><img href=\"S0022112024005287_figAb.png\" mimesubtype=\"png\" mimetype=\"image\" orientation=\"\" position=\"\" src=\"https://static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0022112024005287/resource/name/S0022112024005287_figAb.png?pub-status=live\" type=\"\"/></p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"7 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yiqing Li, Bernd R. Noack, Tianyu Wang, Guy Y. Cornejo Maceda, Ethan Pickering, Tamir Shaqarin, Artur Tyliszczak
{"title":"Jet mixing enhancement with Bayesian optimization, deep learning and persistent data topology","authors":"Yiqing Li, Bernd R. Noack, Tianyu Wang, Guy Y. Cornejo Maceda, Ethan Pickering, Tamir Shaqarin, Artur Tyliszczak","doi":"10.1017/jfm.2024.525","DOIUrl":"https://doi.org/10.1017/jfm.2024.525","url":null,"abstract":"<p><img href=\"S0022112024005251_figAb.png\" mimesubtype=\"png\" mimetype=\"image\" orientation=\"\" position=\"\" src=\"https://static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0022112024005251/resource/name/S0022112024005251_figAb.png?pub-status=live\" type=\"\"/></p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"2017 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}