Pub Date : 2024-09-04DOI: 10.1016/j.jim.2024.113748
Anaís Mariscal , Carmen Martínez , Lea Goethals , Elena Cortés-Vicente , Elisabeth Moltó , Cándido Juárez , Bruna Barneda-Zahonero , Luis Querol , Rozen Le Panse , Eduard Gallardo
In mouse models of myasthenia gravis (MG), anti-acetylcholine receptor (AChR) antibodies can be quantified to monitor disease progression and treatment response. In mice, enzyme-linked immunosorbent assay (ELISA) is the gold standard to quantify these antibodies. However, this method requires antigen purification, which is both time-consuming and expensive. In humans, radioimmunoassay (RIA)—which is more sensitive than ELISA—is commonly used to quantify AChR antibodies. At present, however, no commercial RIA kits are available to quantify these antibodies in mice. The aim of this study was to compare a modified commercial human RIA kit to two ELISA methods to detect AChR antibodies in an experimental autoimmune mouse model of MG (EAMG). C57BL/6 J mice were immunized with purified AChR from Tetronarce californica (T-AChR). Serum samples were analyzed by RIA and two ELISAs (T-AChR and purified mouse AChR peptide [m-AChR]). The modified RIA showed excellent sensitivity (84.1 %) and specificity (100 %) for the detection of AChR antibodies. RIA showed a good agreement with T-AChR ELISA (κ = 0.69) but only moderate agreement with m-AChR ELISA (κ = 0.49). These results demonstrate the feasibility of modifying a commercially-available RIA kit to quantify AChR antibodies in EAMG. The advantage of this technique is that it eliminates the need to develop the entire methodology in-house and reduces inter and intra-laboratory variability.
{"title":"Modified radioimmunoassay versus ELISA to quantify anti-acetylcholine receptor antibodies in a mouse model of myasthenia gravis","authors":"Anaís Mariscal , Carmen Martínez , Lea Goethals , Elena Cortés-Vicente , Elisabeth Moltó , Cándido Juárez , Bruna Barneda-Zahonero , Luis Querol , Rozen Le Panse , Eduard Gallardo","doi":"10.1016/j.jim.2024.113748","DOIUrl":"10.1016/j.jim.2024.113748","url":null,"abstract":"<div><p>In mouse models of myasthenia gravis (MG), anti-acetylcholine receptor (AChR) antibodies can be quantified to monitor disease progression and treatment response. In mice, enzyme-linked immunosorbent assay (ELISA) is the gold standard to quantify these antibodies. However, this method requires antigen purification, which is both time-consuming and expensive. In humans, radioimmunoassay (RIA)—which is more sensitive than ELISA—is commonly used to quantify AChR antibodies. At present, however, no commercial RIA kits are available to quantify these antibodies in mice. The aim of this study was to compare a modified commercial human RIA kit to two ELISA methods to detect AChR antibodies in an experimental autoimmune mouse model of MG (EAMG). C57BL/6 J mice were immunized with purified AChR from <em>Tetronarce californica</em> (T-AChR). Serum samples were analyzed by RIA and two ELISAs (T-AChR and purified mouse AChR peptide [m-AChR]). The modified RIA showed excellent sensitivity (84.1 %) and specificity (100 %) for the detection of AChR antibodies. RIA showed a good agreement with T-AChR ELISA (κ = 0.69) but only moderate agreement with m-AChR ELISA (κ = 0.49). These results demonstrate the feasibility of modifying a commercially-available RIA kit to quantify AChR antibodies in EAMG. The advantage of this technique is that it eliminates the need to develop the entire methodology in-house and reduces inter and intra-laboratory variability.</p></div>","PeriodicalId":16000,"journal":{"name":"Journal of immunological methods","volume":"534 ","pages":"Article 113748"},"PeriodicalIF":1.6,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human monoclonal antibodies are essential diagnostic and research tools and one of the most promising therapeutics. In the past years, single B cell technologies have evolved and over-come conventional methods' limitations, enabling the isolation of scarce B cell populations with desirable characteristics. In this study, we describe a simple and efficient method to isolate anti-gen-specific plasmablasts and memory B cells from hepatitis B virus vaccinated donors' peripheral blood and consequently amplification of immunoglobulin variable region genes. Amplified immunoglobulin variable region genes were cloned into expression vectors and transfected into a human cell line to produce human recombinant monoclonal antibodies. Major challenges in this protocol were isolation of antigen-specific B cells based on surface markers, recovering mRNA from a single cell for efficient amplification, and cloning the correct insert into a desired expression vector. The essential feature of our protocol was the separation of B cells from peripheral blood mononuclear cells before sorting. We identified antigen-specific binding B cells based on the expression of surface markers CD19, CD27, IgG, and binding to hepatitis B surface antigen. Efficient single-cell reverse transcription and polymerase chain reaction (RT-PCR) were achieved using a random primer mix and Kapa Hifi Hot Start Polymerase. Amplification efficiency differed among heavy and light chain variable regions (highest at heavy chain (68 %) and lowest at lambda light chain (22 %)). After co-transfection of HEK293T/17 with successfully cloned heavy and light chain vectors, 70 % of transfected cells produced recombinant monoclonal antibodies at a concentration ∼ 4 μg/ml and 7 % of them showed binding to HBsAg. Human monoclonal antibodies from peripheral blood have advantages over antibodies of mouse origin or phage display libraries, because of their high specificity and self-tolerance. Using the described protocol, we can generate fully human monoclonal antibodies to any other antigen for application in immunotherapy or basic research.
人类单克隆抗体是重要的诊断和研究工具,也是最有前途的疗法之一。过去几年中,单 B 细胞技术不断发展,克服了传统方法的局限性,能够分离出具有理想特性的稀缺 B 细胞群。在本研究中,我们介绍了一种简单而有效的方法,可从接种过乙型肝炎病毒疫苗的献血者外周血中分离抗基因特异性浆细胞和记忆 B 细胞,并由此扩增免疫球蛋白可变区基因。扩增的免疫球蛋白可变区基因被克隆到表达载体中,并转染到人类细胞系中,从而产生人类重组单克隆抗体。该方案面临的主要挑战是根据表面标志物分离抗原特异性 B 细胞、从单个细胞中回收 mRNA 以进行高效扩增,以及将正确的插入物克隆到所需的表达载体中。我们方案的基本特征是在分拣前将 B 细胞从外周血单核细胞中分离出来。我们根据表面标志物 CD19、CD27、IgG 的表达以及与乙型肝炎表面抗原的结合来鉴定抗原特异性结合 B 细胞。使用随机引物混合物和 Kapa Hifi 热启动聚合酶实现了高效的单细胞反转录和聚合酶链反应(RT-PCR)。重链和轻链可变区的扩增效率不同(重链最高(68%),λ轻链最低(22%))。用成功克隆的重链和轻链载体共同转染 HEK293T/17 后,70% 的转染细胞产生了浓度约为 4 μg/ml 的重组单克隆抗体,其中 7% 与 HBsAg 结合。与小鼠来源的抗体或噬菌体展示文库相比,来自外周血的人类单克隆抗体具有特异性高和自身耐受性强的优点。利用所述方案,我们可以生成针对任何其他抗原的全人源单克隆抗体,用于免疫治疗或基础研究。
{"title":"Optimizing the method for expressing human monoclonal antibodies from a single peripheral blood cell from vaccinated donors","authors":"Sandra Omejec , Manuela Tompa , Valerija Kovač , Vladka Čurin Šerbec","doi":"10.1016/j.jim.2024.113747","DOIUrl":"10.1016/j.jim.2024.113747","url":null,"abstract":"<div><p>Human monoclonal antibodies are essential diagnostic and research tools and one of the most promising therapeutics. In the past years, single B cell technologies have evolved and over-come conventional methods' limitations, enabling the isolation of scarce B cell populations with desirable characteristics. In this study, we describe a simple and efficient method to isolate anti-gen-specific plasmablasts and memory B cells from hepatitis B virus vaccinated donors' peripheral blood and consequently amplification of immunoglobulin variable region genes. Amplified immunoglobulin variable region genes were cloned into expression vectors and transfected into a human cell line to produce human recombinant monoclonal antibodies. Major challenges in this protocol were isolation of antigen-specific B cells based on surface markers, recovering mRNA from a single cell for efficient amplification, and cloning the correct insert into a desired expression vector. The essential feature of our protocol was the separation of B cells from peripheral blood mononuclear cells before sorting. We identified antigen-specific binding B cells based on the expression of surface markers CD19, CD27, IgG, and binding to hepatitis B surface antigen. Efficient single-cell reverse transcription and polymerase chain reaction (RT-PCR) were achieved using a random primer mix and Kapa Hifi Hot Start Polymerase. Amplification efficiency differed among heavy and light chain variable regions (highest at heavy chain (68 %) and lowest at lambda light chain (22 %)). After co-transfection of HEK293T/17 with successfully cloned heavy and light chain vectors, 70 % of transfected cells produced recombinant monoclonal antibodies at a concentration ∼ 4 μg/ml and 7 % of them showed binding to HBsAg. Human monoclonal antibodies from peripheral blood have advantages over antibodies of mouse origin or phage display libraries, because of their high specificity and self-tolerance. Using the described protocol, we can generate fully human monoclonal antibodies to any other antigen for application in immunotherapy or basic research.</p></div>","PeriodicalId":16000,"journal":{"name":"Journal of immunological methods","volume":"534 ","pages":"Article 113747"},"PeriodicalIF":1.6,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022175924001327/pdfft?md5=73c0ec9354012fce306aec8a5c983ef7&pid=1-s2.0-S0022175924001327-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.jim.2024.113745
Jongwon Park
Lateral Flow Immunoassay (LFI) is a disposable tool designed to detect target substances using minimal resources. For qualitative analysis, LFI does not require a device (i.e., reader) to interpret test results. However, various studies have been conducted to implement quantitative analysis using LFI systems, incorporating LFI along with electrical/electronic readers, to overcome the limitations associated with qualitative LFI analysis. The reader used for the quantitative analysis of LFI should ensure mobility for easy on-site diagnostics and inspections, be user-friendly in operation, and have a fast processing speed until the results are obtained. Due to these requirements, smartphones are increasingly utilized as readers in quantitative analysis of LFI. Among the various components constituting a smartphone, high-performance cameras can serve as sensors converting visual signals into electrical signals. With powerful processing units, large storage capacity, and network capabilities for transmitting analysis results, smartphones are also utilized as interfaces for quantitative analysis. Absolutely, the widespread global use of smartphones is a key advantage, leading to their utilization as diagnostic devices for acquiring, analyzing, storing, and transmitting assay test results. This paper summarizes research cases where smartphones are utilized as readers for quantitative LFI systems used in confirming contamination in food or the environment, detecting drugs, and diagnosing diseases in humans or animals. The systems are classified based on the types of label particles used in the assay, and efforts to improve the quantitative analysis performance for each are examined. Cases where smartphones were used as LFI readers for the diagnosis of the 2019 Coronavirus Disease (COVID-19), which has recently caused significant global damage, have also been investigated.
{"title":"Smartphone based lateral flow immunoassay quantifications","authors":"Jongwon Park","doi":"10.1016/j.jim.2024.113745","DOIUrl":"10.1016/j.jim.2024.113745","url":null,"abstract":"<div><p>Lateral Flow Immunoassay (LFI) is a disposable tool designed to detect target substances using minimal resources. For qualitative analysis, LFI does not require a device (i.e., reader) to interpret test results. However, various studies have been conducted to implement quantitative analysis using LFI systems, incorporating LFI along with electrical/electronic readers, to overcome the limitations associated with qualitative LFI analysis. The reader used for the quantitative analysis of LFI should ensure mobility for easy on-site diagnostics and inspections, be user-friendly in operation, and have a fast processing speed until the results are obtained. Due to these requirements, smartphones are increasingly utilized as readers in quantitative analysis of LFI. Among the various components constituting a smartphone, high-performance cameras can serve as sensors converting visual signals into electrical signals. With powerful processing units, large storage capacity, and network capabilities for transmitting analysis results, smartphones are also utilized as interfaces for quantitative analysis. Absolutely, the widespread global use of smartphones is a key advantage, leading to their utilization as diagnostic devices for acquiring, analyzing, storing, and transmitting assay test results. This paper summarizes research cases where smartphones are utilized as readers for quantitative LFI systems used in confirming contamination in food or the environment, detecting drugs, and diagnosing diseases in humans or animals. The systems are classified based on the types of label particles used in the assay, and efforts to improve the quantitative analysis performance for each are examined. Cases where smartphones were used as LFI readers for the diagnosis of the 2019 Coronavirus Disease (COVID-19), which has recently caused significant global damage, have also been investigated.</p></div>","PeriodicalId":16000,"journal":{"name":"Journal of immunological methods","volume":"533 ","pages":"Article 113745"},"PeriodicalIF":1.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.jim.2024.113746
Jeferson Stabile, Cristina Ribas Fürstenau
Platelets are enucleated fragments of cells with a diversity of internal granules. They are responsible for functions related to hemostasis, coagulation, and inflammation. The activation of these processes depends on a cascade coordinated by cytokines, chemokines, and components of purinergic signaling, such as ATP, ADP, and adenosine. Platelets express distinct components of the purinergic system: P2X1, P2Y1, PY12, and P2Y14 receptors; and the ectonucleotidases NTPDase, NPP, and 5NTE (ecto-5′-nucleotidase). Except for P2Y14, which has not yet exhibited a known function, all other components relate to the biological processes mentioned before. Platelets are known to display specific responses to microorganisms, being capable of recognizing pathogen-associated molecular patterns (PAMPs), engulfing certain classes of viruses, and participating in NETosis. Platelet function dysregulation implicates various pathophysiological processes, including cardiovascular diseases (CVDs) and infections. In COVID-19 patients, platelets exhibit altered purinergic signaling and increased activation, contributing to inflammation. Excessive platelet activation can lead to complications from thrombosis, which can affect the circulation of vital organs. Therefore, controlling the activation is necessary to end the inflammatory process and restore homeostasis. Ectonucleotidases, capable of hydrolyzing ATP, ADP, and AMP, are of fundamental importance in activating platelets, promising pharmacological targets for clinical use as cardiovascular protective drugs. In this review, we revisit platelet biology, the purinergic receptors and ectonucleotidases on their surface, and their importance in platelet activity. Additionally, we describe methods for isolating platelets in humans and murine, as well as the main techniques for detecting the activity of ectonucleotidases in platelets. Considering the multitude of functions revealed by platelets and their potential use as potent bioreactors able to secrete and present molecules involved in the communication of the vasculature with the immune system, it is crucial to deeply understand platelet biology and purinergic signaling participation to contribute to the developing of therapeutic strategies in diseases of the cardiovascular, inflammatory, and immune systems.
{"title":"Platelets isolation and ectonucleotidase assay: Revealing functional aspects of the communication between the vasculature and the immune system","authors":"Jeferson Stabile, Cristina Ribas Fürstenau","doi":"10.1016/j.jim.2024.113746","DOIUrl":"10.1016/j.jim.2024.113746","url":null,"abstract":"<div><p>Platelets are enucleated fragments of cells with a diversity of internal granules. They are responsible for functions related to hemostasis, coagulation, and inflammation. The activation of these processes depends on a cascade coordinated by cytokines, chemokines, and components of purinergic signaling, such as ATP, ADP, and adenosine. Platelets express distinct components of the purinergic system: P2X1, P2Y1, PY12, and P2Y14 receptors; and the ectonucleotidases NTPDase, NPP, and 5NTE (ecto-5′-nucleotidase). Except for P2Y14, which has not yet exhibited a known function, all other components relate to the biological processes mentioned before. Platelets are known to display specific responses to microorganisms, being capable of recognizing pathogen-associated molecular patterns (PAMPs), engulfing certain classes of viruses, and participating in NETosis. Platelet function dysregulation implicates various pathophysiological processes, including cardiovascular diseases (CVDs) and infections. In COVID-19 patients, platelets exhibit altered purinergic signaling and increased activation, contributing to inflammation. Excessive platelet activation can lead to complications from thrombosis, which can affect the circulation of vital organs. Therefore, controlling the activation is necessary to end the inflammatory process and restore homeostasis. Ectonucleotidases, capable of hydrolyzing ATP, ADP, and AMP, are of fundamental importance in activating platelets, promising pharmacological targets for clinical use as cardiovascular protective drugs. In this review, we revisit platelet biology, the purinergic receptors and ectonucleotidases on their surface, and their importance in platelet activity. Additionally, we describe methods for isolating platelets in humans and murine, as well as the main techniques for detecting the activity of ectonucleotidases in platelets. Considering the multitude of functions revealed by platelets and their potential use as potent bioreactors able to secrete and present molecules involved in the communication of the vasculature with the immune system, it is crucial to deeply understand platelet biology and purinergic signaling participation to contribute to the developing of therapeutic strategies in diseases of the cardiovascular, inflammatory, and immune systems.</p></div>","PeriodicalId":16000,"journal":{"name":"Journal of immunological methods","volume":"533 ","pages":"Article 113746"},"PeriodicalIF":1.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-15DOI: 10.1016/j.jim.2024.113742
Glenn T. Miller , Teresa M. Caiazzo , Alison Joyce
Stability of conjugated critical reagents supporting ligand binding assays to enable biotherapeutic drug development is a universal concern. Formulation buffer employed for long-term cold storage may be key to mitigate protein aggregation issues. We investigated biophysical and functional attributes of murine mAb and human multispecific drug labeled with biotin, ruthenium, and Alexa fluor 647 frozen at −80 °C in PBS or a protein storage buffer for 3–15 months. Aggregation was observed at 4 months in mAb A-Ru (11.2%) and -Alexa (10%) in PBS followed by precipitation and reduced biological binding at 15 months. Increased aggregation in drug Ru (11.7%, 6 months) and Alexa (6.9%, 15 months) were noted but without impact on performance. There were no observations with biotin labeled reagents.
支持配体结合检测以促进生物治疗药物开发的共轭关键试剂的稳定性是一个普遍关注的问题。用于长期冷藏的制剂缓冲液可能是缓解蛋白质聚集问题的关键。我们研究了用生物素、钌和 Alexa fluor 647 标记的小鼠 mAb 和人类多特异性药物的生物物理和功能属性,这些药物在 -80 °C 的 PBS 或蛋白质储存缓冲液中冷冻 3-15 个月。在 PBS 中的 mAb A-Ru(11.2%)和 -Alexa(10%)在 4 个月时出现聚集,15 个月时出现沉淀和生物结合力降低。药物 Ru(11.7%,6 个月)和 Alexa(6.9%,15 个月)中的聚集现象有所增加,但对性能没有影响。生物素标记的试剂则没有出现这种情况。
{"title":"Long term investigation of formulation buffers to mitigate stability issues of conjugated critical reagents","authors":"Glenn T. Miller , Teresa M. Caiazzo , Alison Joyce","doi":"10.1016/j.jim.2024.113742","DOIUrl":"10.1016/j.jim.2024.113742","url":null,"abstract":"<div><p>Stability of conjugated critical reagents supporting ligand binding assays to enable biotherapeutic drug development is a universal concern. Formulation buffer employed for long-term cold storage may be key to mitigate protein aggregation issues. We investigated biophysical and functional attributes of murine mAb and human multispecific drug labeled with biotin, ruthenium, and Alexa fluor 647 frozen at −80 °C in PBS or a protein storage buffer for 3–15 months. Aggregation was observed at 4 months in mAb A-Ru (11.2%) and -Alexa (10%) in PBS followed by precipitation and reduced biological binding at 15 months. Increased aggregation in drug Ru (11.7%, 6 months) and Alexa (6.9%, 15 months) were noted but without impact on performance. There were no observations with biotin labeled reagents.</p></div>","PeriodicalId":16000,"journal":{"name":"Journal of immunological methods","volume":"533 ","pages":"Article 113742"},"PeriodicalIF":1.6,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1016/j.jim.2024.113743
Ricardo F. Ungaro , Julie Xu , Tamara A. Kucaba , Mahil Rao , Christian B. Bergmann , Scott C. Brakenridge , Philip A. Efron , Michael D. Goodman , Robert W. Gould , Richard S. Hotchkiss , Muxuan Liang , Monty B. Mazer , Patrick W. McGonagill , Lyle L. Moldawer , Kenneth E. Remy , Isaiah R. Turnbull , Charles C. Caldwell , Vladimir P. Badovinac , Thomas S. Griffith
Sepsis remains a leading cause of death worldwide with no proven immunomodulatory therapies. Stratifying Patient Immune Endotypes in Sepsis (‘SPIES’) is a prospective, multicenter observational study testing the utility of ELISpot as a functional bioassay specifically measuring cytokine-producing cells after stimulation to identify the immunosuppressed endotype, predict clinical outcomes in septic patients, and test potential immune stimulants for clinical development. Most ELISpot protocols call for the isolation of PBMC prior to their inclusion in the assay. In contrast, we developed a diluted whole blood (DWB) ELISpot protocol that has been validated across multiple laboratories. Heparinized whole blood was collected from healthy donors and septic patients and tested under different stimulation conditions to evaluate the impact of blood dilution, stimulant concentration, blood storage, and length of stimulation on ex vivo IFNγ and TNFα production as measured by ELISpot. We demonstrate a dynamic range of whole blood dilutions that give a robust ex vivo cytokine response to stimuli. Additionally, a wide range of stimulant concentrations can be utilized to induce cytokine production. Further modifications demonstrate anticoagulated whole blood can be stored up to 24 h at room temperature without losing significant functionality. Finally, we show ex vivo stimulation can be as brief as 4 h allowing for a substantial decrease in processing time. The data demonstrate the feasibility of using ELISpot to measure the functional capacity of cells within DWB under a variety of stimulation conditions to inform clinicians on the extent of immune dysregulation in septic patients.
{"title":"Development and optimization of a diluted whole blood ELISpot assay to test immune function","authors":"Ricardo F. Ungaro , Julie Xu , Tamara A. Kucaba , Mahil Rao , Christian B. Bergmann , Scott C. Brakenridge , Philip A. Efron , Michael D. Goodman , Robert W. Gould , Richard S. Hotchkiss , Muxuan Liang , Monty B. Mazer , Patrick W. McGonagill , Lyle L. Moldawer , Kenneth E. Remy , Isaiah R. Turnbull , Charles C. Caldwell , Vladimir P. Badovinac , Thomas S. Griffith","doi":"10.1016/j.jim.2024.113743","DOIUrl":"10.1016/j.jim.2024.113743","url":null,"abstract":"<div><p>Sepsis remains a leading cause of death worldwide with no proven immunomodulatory therapies. Stratifying Patient Immune Endotypes in Sepsis (‘SPIES’) is a prospective, multicenter observational study testing the utility of ELISpot as a functional bioassay specifically measuring cytokine-producing cells after stimulation to identify the immunosuppressed endotype, predict clinical outcomes in septic patients, and test potential immune stimulants for clinical development. Most ELISpot protocols call for the isolation of PBMC prior to their inclusion in the assay. In contrast, we developed a diluted whole blood (DWB) ELISpot protocol that has been validated across multiple laboratories. Heparinized whole blood was collected from healthy donors and septic patients and tested under different stimulation conditions to evaluate the impact of blood dilution, stimulant concentration, blood storage, and length of stimulation on ex vivo IFNγ and TNFα production as measured by ELISpot. We demonstrate a dynamic range of whole blood dilutions that give a robust ex vivo cytokine response to stimuli. Additionally, a wide range of stimulant concentrations can be utilized to induce cytokine production. Further modifications demonstrate anticoagulated whole blood can be stored up to 24 h at room temperature without losing significant functionality. Finally, we show ex vivo stimulation can be as brief as 4 h allowing for a substantial decrease in processing time. The data demonstrate the feasibility of using ELISpot to measure the functional capacity of cells within DWB under a variety of stimulation conditions to inform clinicians on the extent of immune dysregulation in septic patients.</p></div>","PeriodicalId":16000,"journal":{"name":"Journal of immunological methods","volume":"533 ","pages":"Article 113743"},"PeriodicalIF":1.6,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022175924001285/pdfft?md5=55bf0202eaff365ea65002f17d2f689d&pid=1-s2.0-S0022175924001285-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1016/j.jim.2024.113744
Cassio Luiz Coutinho Almeida-da-Silva, Aline Cristina de Abreu Moreira-Souza, David M. Ojcius
Inflammasomes play a major role in the immune response to infection, development of autoimmune disease, and control of cancer. Western blots were originally used in the early 2000s to characterize inflammasome activation. Since then, a panoply of techniques has been developed to characterize and visualize inflammasome activation in cells, tissues, and animals. This review article describes the most common techniques used by researchers in the inflammasome field and proposes that cell-specific characterization of inflammasome activation in tissues or animals may soon be commonly reported.
炎症小体在对感染的免疫反应、自身免疫性疾病的发展和癌症的控制中发挥着重要作用。本世纪初,人们开始使用 Western 印迹来描述炎症小体活化的特征。从那时起,人们开发了一系列技术来表征和观察细胞、组织和动物中的炎性体活化。这篇综述文章介绍了炎症小体领域研究人员最常用的技术,并提出组织或动物中炎症小体活化的细胞特异性表征可能很快就会被普遍报道。
{"title":"Traditional approaches and recent tools for studying inflammasome activity","authors":"Cassio Luiz Coutinho Almeida-da-Silva, Aline Cristina de Abreu Moreira-Souza, David M. Ojcius","doi":"10.1016/j.jim.2024.113744","DOIUrl":"10.1016/j.jim.2024.113744","url":null,"abstract":"<div><p>Inflammasomes play a major role in the immune response to infection, development of autoimmune disease, and control of cancer. Western blots were originally used in the early 2000s to characterize inflammasome activation. Since then, a panoply of techniques has been developed to characterize and visualize inflammasome activation in cells, tissues, and animals. This review article describes the most common techniques used by researchers in the inflammasome field and proposes that cell-specific characterization of inflammasome activation in tissues or animals may soon be commonly reported.</p></div>","PeriodicalId":16000,"journal":{"name":"Journal of immunological methods","volume":"533 ","pages":"Article 113744"},"PeriodicalIF":1.6,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022175924001297/pdfft?md5=19c435298ca3ded21e24f883ac072261&pid=1-s2.0-S0022175924001297-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Breast cancer is one of the leading causes of cancer deaths worldwide. Thereafter, designing new treatments with higher specificity and efficacy is urgently required. In this regard, targeted immunotherapy using immunotoxins has shown great promise in treating cancer. To target a breast cancer cell, the authors used the antibody fragment against a receptor tyrosine kinase, EphA2, which is overexpressed in many cancers. This fragment was conjugated to a plant toxin, subunit A of ricin, in two different orientations from N to C-terminal (EphA2- C-Ricin and EphA2- N-Ricin). Then, these two immunotoxins were characterized using in vitro cell-based assays. Three different cell lines were treated, MDA-MB-231 (breast cancer) which has a high level of EphA2 expression, MCF-7 (breast cancer) which has a low level of EphA2 expression, and HEK293 (human embryonic kidney) which has a very low level of EphA2 expression. Moreover, binding ability, cytotoxicity, internalization, and apoptosis capacity of these two newly developed immunotoxins were investigated. The flow cytometry using Annexin V- Propidium iodide (PI) method indicated significant induction of apoptosis only in the MDA-MB-231 cells at different concentrations. It was also found that construct I, EphA2- C-Ricin immunotoxin, could bind, internalize, and induce apoptosis better than the EphA2- N-Ricin immunotoxin. In addition, the obtained data suggested that the N or C-terminal orientation conformation is of significant importance.
{"title":"In vitro analysis of single chain variable fragment-based immunotoxins against Erythropoietin-producing hepatocellular A2 receptor overexpressed in breast cancer cells","authors":"Atefeh Faraz , Jafar Amani , Sedigheh Arbabian , Shohreh Zare Karizi , Maryam Bikhof Torbati","doi":"10.1016/j.jim.2024.113732","DOIUrl":"10.1016/j.jim.2024.113732","url":null,"abstract":"<div><p>Breast cancer is one of the leading causes of cancer deaths worldwide. Thereafter, designing new treatments with higher specificity and efficacy is urgently required. In this regard, targeted immunotherapy using immunotoxins has shown great promise in treating cancer. To target a breast cancer cell, the authors used the antibody fragment against a receptor tyrosine kinase, EphA2, which is overexpressed in many cancers. This fragment was conjugated to a plant toxin, subunit A of ricin, in two different orientations from N to C-terminal (EphA2- C-Ricin and EphA2- N-Ricin). Then, these two immunotoxins were characterized using <em>in vitro</em> cell-based assays. Three different cell lines were treated, MDA-MB-231 (breast cancer) which has a high level of EphA2 expression, MCF-7 (breast cancer) which has a low level of EphA2 expression, and HEK293 (human embryonic kidney) which has a very low level of EphA2 expression. Moreover, binding ability, cytotoxicity, internalization, and apoptosis capacity of these two newly developed immunotoxins were investigated. The flow cytometry using Annexin V- Propidium iodide (PI) method indicated significant induction of apoptosis only in the MDA-MB-231 cells at different concentrations. It was also found that construct I, EphA2- C-Ricin immunotoxin, could bind, internalize, and induce apoptosis better than the EphA2- N-Ricin immunotoxin. In addition, the obtained data suggested that the N or C-terminal orientation conformation is of significant importance.</p></div>","PeriodicalId":16000,"journal":{"name":"Journal of immunological methods","volume":"533 ","pages":"Article 113732"},"PeriodicalIF":1.6,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141906782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1016/j.jim.2024.113734
Piyush Kumar Paliwal, Burki Rajendar, Thirumeni Nagarajan, M.V.N. Janardhan Reddy, Amit Tripathi, Ramesh V. Matur
Capsular polysaccharides of Streptococcus pneumoniae are used in pneumococcal polysaccharide and protein-conjugate vaccines. Cell-wall polysaccharide (C-Ps) is a critical impurity that must be kept at low levels in purified polysaccharide preparations. Hence, accurate and precise methods for determining C-Ps are needed. Currently available methods include nuclear magnetic resonance (NMR) spectroscopy and high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Both these methods suffer from their own limitations; therefore, we developed a simple and efficient enzyme-linked immunosorbent assay (ELISA) for accurate and precise quantification of C-Ps in samples of any serotype of pneumococcal capsular polysaccharide without interference. We quantified C-Ps in preparations of 14 serotype polysaccharides using newly developed ELISA method and compared the results with C-Ps values obtained using two previously reported methods, 1H NMR and HPAEC-PAD. The C-Ps value determined using 1H NMR for serotype 5 was 21.08%, whereas the values obtained using HPAEC-PAD and ELISA were 2.38% and 2.89% respectively, indicating some interference in 1H NMR method. The sensitivity of the ELISA method is higher because the sample is used directly unlike HPAEC-PAD method where sample is subjected to harsh treatment, such as acid digestion and quantify C-Ps based on peak area of ribitol or AAT. Furthermore, 1H NMR and HPAEC-PAD are expensive and laborious methods. Our work, underscores the simple and efficient ELISA that can be used for quantification of C-Ps in pneumococcal polysaccharide preparations.
{"title":"Quantitative determination of C-polysaccharide in Streptococcus pneumoniae capsular polysaccharides by enzyme-linked immunosorbent assay","authors":"Piyush Kumar Paliwal, Burki Rajendar, Thirumeni Nagarajan, M.V.N. Janardhan Reddy, Amit Tripathi, Ramesh V. Matur","doi":"10.1016/j.jim.2024.113734","DOIUrl":"10.1016/j.jim.2024.113734","url":null,"abstract":"<div><p>Capsular polysaccharides of <em>Streptococcus pneumoniae</em> are used in pneumococcal polysaccharide and protein-conjugate vaccines. Cell-wall polysaccharide (C-Ps) is a critical impurity that must be kept at low levels in purified polysaccharide preparations. Hence, accurate and precise methods for determining C-Ps are needed. Currently available methods include nuclear magnetic resonance (NMR) spectroscopy and high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Both these methods suffer from their own limitations; therefore, we developed a simple and efficient enzyme-linked immunosorbent assay (ELISA) for accurate and precise quantification of C-Ps in samples of any serotype of pneumococcal capsular polysaccharide without interference. We quantified C-Ps in preparations of 14 serotype polysaccharides using newly developed ELISA method and compared the results with C-Ps values obtained using two previously reported methods, <sup>1</sup>H NMR and HPAEC-PAD. The C-Ps value determined using <sup>1</sup>H NMR for serotype 5 was 21.08%, whereas the values obtained using HPAEC-PAD and ELISA were 2.38% and 2.89% respectively, indicating some interference in <sup>1</sup>H NMR method. The sensitivity of the ELISA method is higher because the sample is used directly unlike HPAEC-PAD method where sample is subjected to harsh treatment, such as acid digestion and quantify C-Ps based on peak area of ribitol or AAT. Furthermore, <sup>1</sup>H NMR and HPAEC-PAD are expensive and laborious methods. Our work, underscores the simple and efficient ELISA that can be used for quantification of C-Ps in pneumococcal polysaccharide preparations.</p></div>","PeriodicalId":16000,"journal":{"name":"Journal of immunological methods","volume":"533 ","pages":"Article 113734"},"PeriodicalIF":1.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1016/j.jim.2024.113741
Júlia Costa de Sousa , Stephanie Alexia Cristina Silva Santos , Eleonora Kurtenbach
Connexins are essential gap junction proteins that play pivotal roles in intercellular communication in various organs of mammals. Connexin-43 (Cx43) is expressed in various components of the immune system, and there is extensive evidence of its participation in inflammation responses. The involvement of Cx43 in macrophage functionality involves the purinergic signaling pathway. Macrophages contribute to defenses against inflammatory reactions such as bacterial sepsis and peritonitis. Several assays can identify the presence and activity of Cx43 in macrophages. Real-time polymerase chain reaction (PCR) can measure the relative mRNA expression of Cx43, whereas western blotting can detect protein expression levels. Using immunofluorescence assays, it is possible to analyze the expression and observe the localization of Cx43 in cells or tissues. Moreover, connexin-mediated gap junction intercellular communication can be evaluated using functional assays such as microinjection of fluorescent dyes or scrape loading-dye transfer. The use of selective inhibitors contributes to this understanding and reinforces the role of connexins in various processes. Here, we discuss these methods to evaluate Cx43 and macrophage gap junctions.
{"title":"Multiple approaches for the evaluation of connexin-43 expression and function in macrophages","authors":"Júlia Costa de Sousa , Stephanie Alexia Cristina Silva Santos , Eleonora Kurtenbach","doi":"10.1016/j.jim.2024.113741","DOIUrl":"10.1016/j.jim.2024.113741","url":null,"abstract":"<div><p>Connexins are essential gap junction proteins that play pivotal roles in intercellular communication in various organs of mammals. Connexin-43 (Cx43) is expressed in various components of the immune system, and there is extensive evidence of its participation in inflammation responses. The involvement of Cx43 in macrophage functionality involves the purinergic signaling pathway. Macrophages contribute to defenses against inflammatory reactions such as bacterial sepsis and peritonitis. Several assays can identify the presence and activity of Cx43 in macrophages. Real-time polymerase chain reaction (PCR) can measure the relative mRNA expression of Cx43, whereas western blotting can detect protein expression levels. Using immunofluorescence assays, it is possible to analyze the expression and observe the localization of Cx43 in cells or tissues. Moreover, connexin-mediated gap junction intercellular communication can be evaluated using functional assays such as microinjection of fluorescent dyes or scrape loading-dye transfer. The use of selective inhibitors contributes to this understanding and reinforces the role of connexins in various processes. Here, we discuss these methods to evaluate Cx43 and macrophage gap junctions.</p></div>","PeriodicalId":16000,"journal":{"name":"Journal of immunological methods","volume":"533 ","pages":"Article 113741"},"PeriodicalIF":1.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}