首页 > 最新文献

Journal of Hematology & Oncology最新文献

英文 中文
CAR-T cells targeting CCR9 and CD1a for the treatment of T cell acute lymphoblastic leukemia 靶向CCR9和CD1a的CAR-T细胞治疗T细胞急性淋巴细胞白血病
IF 28.5 1区 医学 Q1 HEMATOLOGY Pub Date : 2025-07-01 DOI: 10.1186/s13045-025-01715-0
Néstor Tirado, Klaudyna Fidyt, María José Mansilla, Alba Garcia-Perez, Alba Martínez-Moreno, Meritxell Vinyoles, Juan Alcain, Marina García-Peydró, Heleia Roca-Ho, Narcis Fernandez-Fuentes, Mercedes Guerrero-Murillo, Aïda Falgàs, Talia Velasco-Hernandez, Clara Bueno, Patrizio Panelli, Vladimir Mulens-Arias, Apostol Apostolov, Pablo Engel, Europa Azucena González, Binje Vick, Irmela Jeremias, Aurélie Caye-Eude, André Baruchel, Hélène Cavé, Eulàlia Genescà, Jordi Ribera, Marina Díaz-Beyá, María Victoria Martínez-Sánchez, José Luis Fuster, Adela Escudero López, Jordi Minguillón, Antonio Pérez-Martínez, Manuel Ramírez-Orellana, Montserrat Torrebadell, Víctor M Díaz, María L Toribio, Diego Sánchez-Martínez, Pablo Menéndez
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy characterized by high rates of induction failure and relapse, and effective targeted immunotherapies are lacking. Despite promising clinical progress with genome-edited CD7-directed CAR-T cells, which present significant logistical and regulatory issues, CAR-T cell therapy in T-ALL remains challenging due to the shared antigen expression between malignant and healthy T cells. This can result in CAR-T cell fratricide, T cell aplasia, and the potential for blast contamination during CAR-T cell manufacturing. Recently described CAR-T cells target non-pan-T antigens, absent on healthy T cells but expressed on specific T-ALL subsets. These antigens include CD1a (NCT05679895), which is expressed in cortical T-ALL, and CCR9. We show that CCR9 is expressed on >70% of T-ALL patients (132/180) and is maintained at relapse, with a safe expression profile in healthy hematopoietic and non-hematopoietic tissues. Further analyses showed that dual targeting of CCR9 and CD1a could benefit T-ALL patients with a greater blast coverage than single CAR-T cell treatments. We therefore developed, characterized, and preclinically validated a novel humanized CCR9-specific CAR with robust and specific antileukemic activity as a monotherapy in vitro and in vivo against cell lines, primary T-ALL samples, and patient-derived xenografts. Importantly, CCR9/CD1a dual-targeting CAR-T cells showed higher efficacy than single-targeting CAR-T cells, particularly in T-ALL cases with phenotypically heterogeneous leukemic populations. Dual CD1a/CCR9 CAR-T therapy may prevent T cell aplasia and obviate the need for allogeneic transplantation and regulatory-challenging genome engineering approaches in T-ALL.
T细胞急性淋巴细胞白血病(T- all)是一种侵袭性恶性肿瘤,其特点是诱导失败和复发率高,缺乏有效的靶向免疫治疗。尽管基因组编辑的cd7导向的CAR-T细胞有希望取得临床进展,但存在重大的后勤和监管问题,由于恶性和健康T细胞之间共享抗原表达,CAR-T细胞治疗T- all仍然具有挑战性。这可能导致CAR-T细胞自相残杀,T细胞发育不全,以及在CAR-T细胞制造过程中潜在的爆炸污染。最近描述的CAR-T细胞靶向非泛T抗原,这些抗原在健康T细胞上不存在,但在特定的T- all亚群上表达。这些抗原包括在皮质T-ALL中表达的CD1a (NCT05679895)和CCR9。我们发现CCR9在70%的T-ALL患者(132/180)中表达,并且在复发时维持,在健康的造血和非造血组织中具有安全的表达谱。进一步的分析表明,与单一CAR-T细胞治疗相比,CCR9和CD1a的双重靶向治疗可以使T-ALL患者受益,并且具有更大的细胞覆盖。因此,我们开发、表征并临床前验证了一种新型人源化ccr9特异性CAR,具有强大的特异性抗白血病活性,可作为体外和体内针对细胞系、原代T-ALL样本和患者来源的异种移植物的单药治疗。重要的是,CCR9/CD1a双靶向CAR-T细胞比单靶向CAR-T细胞表现出更高的疗效,特别是在具有表型异质性白血病人群的T-ALL病例中。双CD1a/CCR9 CAR-T疗法可以预防T细胞发育不全,避免同种异体移植和具有监管挑战性的T- all基因组工程方法的需要。
{"title":"CAR-T cells targeting CCR9 and CD1a for the treatment of T cell acute lymphoblastic leukemia","authors":"Néstor Tirado, Klaudyna Fidyt, María José Mansilla, Alba Garcia-Perez, Alba Martínez-Moreno, Meritxell Vinyoles, Juan Alcain, Marina García-Peydró, Heleia Roca-Ho, Narcis Fernandez-Fuentes, Mercedes Guerrero-Murillo, Aïda Falgàs, Talia Velasco-Hernandez, Clara Bueno, Patrizio Panelli, Vladimir Mulens-Arias, Apostol Apostolov, Pablo Engel, Europa Azucena González, Binje Vick, Irmela Jeremias, Aurélie Caye-Eude, André Baruchel, Hélène Cavé, Eulàlia Genescà, Jordi Ribera, Marina Díaz-Beyá, María Victoria Martínez-Sánchez, José Luis Fuster, Adela Escudero López, Jordi Minguillón, Antonio Pérez-Martínez, Manuel Ramírez-Orellana, Montserrat Torrebadell, Víctor M Díaz, María L Toribio, Diego Sánchez-Martínez, Pablo Menéndez","doi":"10.1186/s13045-025-01715-0","DOIUrl":"https://doi.org/10.1186/s13045-025-01715-0","url":null,"abstract":"T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy characterized by high rates of induction failure and relapse, and effective targeted immunotherapies are lacking. Despite promising clinical progress with genome-edited CD7-directed CAR-T cells, which present significant logistical and regulatory issues, CAR-T cell therapy in T-ALL remains challenging due to the shared antigen expression between malignant and healthy T cells. This can result in CAR-T cell fratricide, T cell aplasia, and the potential for blast contamination during CAR-T cell manufacturing. Recently described CAR-T cells target non-pan-T antigens, absent on healthy T cells but expressed on specific T-ALL subsets. These antigens include CD1a (NCT05679895), which is expressed in cortical T-ALL, and CCR9. We show that CCR9 is expressed on >70% of T-ALL patients (132/180) and is maintained at relapse, with a safe expression profile in healthy hematopoietic and non-hematopoietic tissues. Further analyses showed that dual targeting of CCR9 and CD1a could benefit T-ALL patients with a greater blast coverage than single CAR-T cell treatments. We therefore developed, characterized, and preclinically validated a novel humanized CCR9-specific CAR with robust and specific antileukemic activity as a monotherapy in vitro and in vivo against cell lines, primary T-ALL samples, and patient-derived xenografts. Importantly, CCR9/CD1a dual-targeting CAR-T cells showed higher efficacy than single-targeting CAR-T cells, particularly in T-ALL cases with phenotypically heterogeneous leukemic populations. Dual CD1a/CCR9 CAR-T therapy may prevent T cell aplasia and obviate the need for allogeneic transplantation and regulatory-challenging genome engineering approaches in T-ALL.","PeriodicalId":16023,"journal":{"name":"Journal of Hematology & Oncology","volume":"27 1","pages":""},"PeriodicalIF":28.5,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144533865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic landscape of primary refractory and relapsed diffuse large B-cell lymphoma: Recent advances and emerging therapies 原发性难治性和复发性弥漫性大b细胞淋巴瘤的治疗前景:最新进展和新兴疗法
IF 28.5 1区 医学 Q1 HEMATOLOGY Pub Date : 2025-07-01 DOI: 10.1186/s13045-025-01702-5
Allison M. Bock, Narendranath Epperla
Diffuse large B-cell lymphoma (DLBCL) is an aggressive, yet curable malignancy, that has had practice changing treatment approvals in both the frontline and relapsed setting in the last 5 years. Advent of novel therapeutic options in the recent years has added greater complexity in treatment selection and optimal sequencing given multiple treatments with the same therapeutic target or immunotherapeutic mechanism of action. Key features impacting treatment selection include the timing of relapse, eligibility for curative options in the second line setting, including chimeric antigen receptor T-cell therapy (CAR-T) and autologous stem cell transplant (auto-SCT), as well as considerations of mechanism of action and side effect profile. This article provides a comprehensive review on recently approved therapies for relapsed or refractory DLBCL, emerging cellular and non-cellular therapies, and a summary of our approach to the management of these patients.
弥漫性大b细胞淋巴瘤(DLBCL)是一种侵袭性,但可治愈的恶性肿瘤,在过去的5年里,一线和复发患者的治疗批准都发生了变化。近年来,新的治疗方案的出现增加了治疗选择和最佳排序的复杂性,因为具有相同的治疗靶点或免疫治疗作用机制的多种治疗。影响治疗选择的关键特征包括复发时间、二线治疗选择的资格,包括嵌合抗原受体t细胞治疗(CAR-T)和自体干细胞移植(auto-SCT),以及对作用机制和副作用的考虑。本文全面回顾了最近批准的复发或难治性DLBCL的治疗方法,新兴的细胞和非细胞治疗方法,并总结了我们对这些患者的治疗方法。
{"title":"Therapeutic landscape of primary refractory and relapsed diffuse large B-cell lymphoma: Recent advances and emerging therapies","authors":"Allison M. Bock, Narendranath Epperla","doi":"10.1186/s13045-025-01702-5","DOIUrl":"https://doi.org/10.1186/s13045-025-01702-5","url":null,"abstract":"Diffuse large B-cell lymphoma (DLBCL) is an aggressive, yet curable malignancy, that has had practice changing treatment approvals in both the frontline and relapsed setting in the last 5 years. Advent of novel therapeutic options in the recent years has added greater complexity in treatment selection and optimal sequencing given multiple treatments with the same therapeutic target or immunotherapeutic mechanism of action. Key features impacting treatment selection include the timing of relapse, eligibility for curative options in the second line setting, including chimeric antigen receptor T-cell therapy (CAR-T) and autologous stem cell transplant (auto-SCT), as well as considerations of mechanism of action and side effect profile. This article provides a comprehensive review on recently approved therapies for relapsed or refractory DLBCL, emerging cellular and non-cellular therapies, and a summary of our approach to the management of these patients.","PeriodicalId":16023,"journal":{"name":"Journal of Hematology & Oncology","volume":"71 1","pages":""},"PeriodicalIF":28.5,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144520889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BRD4 acts as a transcriptional repressor of RhoB to inhibit terminal erythropoiesis BRD4作为RhoB的转录抑制因子抑制终末红细胞生成
IF 28.5 1区 医学 Q1 HEMATOLOGY Pub Date : 2025-07-01 DOI: 10.1186/s13045-025-01721-2
Yijin Chen, Dawei Huo, Ye Meng, Jie Zhang, Mengmeng Huang, Qian Luo, Yulin Xu, Haiqiong Zheng, Yingli Han, Xiangjun Zeng, Yanjuan Liu, Yunfei Liu, Rui Wen, Delin Kong, Ruxiu Tie, Shanshan Pei, Nan Liu, Pengxu Qian, He Huang, Meng Zhang
Terminal erythropoiesis is a complex multistep process involving coordination of gene transcription and dramatic nuclear condensation, which leads to the expulsion of nuclei to generate reticulocytes. However, we lack a comprehensive understanding of the key transcriptional and epigenetic regulators involved. We used a high-throughput small molecule screen in primary CD34+-derived human erythroblasts to identify targets that promoted terminal erythropoiesis, and further confirmed the phenotype in different differentiation systems by inhibitors and shRNAs of different BRD4 isoforms. Then we performed RNA-seq, ATAC-seq, ChIP-qPCR, Co-IP, and reanalyzed previously-published transcriptional data and mass spectrometric data to clarify how BRD4 regulates terminal erythropoiesis. We identified that inhibitors of the bromodomain protein BRD4, an epigenetic reader and transcriptional activator together with CDK9, promoted terminal erythropoiesis from hematopoietic stem/progenitor cells and embryonic stem cells, and enhanced enucleation. Combined analysis of our RNA-seq, ATAC-seq, and previously-published transcriptional data of erythroblast differentiation at different stages confirmed that BRD4 inhibition accelerates erythroblast maturation. Unexpectedly, this BRD4 function was independent of its classical CDK9 interaction and transcriptional activation. Instead, RNA-seq, ATAC-seq, and Cut&Tag upon BRD4 inhibition revealed that BRD4 regulates erythropoiesis by inhibiting the small G protein RhoB and disrupts actin reorganization. ChIP-qPCR, Co-IP, and functional studies revealed that BRD4 acts as a transcriptional repressor by interacting with the histone methyltransferase EHMT1/2. We demonstrate a non-classical role for BRD4 as a transcriptional repressor of RhoB to regulate erythroid maturation, and classical CDK9 dependent role to regulate cell proliferation of erythroblasts. Besides, we clarify RhoB’s activity and function during terminal erythropoiesis. BRD4 inhibition might be a simple method to promote in vitro blood cell production, and a candidate therapeutic target for diseases leading to dyserythropoiesis such as myelodysplastic syndromes.
终末红细胞生成是一个复杂的多步骤过程,涉及基因转录的协调和剧烈的核凝聚,导致细胞核排出产生网织红细胞。然而,我们对涉及的关键转录和表观遗传调控因子缺乏全面的了解。我们在原代CD34+衍生的人红母细胞中使用高通量小分子筛选来鉴定促进终末红细胞生成的靶点,并通过不同BRD4亚型的抑制剂和shrna进一步证实不同分化系统中的表型。然后,我们进行了RNA-seq, ATAC-seq, ChIP-qPCR, Co-IP,并重新分析了先前发表的转录数据和质谱数据,以阐明BRD4如何调节终末红细胞生成。我们发现溴结构域蛋白BRD4(一种表观遗传解读器和转录激活因子)的抑制剂与CDK9一起促进造血干细胞/祖细胞和胚胎干细胞的终末红细胞生成,并增强去核。我们的RNA-seq、ATAC-seq和之前发表的红母细胞分化不同阶段的转录数据的综合分析证实,BRD4抑制加速了红母细胞成熟。出乎意料的是,这种BRD4功能独立于其经典的CDK9相互作用和转录激活。相反,对BRD4抑制的RNA-seq、ATAC-seq和Cut&Tag显示BRD4通过抑制小G蛋白RhoB和破坏肌动蛋白重组来调节红细胞生成。ChIP-qPCR、Co-IP和功能研究表明,BRD4通过与组蛋白甲基转移酶EHMT1/2相互作用而发挥转录抑制作用。我们证明了BRD4作为RhoB的转录抑制因子调节红细胞成熟的非经典作用,以及经典的CDK9依赖性作用调节红细胞增殖。此外,我们还阐明了RhoB在末期红细胞生成过程中的活性和功能。BRD4抑制可能是促进体外血细胞生成的一种简单方法,也是骨髓增生异常综合征等导致红细胞生成疾病的候选治疗靶点。
{"title":"BRD4 acts as a transcriptional repressor of RhoB to inhibit terminal erythropoiesis","authors":"Yijin Chen, Dawei Huo, Ye Meng, Jie Zhang, Mengmeng Huang, Qian Luo, Yulin Xu, Haiqiong Zheng, Yingli Han, Xiangjun Zeng, Yanjuan Liu, Yunfei Liu, Rui Wen, Delin Kong, Ruxiu Tie, Shanshan Pei, Nan Liu, Pengxu Qian, He Huang, Meng Zhang","doi":"10.1186/s13045-025-01721-2","DOIUrl":"https://doi.org/10.1186/s13045-025-01721-2","url":null,"abstract":"Terminal erythropoiesis is a complex multistep process involving coordination of gene transcription and dramatic nuclear condensation, which leads to the expulsion of nuclei to generate reticulocytes. However, we lack a comprehensive understanding of the key transcriptional and epigenetic regulators involved. We used a high-throughput small molecule screen in primary CD34+-derived human erythroblasts to identify targets that promoted terminal erythropoiesis, and further confirmed the phenotype in different differentiation systems by inhibitors and shRNAs of different BRD4 isoforms. Then we performed RNA-seq, ATAC-seq, ChIP-qPCR, Co-IP, and reanalyzed previously-published transcriptional data and mass spectrometric data to clarify how BRD4 regulates terminal erythropoiesis. We identified that inhibitors of the bromodomain protein BRD4, an epigenetic reader and transcriptional activator together with CDK9, promoted terminal erythropoiesis from hematopoietic stem/progenitor cells and embryonic stem cells, and enhanced enucleation. Combined analysis of our RNA-seq, ATAC-seq, and previously-published transcriptional data of erythroblast differentiation at different stages confirmed that BRD4 inhibition accelerates erythroblast maturation. Unexpectedly, this BRD4 function was independent of its classical CDK9 interaction and transcriptional activation. Instead, RNA-seq, ATAC-seq, and Cut&Tag upon BRD4 inhibition revealed that BRD4 regulates erythropoiesis by inhibiting the small G protein RhoB and disrupts actin reorganization. ChIP-qPCR, Co-IP, and functional studies revealed that BRD4 acts as a transcriptional repressor by interacting with the histone methyltransferase EHMT1/2. We demonstrate a non-classical role for BRD4 as a transcriptional repressor of RhoB to regulate erythroid maturation, and classical CDK9 dependent role to regulate cell proliferation of erythroblasts. Besides, we clarify RhoB’s activity and function during terminal erythropoiesis. BRD4 inhibition might be a simple method to promote in vitro blood cell production, and a candidate therapeutic target for diseases leading to dyserythropoiesis such as myelodysplastic syndromes.","PeriodicalId":16023,"journal":{"name":"Journal of Hematology & Oncology","volume":"633 1","pages":""},"PeriodicalIF":28.5,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144520890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering cholangiocarcinoma heterogeneity and specific progenitor cell niche of extrahepatic cholangiocarcinoma at single-cell resolution. 单细胞分辨率解读肝外胆管癌的异质性和特异性祖细胞生态位。
IF 28.5 1区 医学 Q1 HEMATOLOGY Pub Date : 2025-06-23 DOI: 10.1186/s13045-025-01716-z
Chunliang Liu,Xiang Wang,Erdong Liu,Yali Zong,Wenlong Yu,Youhai Jiang,Jianan Chen,Mingye Gu,Zhengyuan Meng,Jingfeng Li,Yang Liu,Yongjie Zhang,Jing Tang,Hongyang Wang,Jing Fu
BACKGROUNDCholangiocarcinoma (CCA) is a highly heterogeneous malignancy, primarily comprising intrahepatic (iCCA) and extrahepatic (eCCA) subtypes. Reconciling the variability between iCCAs and eCCAs in clinical trials remains a challenge, largely due to the inadequate understanding of their shared and subtype-specific cellular heterogeneity. We aim to address this issue using single-cell and spatially resolved transcriptomic approaches.METHODSWe performed comprehensive single-cell RNA sequencing (scRNA-seq) by profiling 109,071 single cells from 28 samples, including chronic biliary inflammatory conditions (n = 7) and CCAs from different anatomical sites (n = 21). Findings were validated using external multi-omics datasets, tissue microarray cohort, spatial RNA in situ sequencing, CCA patient-derived organoids (PDOs), and mouse models.RESULTSiCCAs and eCCAs exhibited distinct tumor ecosystems, with notable differences in cellular composition, diversity, and abundance across various cell types. Non-malignant epithelial cells displayed divergent precancer hallmarks from different biliary sites, with inflammatory extrahepatic bile ducts exhibiting early hijacking of the gastrointestinal metaplastic process. We identified seven meta-programs within cancer cells, mapped into four major subtypes. This subtyping was validated using external CCA cohorts and PDO models, distinguishing patients based on clinical outcomes and drug vulnerabilities. Specifically, iCCAs were associated with a senescent program, while eCCAs were enriched in an IFN-responsive program linked to adverse clinical outcomes and increased drug resistance. We identified a basal-like LY6D+ cancer cell subpopulation specific to eCCAs, which displayed significant stemness, drug resistance, and IFN-responsive features. This subpopulation was closely associated with an interferon-stimulated gene 15 (ISG15)-enriched mesenchymal and immune microenvironment. Functional assays demonstrated that ISG15 stimulation significantly boosted stemness, basal-like features, and drug resistance in eCCA cells, highlighting its pivotal role in sustaining the LY6D+ progenitor niches.CONCLUSIONWe present a comprehensive single-cell landscape of CCAs, uncovering the molecular heterogeneity between iCCA and eCCA subtypes. Transcriptomic subtyping of CCA cancer cells offers implications for clinical stratification and functional precision oncology. We identify basal-like epithelial progenitors and characterize their associated ISG15-enriched microenvironment in eCCAs. These findings hold significant promise for the development of novel prognostic biomarkers, therapeutic targets, and treatment strategies for CCAs.
背景胆管癌(CCA)是一种高度异质性的恶性肿瘤,主要包括肝内(iCCA)和肝外(eCCA)亚型。在临床试验中协调iCCAs和eCCAs之间的可变性仍然是一个挑战,主要是由于对它们的共享和亚型特异性细胞异质性的理解不足。我们的目标是使用单细胞和空间解决转录组学方法来解决这个问题。方法我们对28个样本的109071个单细胞进行了全面的单细胞RNA测序(scRNA-seq),包括慢性胆道炎症(n = 7)和不同解剖部位的CCAs (n = 21)。研究结果通过外部多组学数据集、组织微阵列队列、空间RNA原位测序、CCA患者衍生类器官(PDOs)和小鼠模型得到验证。结果iccas和eCCAs表现出不同的肿瘤生态系统,不同细胞类型在细胞组成、多样性和丰度上存在显著差异。不同胆道部位的非恶性上皮细胞表现出不同的癌前特征,炎症性肝外胆管表现出胃肠道化生过程的早期劫持。我们在癌细胞中确定了7个元程序,并将其映射为4个主要亚型。使用外部CCA队列和PDO模型验证了该亚型,根据临床结果和药物脆弱性区分患者。具体来说,iCCAs与衰老计划有关,而eCCAs在ifn反应计划中富集,与不良临床结果和耐药性增加有关。我们发现了eCCAs特异性的基底样LY6D+癌细胞亚群,其表现出显著的干性、耐药和ifn应答特征。该亚群与干扰素刺激基因15 (ISG15)富集的间充质和免疫微环境密切相关。功能分析表明,ISG15刺激显著提高了eCCA细胞的干性、基底样特征和耐药性,突出了其在维持LY6D+祖细胞生态位中的关键作用。结论我们展示了cca的单细胞景观,揭示了iCCA和eCCA亚型之间的分子异质性。CCA癌细胞的转录组亚型为临床分层和功能精确肿瘤学提供了意义。我们鉴定了基底样上皮祖细胞,并表征了它们在eCCAs中相关的富含isg15的微环境。这些发现对开发新的预后生物标志物、治疗靶点和cca治疗策略具有重要意义。
{"title":"Deciphering cholangiocarcinoma heterogeneity and specific progenitor cell niche of extrahepatic cholangiocarcinoma at single-cell resolution.","authors":"Chunliang Liu,Xiang Wang,Erdong Liu,Yali Zong,Wenlong Yu,Youhai Jiang,Jianan Chen,Mingye Gu,Zhengyuan Meng,Jingfeng Li,Yang Liu,Yongjie Zhang,Jing Tang,Hongyang Wang,Jing Fu","doi":"10.1186/s13045-025-01716-z","DOIUrl":"https://doi.org/10.1186/s13045-025-01716-z","url":null,"abstract":"BACKGROUNDCholangiocarcinoma (CCA) is a highly heterogeneous malignancy, primarily comprising intrahepatic (iCCA) and extrahepatic (eCCA) subtypes. Reconciling the variability between iCCAs and eCCAs in clinical trials remains a challenge, largely due to the inadequate understanding of their shared and subtype-specific cellular heterogeneity. We aim to address this issue using single-cell and spatially resolved transcriptomic approaches.METHODSWe performed comprehensive single-cell RNA sequencing (scRNA-seq) by profiling 109,071 single cells from 28 samples, including chronic biliary inflammatory conditions (n = 7) and CCAs from different anatomical sites (n = 21). Findings were validated using external multi-omics datasets, tissue microarray cohort, spatial RNA in situ sequencing, CCA patient-derived organoids (PDOs), and mouse models.RESULTSiCCAs and eCCAs exhibited distinct tumor ecosystems, with notable differences in cellular composition, diversity, and abundance across various cell types. Non-malignant epithelial cells displayed divergent precancer hallmarks from different biliary sites, with inflammatory extrahepatic bile ducts exhibiting early hijacking of the gastrointestinal metaplastic process. We identified seven meta-programs within cancer cells, mapped into four major subtypes. This subtyping was validated using external CCA cohorts and PDO models, distinguishing patients based on clinical outcomes and drug vulnerabilities. Specifically, iCCAs were associated with a senescent program, while eCCAs were enriched in an IFN-responsive program linked to adverse clinical outcomes and increased drug resistance. We identified a basal-like LY6D+ cancer cell subpopulation specific to eCCAs, which displayed significant stemness, drug resistance, and IFN-responsive features. This subpopulation was closely associated with an interferon-stimulated gene 15 (ISG15)-enriched mesenchymal and immune microenvironment. Functional assays demonstrated that ISG15 stimulation significantly boosted stemness, basal-like features, and drug resistance in eCCA cells, highlighting its pivotal role in sustaining the LY6D+ progenitor niches.CONCLUSIONWe present a comprehensive single-cell landscape of CCAs, uncovering the molecular heterogeneity between iCCA and eCCA subtypes. Transcriptomic subtyping of CCA cancer cells offers implications for clinical stratification and functional precision oncology. We identify basal-like epithelial progenitors and characterize their associated ISG15-enriched microenvironment in eCCAs. These findings hold significant promise for the development of novel prognostic biomarkers, therapeutic targets, and treatment strategies for CCAs.","PeriodicalId":16023,"journal":{"name":"Journal of Hematology & Oncology","volume":"8 1","pages":"66"},"PeriodicalIF":28.5,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144370199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular matrix dynamics in tumor immunoregulation: from tumor microenvironment to immunotherapy 肿瘤免疫调节中的细胞外基质动力学:从肿瘤微环境到免疫治疗
IF 28.5 1区 医学 Q1 HEMATOLOGY Pub Date : 2025-06-19 DOI: 10.1186/s13045-025-01717-y
Qin Hu, Yifei Zhu, Jie Mei, Ying Liu, Guoren Zhou
The extracellular matrix (ECM), closely linked to the dynamic changes in the tumor microenvironment (TME), plays a critical role in modulating tumor immunity. The dual role of the ECM in tumor progression, encompassing both promotion and inhibition, is attributed to its components influencing immune cell activation, migration, and infiltration. This mechanism is intricately connected with the efficacy of immunotherapies. Currently, there is limited understanding of how ECM remodeling spatially and temporally coordinates with immune checkpoint inhibitors (ICIs) or adoptive cell therapies. Furthermore, strategies to selectively target pathological ECM components while preserving their homeostatic functions urgently require systematic investigation. In this review, we summarize current findings on the interplay between ECM and tumor immune regulation, with a particular focus on how key ECM components contribute to immune modulation. Furthermore, we discuss emerging strategies targeting ECM-related mechanisms to enhance the efficacy of immunotherapies, including approaches that remodel the ECM to improve immune infiltration and strategies that synergize with existing immunotherapies. By integrating these insights, we provide a perspective on leveraging ECM-targeted interventions to overcome immune evasion and optimize cancer immunotherapy outcomes.
细胞外基质(extracellular matrix, ECM)与肿瘤微环境(tumor microenvironment, TME)的动态变化密切相关,在调节肿瘤免疫中起着关键作用。ECM在肿瘤进展中的双重作用,包括促进和抑制,归因于其影响免疫细胞激活、迁移和浸润的成分。这一机制与免疫疗法的疗效有着复杂的联系。目前,对ECM重塑如何在空间和时间上与免疫检查点抑制剂(ICIs)或过继细胞疗法协调的理解有限。此外,在保持其稳态功能的同时,选择性靶向病理ECM成分的策略迫切需要系统的研究。在这篇综述中,我们总结了ECM与肿瘤免疫调节之间相互作用的最新发现,特别关注ECM的关键成分如何促进免疫调节。此外,我们讨论了针对ECM相关机制的新兴策略,以增强免疫疗法的疗效,包括重塑ECM以改善免疫浸润的方法以及与现有免疫疗法协同的策略。通过整合这些见解,我们提供了利用ecm靶向干预来克服免疫逃避和优化癌症免疫治疗结果的观点。
{"title":"Extracellular matrix dynamics in tumor immunoregulation: from tumor microenvironment to immunotherapy","authors":"Qin Hu, Yifei Zhu, Jie Mei, Ying Liu, Guoren Zhou","doi":"10.1186/s13045-025-01717-y","DOIUrl":"https://doi.org/10.1186/s13045-025-01717-y","url":null,"abstract":"The extracellular matrix (ECM), closely linked to the dynamic changes in the tumor microenvironment (TME), plays a critical role in modulating tumor immunity. The dual role of the ECM in tumor progression, encompassing both promotion and inhibition, is attributed to its components influencing immune cell activation, migration, and infiltration. This mechanism is intricately connected with the efficacy of immunotherapies. Currently, there is limited understanding of how ECM remodeling spatially and temporally coordinates with immune checkpoint inhibitors (ICIs) or adoptive cell therapies. Furthermore, strategies to selectively target pathological ECM components while preserving their homeostatic functions urgently require systematic investigation. In this review, we summarize current findings on the interplay between ECM and tumor immune regulation, with a particular focus on how key ECM components contribute to immune modulation. Furthermore, we discuss emerging strategies targeting ECM-related mechanisms to enhance the efficacy of immunotherapies, including approaches that remodel the ECM to improve immune infiltration and strategies that synergize with existing immunotherapies. By integrating these insights, we provide a perspective on leveraging ECM-targeted interventions to overcome immune evasion and optimize cancer immunotherapy outcomes.","PeriodicalId":16023,"journal":{"name":"Journal of Hematology & Oncology","volume":"30 1","pages":""},"PeriodicalIF":28.5,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144319753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Menin inhibitors from monotherapies to combination therapies: clinical trial updates from 2024 ASH annual meeting 从单一疗法到联合疗法的Menin抑制剂:来自2024年ASH年会上的临床试验更新
IF 28.5 1区 医学 Q1 HEMATOLOGY Pub Date : 2025-06-17 DOI: 10.1186/s13045-025-01718-x
Gejia Cao, Haixiao Zhang, Shu Sun, Hong-Hu Zhu
Menin inhibitors, which target the KMT2A-menin protein-protein interaction to inhibit blasts proliferation and induce differentiation, have demonstrated potential effects on acute leukemia subtypes characterized by overexpression of HOXA gene cluster and MEIS1 (including KMT2A rearrangements, NPM1 mutations, NUP98 rearrangements and other genetic alterations). Following the promising outcomes of the two pioneering menin inhibitors, revumenib and ziftomenib, other menin inhibitors, including bleximenib, enzomenib, BN-104 and HMPL-506 are currently under investigation in clinical trials. Several trials presented their initial outcomes at the 2024 ASH Annual Meeting. This review highlights the key outcomes of these pivotal clinical trials.
Menin抑制剂以KMT2A- Menin蛋白-蛋白相互作用为靶点,抑制母细胞增殖并诱导分化,已证明对以HOXA基因簇和MEIS1过表达为特征的急性白血病亚型(包括KMT2A重排、NPM1突变、NUP98重排等遗传改变)有潜在影响。继revumenib和ziftomenib这两种开创性的menin抑制剂取得令人鼓舞的结果之后,其他menin抑制剂,包括bleximenib、enzomenib、BN-104和HMPL-506目前正在临床试验中进行研究。在2024年ASH年会上,几项试验展示了它们的初步结果。本综述重点介绍了这些关键临床试验的关键结果。
{"title":"Menin inhibitors from monotherapies to combination therapies: clinical trial updates from 2024 ASH annual meeting","authors":"Gejia Cao, Haixiao Zhang, Shu Sun, Hong-Hu Zhu","doi":"10.1186/s13045-025-01718-x","DOIUrl":"https://doi.org/10.1186/s13045-025-01718-x","url":null,"abstract":"Menin inhibitors, which target the KMT2A-menin protein-protein interaction to inhibit blasts proliferation and induce differentiation, have demonstrated potential effects on acute leukemia subtypes characterized by overexpression of HOXA gene cluster and MEIS1 (including KMT2A rearrangements, NPM1 mutations, NUP98 rearrangements and other genetic alterations). Following the promising outcomes of the two pioneering menin inhibitors, revumenib and ziftomenib, other menin inhibitors, including bleximenib, enzomenib, BN-104 and HMPL-506 are currently under investigation in clinical trials. Several trials presented their initial outcomes at the 2024 ASH Annual Meeting. This review highlights the key outcomes of these pivotal clinical trials.","PeriodicalId":16023,"journal":{"name":"Journal of Hematology & Oncology","volume":"7 1","pages":""},"PeriodicalIF":28.5,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144304719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Ube2v1-mediated ubiquitination and degradation of Sirt1 promotes metastasis of colorectal cancer by epigenetically suppressing autophagy 更正:ube2v1介导的泛素化和Sirt1降解通过表观遗传抑制自噬促进结直肠癌转移
IF 28.5 1区 医学 Q1 HEMATOLOGY Pub Date : 2025-06-17 DOI: 10.1186/s13045-025-01719-w
Tong Shen, Ling-Dong Cai, Yu-Hong Liu, Shi Li, Wen-Juan Gan, Xiu-Ming Li, Jing-Ru Wang, Peng-Da Guo, Qun Zhou, Xing-Xing Lu, Li-Na Sun, Jian-Ming Li

Correction to: Journal of Hematology & Oncology (2018) 11:95.

https://doi.org/10.1186/s13045-018-0638-9

During figure preparation, an incorrect representative image was included in Figs. 1e, S5B, and S6C. These errors occurred during figure assembly and do not affect the results or conclusions of the study. The corrected figures have been provided.

The authors apologize for the errors and any confusion caused.

Fig. 1e

figure 1

Fig. S5B

figure 2

Fig. S5B/C

figure 3
Author notes
  1. Tong Shen, Ling-Dong Cai and Yu-Hong Liu contributed equally to this work.

Authors and Affiliations

  1. Department of Pathology, Soochow University Medical School, Suzhou, 215123, People’s Republic of China

    Tong Shen, Ling-Dong Cai, Shi Li, Wen-Juan Gan, Xiu-Ming Li, Jing-Ru Wang, Peng-Da Guo, Qun Zhou, Xing-Xing Lu, Li-Na Sun & Jian-Ming Li

  2. Department of Pathology, Baoan Hospital, Southern Medical University, Shenzhen, 518101, People’s Republic of China

    Yu-Hong Liu

Authors
  1. Tong ShenView author publications

    You can also search for this author inPubMed Google Scholar

  2. Ling-Dong CaiView author publications

    You can also search for this author inPubMed Google Scholar

  3. Yu-Hong LiuView author publications

    You can also search for this author inPubMed Google Scholar

  4. Shi LiView author publications

    You can also search for this author in

更正:Journal of Hematology &;《肿瘤学》(2018)11:95.https://doi.org/10.1186/s13045-018-0638-9During图准备时,在图1e、S5B和S6C中包含了一个错误的代表性图像。这些错误发生在图形组装过程中,不会影响研究的结果或结论。更正后的数字已提供。作者对错误和造成的混乱表示歉意。1 efig。S5BFig。作者:沈彤、蔡凌东和刘玉红对这项工作也有同样的贡献。沈彤,蔡凌东,李石,甘文娟,李秀明,王静茹,郭鹏达,周群,卢兴星,孙李娜等;李建明(南方医科大学宝安医院病理科,深圳518101)中华人民共和国刘玉红作者沈强查看作者出版物您也可以在pubmed b谷歌ScholarLing-Dong cailing - dong查看作者出版物您也可以在pubmed谷歌ScholarYu-Hong LiuView作者出版物您也可以在pubmed谷歌ScholarShi LiView作者出版物您也可以在pubmed谷歌ScholarWen-Juan GanView作者出版物您也可以在pubmed谷歌ScholarWen-Juan GanView作者出版物您也可以搜索该作者inPubMed谷歌ScholarXiu-Ming LiView作者出版物您也可以在pubmed谷歌scholarjingru WangView作者出版物您也可以在pubmed谷歌scholar鹏达郭国大查看作者出版物您也可以在pubmed谷歌ScholarQun zhou查看作者出版物您也可以在pubmed谷歌scholarxing luxingxing查看作者出版物您也可以在pubmed谷歌ScholarLi-Na中搜索该作者您也可以在pubmed b谷歌scholarjianming LiView作者出版物中搜索该作者。您也可以在pubmed谷歌scholarscholar中搜索该作者。出版方声明:对于已出版地图的管辖权要求和机构关系,普林格·自然保持中立。原文在https://doi.org/10.1186/s13045可以找到在线- 018 - 0638 - 9. -开放获取这篇文章是在Creative Commons许可Attribution-NonCommercial-NoDerivatives 4.0国际许可协议,它允许任何非商业用途,共享、分配和复制在任何媒介或格式,只要你给予适当的信贷原始作者(年代)和来源,提供创作共用许可证的链接,并表示如果你修改了许可材料。根据本许可协议,您无权分享源自本文或其部分内容的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可协议中,除非在材料的署名中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不被法律法规允许或超过允许的用途,您将需要直接获得版权所有者的许可。要查看本许可的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/.Reprints和permissionsCite本文。et al。更正:ube2v1介导的泛素化和Sirt1降解通过表观遗传抑制自噬促进结直肠癌转移。中华血液学杂志,2016,33(2):481 - 481。https://doi.org/10.1186/s13045-025-01719-wDownload citationpublishing: 17 June 2025DOI: https://doi.org/10.1186/s13045-025-01719-wShare这篇文章任何你分享以下链接的人都可以阅读到这篇文章:获取可共享链接对不起,这篇文章目前没有可共享的链接。复制到剪贴板由施普林格自然共享内容倡议提供
{"title":"Correction: Ube2v1-mediated ubiquitination and degradation of Sirt1 promotes metastasis of colorectal cancer by epigenetically suppressing autophagy","authors":"Tong Shen, Ling-Dong Cai, Yu-Hong Liu, Shi Li, Wen-Juan Gan, Xiu-Ming Li, Jing-Ru Wang, Peng-Da Guo, Qun Zhou, Xing-Xing Lu, Li-Na Sun, Jian-Ming Li","doi":"10.1186/s13045-025-01719-w","DOIUrl":"https://doi.org/10.1186/s13045-025-01719-w","url":null,"abstract":"<p><b>Correction to: Journal of Hematology &amp; Oncology (2018) 11:95.</b></p><p><b>https://doi.org/10.1186/s13045-018-0638-9</b></p><p>During figure preparation, an incorrect representative image was included in Figs. 1e, S5B, and S6C. These errors occurred during figure assembly and do not affect the results or conclusions of the study. The corrected figures have been provided.</p><p>The authors apologize for the errors and any confusion caused.</p><p>Fig. 1e</p><figure><picture><source srcset=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13045-025-01719-w/MediaObjects/13045_2025_1719_Fig1_HTML.png?as=webp\" type=\"image/webp\"/><img alt=\"figure 1\" aria-describedby=\"Fig1\" height=\"363\" loading=\"lazy\" src=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13045-025-01719-w/MediaObjects/13045_2025_1719_Fig1_HTML.png\" width=\"685\"/></picture></figure><p>Fig. S5B</p><figure><picture><source srcset=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13045-025-01719-w/MediaObjects/13045_2025_1719_Fig2_HTML.png?as=webp\" type=\"image/webp\"/><img alt=\"figure 2\" aria-describedby=\"Fig2\" height=\"561\" loading=\"lazy\" src=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13045-025-01719-w/MediaObjects/13045_2025_1719_Fig2_HTML.png\" width=\"685\"/></picture></figure><p>Fig. S5B/C</p><figure><picture><source srcset=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13045-025-01719-w/MediaObjects/13045_2025_1719_Fig3_HTML.png?as=webp\" type=\"image/webp\"/><img alt=\"figure 3\" aria-describedby=\"Fig3\" height=\"444\" loading=\"lazy\" src=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13045-025-01719-w/MediaObjects/13045_2025_1719_Fig3_HTML.png\" width=\"685\"/></picture></figure><span>Author notes</span><ol><li><p>Tong Shen, Ling-Dong Cai and Yu-Hong Liu contributed equally to this work.</p></li></ol><h3>Authors and Affiliations</h3><ol><li><p>Department of Pathology, Soochow University Medical School, Suzhou, 215123, People’s Republic of China</p><p>Tong Shen, Ling-Dong Cai, Shi Li, Wen-Juan Gan, Xiu-Ming Li, Jing-Ru Wang, Peng-Da Guo, Qun Zhou, Xing-Xing Lu, Li-Na Sun &amp; Jian-Ming Li</p></li><li><p>Department of Pathology, Baoan Hospital, Southern Medical University, Shenzhen, 518101, People’s Republic of China</p><p>Yu-Hong Liu</p></li></ol><span>Authors</span><ol><li><span>Tong Shen</span>View author publications<p><span>You can also search for this author in</span><span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Ling-Dong Cai</span>View author publications<p><span>You can also search for this author in</span><span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Yu-Hong Liu</span>View author publications<p><span>You can also search for this author in</span><span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Shi Li</span>View author publications<p><span>You can also search for this author in</sp","PeriodicalId":16023,"journal":{"name":"Journal of Hematology & Oncology","volume":"598 1","pages":""},"PeriodicalIF":28.5,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144304702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into next-generation immunotherapy designs and tools: molecular mechanisms and therapeutic prospects 新一代免疫治疗设计和工具的见解:分子机制和治疗前景
IF 28.5 1区 医学 Q1 HEMATOLOGY Pub Date : 2025-06-07 DOI: 10.1186/s13045-025-01701-6
Hongzhuo Qin, Zhaokai Zhou, Run Shi, Yumiao Mai, Yudi Xu, Fu Peng, Guangyang Cheng, Pengpeng Zhang, Wenjie Chen, Yun Chen, Yajun Chen, Ran Xu, Qiong Lu
Immunotherapy has revolutionized the oncology treatment paradigm, and CAR-T cell therapy in particular represents a significant milestone in treating hematological malignancies. Nevertheless, tumor resistance due to target heterogeneity or mutation remains a Gordian knot for immunotherapy. This review elucidates molecular mechanisms and therapeutic potential of next-generation immunotherapeutic tools spanning genetically engineered immune cells, multi-specific antibodies, and cell engagers, emphasizing multi-targeting strategies to enhance personalized immunotherapy efficacy. Development of logic gate modulation-based circuits, adapter-mediated CARs, multi-specific antibodies, and cell engagers could minimize adverse effects while recognizing tumor signals. Ultimately, we highlight gene delivery, gene editing, and other technologies facilitating tailored immunotherapy, and discuss the promising prospects of artificial intelligence in gene-edited immune cells.
免疫疗法已经彻底改变了肿瘤治疗模式,特别是CAR-T细胞疗法代表了治疗血液恶性肿瘤的一个重要里程碑。然而,由于靶点异质性或突变引起的肿瘤耐药仍然是免疫治疗的一个难题。本文综述了下一代免疫治疗工具的分子机制和治疗潜力,包括基因工程免疫细胞、多特异性抗体和细胞参与器,强调了多靶向策略以提高个性化免疫治疗效果。基于逻辑门调制的电路、适配器介导的car、多特异性抗体和细胞接合器的发展可以在识别肿瘤信号的同时最大限度地减少不良反应。最后,我们重点介绍了基因传递、基因编辑和其他促进量身定制免疫治疗的技术,并讨论了人工智能在基因编辑免疫细胞中的前景。
{"title":"Insights into next-generation immunotherapy designs and tools: molecular mechanisms and therapeutic prospects","authors":"Hongzhuo Qin, Zhaokai Zhou, Run Shi, Yumiao Mai, Yudi Xu, Fu Peng, Guangyang Cheng, Pengpeng Zhang, Wenjie Chen, Yun Chen, Yajun Chen, Ran Xu, Qiong Lu","doi":"10.1186/s13045-025-01701-6","DOIUrl":"https://doi.org/10.1186/s13045-025-01701-6","url":null,"abstract":"Immunotherapy has revolutionized the oncology treatment paradigm, and CAR-T cell therapy in particular represents a significant milestone in treating hematological malignancies. Nevertheless, tumor resistance due to target heterogeneity or mutation remains a Gordian knot for immunotherapy. This review elucidates molecular mechanisms and therapeutic potential of next-generation immunotherapeutic tools spanning genetically engineered immune cells, multi-specific antibodies, and cell engagers, emphasizing multi-targeting strategies to enhance personalized immunotherapy efficacy. Development of logic gate modulation-based circuits, adapter-mediated CARs, multi-specific antibodies, and cell engagers could minimize adverse effects while recognizing tumor signals. Ultimately, we highlight gene delivery, gene editing, and other technologies facilitating tailored immunotherapy, and discuss the promising prospects of artificial intelligence in gene-edited immune cells.","PeriodicalId":16023,"journal":{"name":"Journal of Hematology & Oncology","volume":"250 1","pages":""},"PeriodicalIF":28.5,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144237338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Results of a phase 1/2 study of sacituzumab tirumotecan in patients with unresectable locally advanced or metastatic solid tumors refractory to standard therapies sacituzumab替鲁莫替康治疗对标准治疗难以切除的局部晚期或转移性实体瘤的1/2期研究结果
IF 28.5 1区 医学 Q1 HEMATOLOGY Pub Date : 2025-06-06 DOI: 10.1186/s13045-025-01705-2
Quchang Ouyang, Jordi Rodon, Yan Liang, Xinhong Wu, Qun Li, Lihua Song, Min Yan, Zhongsheng Tong, YunPeng Liu, Zev A. Wainberg, Ying Wang, Cuizhi Geng, Susanna V. Ulahannan, Guohua Yu, Manish R. Sharma, Xiang Wang, Judy S. Wang, Alexander Spira, Weihong Zhao, Rachel E. Sanborn, Ying Cheng, Xian Wang, Gesha Liu, Yaling Li, Junyou Ge, Elliot Chartash, Omobolaji O. Akala, Yongmei Yin
Sacituzumab tirumotecan (sac-TMT) is an antibody–drug conjugate composed of an anti-TROP2 monoclonal antibody coupled to a cytotoxic belotecan-derived topoisomerase I inhibitor (KL610023) via a novel linker. We report results from the phase 1 dose-escalation cohorts in advanced solid tumors and phase 2 expansion cohorts for metastatic triple-negative breast cancer (TNBC) from the first-in-human MK-2870-001 (KL264-01) study (NCT04152499). Patients had unresectable locally advanced/metastatic solid tumors refractory to standard therapies. In the phase 1 dose-escalation cohorts, patients had unresectable locally advanced/metastatic solid tumors refractory to standard therapies. Sac-TMT was administered by intravenous administration every 2 weeks at 2 to 12 mg/kg. In phase 2, patients with TNBC and HR+/HER2− breast cancer received sac-TMT per recommended doses for expansion (RDEs) identified in phase 1. Primary objectives were determining maximum tolerated dose (MTD) of sac-TMT and establishing RDEs (phase 1) and determining ORR per RECIST v1.1 by investigator assessment (phase 2). Adverse events were assessed per NCI-CTCAE version 5.0. Thirty patients were enrolled in phase 1 and received sac-TMT 2 mg/kg (n = 4), 4 mg/kg (n = 7), 5 mg/kg (n = 7), 5.5 mg/kg (n = 5), and 6 mg/kg (n = 7). Five patients had dose-limiting toxicities: grade 3 stomatitis at 4, 5.5, and 6 mg/kg; grade 3 rash at 5 mg/kg; and grade 3 urticaria at 6 mg/kg. MTD was 5.5 mg/kg and RDEs were 4 and 5 mg/kg. In the phase 2 dose expansion, ORR (95% CI) was 34.8% (16.4%, 57.3%) in the 4-mg/kg group (n = 23) and 38.9% (23.1%, 56.5%) in the 5-mg/kg group (n = 36) for TNBC. ORR (95% CI) was 31.7% (18.1%, 48.1%) for HR+/HER2− breast cancer (n = 41). Sac-TMT demonstrated manageable safety profile in patients with unresectable locally advanced/metastatic solid tumors and promising antitumor activity in metastatic TNBC and HR+/HER2 − breast cancer. Sac-TMT is being investigated in phase 3 studies. ClinicalTrials.gov, NCT04152499.
Sacituzumab替鲁莫替康(Sacituzumab tirumotecan, sact - tmt)是一种抗体-药物偶联物,由抗trop2单克隆抗体通过一种新的连接体偶联到细胞毒性贝罗替康衍生的拓扑异构酶I抑制剂(KL610023)组成。我们报告来自首个人体MK-2870-001 (KL264-01)研究(NCT04152499)的晚期实体瘤的1期剂量递增队列和转移性三阴性乳腺癌(TNBC)的2期扩展队列的结果。患者有不可切除的局部晚期/转移性实体瘤,对标准治疗难治。在1期剂量递增队列中,患者患有不可切除的局部晚期/转移性实体瘤,对标准治疗难治。Sac-TMT每2周静脉给药,剂量为2 ~ 12mg /kg。在第二阶段,TNBC和HR+/HER2 -乳腺癌患者按照第一阶段确定的推荐剂量(RDEs)接受了sac-TMT。主要目标是确定sac-TMT的最大耐受剂量(MTD),建立rde(1期),并通过研究者评估确定RECIST v1.1的ORR(2期)。不良事件按照NCI-CTCAE 5.0版本进行评估。30例患者入组1期,分别接受2mg /kg (n = 4)、4mg /kg (n = 7)、5mg /kg (n = 7)、5.5 mg/kg (n = 5)和6mg /kg (n = 7)的sac-TMT治疗。5例患者出现剂量限制性毒性:4、5.5和6 mg/kg时的3级口炎;5 mg/kg 3级皮疹;3级荨麻疹剂量为6mg /kg。MTD为5.5 mg/kg, rde分别为4和5 mg/kg。在2期剂量扩大中,4 mg/kg组(n = 23)的ORR (95% CI)为34.8% (16.4%,57.3%),5 mg/kg组(n = 36)的ORR (95% CI)为38.9%(23.1%,56.5%)。HR+/HER2−乳腺癌的ORR (95% CI)为31.7% (18.1%,48.1%)(n = 41)。Sac-TMT在不可切除的局部晚期/转移性实体瘤患者中具有可控的安全性,在转移性TNBC和HR+/HER2 -乳腺癌中具有良好的抗肿瘤活性。Sac-TMT正在进行3期研究。ClinicalTrials.gov NCT04152499。
{"title":"Results of a phase 1/2 study of sacituzumab tirumotecan in patients with unresectable locally advanced or metastatic solid tumors refractory to standard therapies","authors":"Quchang Ouyang, Jordi Rodon, Yan Liang, Xinhong Wu, Qun Li, Lihua Song, Min Yan, Zhongsheng Tong, YunPeng Liu, Zev A. Wainberg, Ying Wang, Cuizhi Geng, Susanna V. Ulahannan, Guohua Yu, Manish R. Sharma, Xiang Wang, Judy S. Wang, Alexander Spira, Weihong Zhao, Rachel E. Sanborn, Ying Cheng, Xian Wang, Gesha Liu, Yaling Li, Junyou Ge, Elliot Chartash, Omobolaji O. Akala, Yongmei Yin","doi":"10.1186/s13045-025-01705-2","DOIUrl":"https://doi.org/10.1186/s13045-025-01705-2","url":null,"abstract":"Sacituzumab tirumotecan (sac-TMT) is an antibody–drug conjugate composed of an anti-TROP2 monoclonal antibody coupled to a cytotoxic belotecan-derived topoisomerase I inhibitor (KL610023) via a novel linker. We report results from the phase 1 dose-escalation cohorts in advanced solid tumors and phase 2 expansion cohorts for metastatic triple-negative breast cancer (TNBC) from the first-in-human MK-2870-001 (KL264-01) study (NCT04152499). Patients had unresectable locally advanced/metastatic solid tumors refractory to standard therapies. In the phase 1 dose-escalation cohorts, patients had unresectable locally advanced/metastatic solid tumors refractory to standard therapies. Sac-TMT was administered by intravenous administration every 2 weeks at 2 to 12 mg/kg. In phase 2, patients with TNBC and HR+/HER2− breast cancer received sac-TMT per recommended doses for expansion (RDEs) identified in phase 1. Primary objectives were determining maximum tolerated dose (MTD) of sac-TMT and establishing RDEs (phase 1) and determining ORR per RECIST v1.1 by investigator assessment (phase 2). Adverse events were assessed per NCI-CTCAE version 5.0. Thirty patients were enrolled in phase 1 and received sac-TMT 2 mg/kg (n = 4), 4 mg/kg (n = 7), 5 mg/kg (n = 7), 5.5 mg/kg (n = 5), and 6 mg/kg (n = 7). Five patients had dose-limiting toxicities: grade 3 stomatitis at 4, 5.5, and 6 mg/kg; grade 3 rash at 5 mg/kg; and grade 3 urticaria at 6 mg/kg. MTD was 5.5 mg/kg and RDEs were 4 and 5 mg/kg. In the phase 2 dose expansion, ORR (95% CI) was 34.8% (16.4%, 57.3%) in the 4-mg/kg group (n = 23) and 38.9% (23.1%, 56.5%) in the 5-mg/kg group (n = 36) for TNBC. ORR (95% CI) was 31.7% (18.1%, 48.1%) for HR+/HER2− breast cancer (n = 41). Sac-TMT demonstrated manageable safety profile in patients with unresectable locally advanced/metastatic solid tumors and promising antitumor activity in metastatic TNBC and HR+/HER2 − breast cancer. Sac-TMT is being investigated in phase 3 studies. ClinicalTrials.gov, NCT04152499.","PeriodicalId":16023,"journal":{"name":"Journal of Hematology & Oncology","volume":"36 1","pages":""},"PeriodicalIF":28.5,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144228900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: BCMA/GPRC5D bispecific CAR T-cell therapy for relapsed/refractory multiple myeloma with extramedullary disease: a single-center, single-arm, phase 1 trial 修正:BCMA/GPRC5D双特异性CAR - t细胞治疗复发/难治性多发性骨髓瘤伴髓外疾病:单中心,单臂,1期试验
IF 28.5 1区 医学 Q1 HEMATOLOGY Pub Date : 2025-06-03 DOI: 10.1186/s13045-025-01714-1
Hao Yao, Shi-hui Ren, Lin-hui Wang, Ming-qiang Ren, Jiao Cai, Dan Chen, Ying He, Si-han Lai, Bai-tao Dou, Meng-jiao Li, Yan-ling Li, Ya-li Cen, Alex H. Chang, Yi Su, Ling Qiu, Fang-yi Fan
<p><b>Journal of Hematology & Oncology (2025) 18:56</b></p><p><b>https://doi.org/10.1186/s13045-025-01713-2</b></p><p>The original article has been corrected to restore co-authors Yi Su, Ling Qiu, and Fang-yi Fan (lead contact) to co-Corresponding Authorship which was mistakenly removed by the production team which handled this article.</p><span>Author notes</span><ol><li><p>Hao Yao, Shi-hui Ren, Lin-hui Wang and Ming-qiang Ren contributed equally to this work.</p></li></ol><h3>Authors and Affiliations</h3><ol><li><p>Department of Hematology, Chinese People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China</p><p>Hao Yao, Shi-hui Ren, Jiao Cai, Dan Chen, Ying He, Si-han Lai, Bai-tao Dou, Meng-jiao Li, Yan-ling Li, Ya-li Cen, Yi Su, Ling Qiu & Fang-yi Fan</p></li><li><p>Branch of National Clinical Research Center for Hematological Disease, Chengdu, 610083, Sichuan, China</p><p>Hao Yao, Shi-hui Ren, Jiao Cai, Dan Chen, Ying He, Si-han Lai, Bai-tao Dou, Meng-jiao Li, Yan-ling Li, Ya-li Cen, Yi Su, Ling Qiu & Fang-yi Fan</p></li><li><p>Sichuan Clinical Research Center for Hematological Disease, Chengdu, 610083, China</p><p>Hao Yao, Shi-hui Ren, Jiao Cai, Dan Chen, Ying He, Si-han Lai, Bai-tao Dou, Meng-jiao Li, Yan-ling Li, Ya-li Cen, Yi Su, Ling Qiu & Fang-yi Fan</p></li><li><p>Department of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, Sichuan, China</p><p>Bai-tao Dou, Meng-jiao Li, Yan-ling Li & Fang-yi Fan</p></li><li><p>Institute of Basic Medicine, North Sichuan Medical College, Nanchong, 637000, Sichuan, China</p><p>Hao Yao</p></li><li><p>Department of Hematology, The People’s Hospital of Guizhou Province, Guiyang, 550002, Guizhou, China</p><p>Lin-hui Wang</p></li><li><p>Department of Hematology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China</p><p>Ming-qiang Ren</p></li><li><p>Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China</p><p>Alex H. Chang</p></li><li><p>Shanghai YaKe Biotechnology Ltd., Yangpu District, Shanghai, 200090, China</p><p>Alex H. Chang</p></li></ol><span>Authors</span><ol><li><span>Hao Yao</span>View author publications<p><span>You can also search for this author in</span><span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Shi-hui Ren</span>View author publications<p><span>You can also search for this author in</span><span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Lin-hui Wang</span>View author publications<p><span>You can also search for this author in</span><span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Ming-qiang Ren</span>View author publications<p><span>You can also search for this author in</span><span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Jiao Cai</span>View author publications<p><span>You can also search for
血液学杂志;《肿瘤杂志》(2025)18:56https://doi.org/10.1186/s13045-025-01713-2The原文已被更正,共同作者苏毅、邱凌和范方毅(主要联系人)被处理本文的制作团队错误地删除为共同通讯作者。作者注意到姚浩、任世辉、王林辉和任明强对这项工作也有同样的贡献。中国人民解放军西部战区总医院血液科,四川成都610083姚浩,任世辉,蔡娇,陈丹,何莹,赖思涵,窦柏涛,李孟娇,李艳玲,岑雅丽,苏毅,邱玲国家血液病临床研究中心分科,四川成都610083姚浩,任世辉,蔡姣,陈丹,何莹,赖思涵,窦柏涛,李孟姣,李艳玲,岑雅丽,苏毅,邱玲姚浩,任世辉,蔡姣,陈丹,何莹,赖思涵,窦柏涛,李孟姣,李艳玲,岑雅丽,苏毅,邱玲四川南充637000川北医学院临床医学系窦柏涛李孟娇李燕玲等范方一川北医学院基础医学研究所,四川南充637000,姚浩贵州省人民医院血液科,贵州贵阳550002,王林辉遵义医科大学附属医院血液科,贵州遵义563000,中国名强基因工程教育部研究中心,复旦大学生命科学学院遗传研究所,上海上海雅科生物技术有限公司,上海杨浦区,200090;ChinaAlex H. ChangAuthorsHao yao查看作者出版物您也可以在pubmed谷歌ScholarShi-hui RenView作者出版物您也可以在pubmed谷歌ScholarLin-hui wanglin -hui RenView作者出版物您也可以在pubmed谷歌ScholarMing-qiang RenView作者出版物您也可以在pubmed谷歌ScholarJiao CaiView作者出版物您也可以在pubmed谷歌ScholarDan中搜索该作者您也可以在pubmed b谷歌ScholarYing HeView作者出版物中搜索该作者您也可以在pubmed谷歌scholarsihan LaiView作者出版物中搜索该作者您也可以在pubmed谷歌ScholarBai-tao DouView作者出版物中搜索该作者您也可以在pubmed谷歌ScholarMeng-jiao LiView作者出版物中搜索该作者您也可以在pubmed谷歌ScholarYan-ling LiView作者出版物中搜索该作者也可以在pubmed谷歌ScholarYa-li CenView作者出版物中搜索这个作者你也可以在pubmed谷歌ScholarAlex H. ChangView作者出版物中搜索这个作者你也可以在pubmed谷歌ScholarYi SuView作者出版物中搜索这个作者你也可以在pubmed谷歌ScholarLing QiuView作者出版物中搜索这个作者你也可以在pubmed谷歌ScholarFang-yi FanView作者出版物中搜索这个作者你也可以搜索这个作者通讯作者姚浩、苏毅、邱玲、范方一。出版方声明:对于已出版地图的管辖权要求和机构关系,普林格·自然保持中立。开放获取本文遵循知识共享署名-非商业-非衍生品4.0国际许可协议,该协议允许以任何媒介或格式进行非商业用途、共享、分发和复制,只要您适当注明原作者和来源,提供知识共享许可协议的链接,并注明您是否修改了许可材料。根据本许可协议,您无权分享源自本文或其部分内容的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可协议中,除非在材料的署名中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不被法律法规允许或超过允许的用途,您将需要直接获得版权所有者的许可。要查看本许可的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/.Reprints和permissionsCite这篇文章姚,H,任,Sh,王,Lh。et al。修正:BCMA/GPRC5D双特异性CAR - t细胞治疗复发/难治性多发性骨髓瘤伴髓外疾病:单中心,单臂,1期试验中华血液学杂志,2001,26(2):444 - 444。https://doi.org/10。 1186/s13045-025-01714-1下载发布:2025年6月3日doi: https://doi.org/10.1186/s13045-025-01714-1Share本文任何人与您分享以下链接将能够阅读此内容:获取可共享链接对不起,本文目前没有可共享链接。复制到剪贴板由施普林格自然共享内容倡议提供
{"title":"Correction: BCMA/GPRC5D bispecific CAR T-cell therapy for relapsed/refractory multiple myeloma with extramedullary disease: a single-center, single-arm, phase 1 trial","authors":"Hao Yao, Shi-hui Ren, Lin-hui Wang, Ming-qiang Ren, Jiao Cai, Dan Chen, Ying He, Si-han Lai, Bai-tao Dou, Meng-jiao Li, Yan-ling Li, Ya-li Cen, Alex H. Chang, Yi Su, Ling Qiu, Fang-yi Fan","doi":"10.1186/s13045-025-01714-1","DOIUrl":"https://doi.org/10.1186/s13045-025-01714-1","url":null,"abstract":"&lt;p&gt;&lt;b&gt;Journal of Hematology &amp; Oncology (2025) 18:56&lt;/b&gt;&lt;/p&gt;&lt;p&gt;&lt;b&gt;https://doi.org/10.1186/s13045-025-01713-2&lt;/b&gt;&lt;/p&gt;&lt;p&gt;The original article has been corrected to restore co-authors Yi Su, Ling Qiu, and Fang-yi Fan (lead contact) to co-Corresponding Authorship which was mistakenly removed by the production team which handled this article.&lt;/p&gt;&lt;span&gt;Author notes&lt;/span&gt;&lt;ol&gt;&lt;li&gt;&lt;p&gt;Hao Yao, Shi-hui Ren, Lin-hui Wang and Ming-qiang Ren contributed equally to this work.&lt;/p&gt;&lt;/li&gt;&lt;/ol&gt;&lt;h3&gt;Authors and Affiliations&lt;/h3&gt;&lt;ol&gt;&lt;li&gt;&lt;p&gt;Department of Hematology, Chinese People’s Liberation Army The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China&lt;/p&gt;&lt;p&gt;Hao Yao, Shi-hui Ren, Jiao Cai, Dan Chen, Ying He, Si-han Lai, Bai-tao Dou, Meng-jiao Li, Yan-ling Li, Ya-li Cen, Yi Su, Ling Qiu &amp; Fang-yi Fan&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Branch of National Clinical Research Center for Hematological Disease, Chengdu, 610083, Sichuan, China&lt;/p&gt;&lt;p&gt;Hao Yao, Shi-hui Ren, Jiao Cai, Dan Chen, Ying He, Si-han Lai, Bai-tao Dou, Meng-jiao Li, Yan-ling Li, Ya-li Cen, Yi Su, Ling Qiu &amp; Fang-yi Fan&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Sichuan Clinical Research Center for Hematological Disease, Chengdu, 610083, China&lt;/p&gt;&lt;p&gt;Hao Yao, Shi-hui Ren, Jiao Cai, Dan Chen, Ying He, Si-han Lai, Bai-tao Dou, Meng-jiao Li, Yan-ling Li, Ya-li Cen, Yi Su, Ling Qiu &amp; Fang-yi Fan&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Department of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, Sichuan, China&lt;/p&gt;&lt;p&gt;Bai-tao Dou, Meng-jiao Li, Yan-ling Li &amp; Fang-yi Fan&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Institute of Basic Medicine, North Sichuan Medical College, Nanchong, 637000, Sichuan, China&lt;/p&gt;&lt;p&gt;Hao Yao&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Department of Hematology, The People’s Hospital of Guizhou Province, Guiyang, 550002, Guizhou, China&lt;/p&gt;&lt;p&gt;Lin-hui Wang&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Department of Hematology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China&lt;/p&gt;&lt;p&gt;Ming-qiang Ren&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China&lt;/p&gt;&lt;p&gt;Alex H. Chang&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Shanghai YaKe Biotechnology Ltd., Yangpu District, Shanghai, 200090, China&lt;/p&gt;&lt;p&gt;Alex H. Chang&lt;/p&gt;&lt;/li&gt;&lt;/ol&gt;&lt;span&gt;Authors&lt;/span&gt;&lt;ol&gt;&lt;li&gt;&lt;span&gt;Hao Yao&lt;/span&gt;View author publications&lt;p&gt;&lt;span&gt;You can also search for this author in&lt;/span&gt;&lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Shi-hui Ren&lt;/span&gt;View author publications&lt;p&gt;&lt;span&gt;You can also search for this author in&lt;/span&gt;&lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Lin-hui Wang&lt;/span&gt;View author publications&lt;p&gt;&lt;span&gt;You can also search for this author in&lt;/span&gt;&lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Ming-qiang Ren&lt;/span&gt;View author publications&lt;p&gt;&lt;span&gt;You can also search for this author in&lt;/span&gt;&lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Jiao Cai&lt;/span&gt;View author publications&lt;p&gt;&lt;span&gt;You can also search for ","PeriodicalId":16023,"journal":{"name":"Journal of Hematology & Oncology","volume":"102 1","pages":""},"PeriodicalIF":28.5,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144211126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Hematology & Oncology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1