Pub Date : 2017-12-01DOI: 10.1080/1547691X.2017.1346009
Sandra Avila, Leslie Muñoz-García, Said Vázquez-Leyva, Nohemí Salinas-Jazmín, Emilio Medina-Rivero, Lenin Pavón, Gabriela Mellado-Sánchez, Rommel Chacón-Salinas, Sergio Estrada-Parra, Luis Vallejo-Castillo, Sonia Mayra Pérez-Tapia
Transferon, a human dialyzable leukocyte extract (hDLE), is a biotherapeutic that comprises a complex mixture of low-molecular-weight peptides (< 10 kDa) and is used to treat diseases with an inflammatory component. Some biotherapeutics, including those composed of peptides, can induce anti-drug antibodies (ADA) that block or diminish their therapeutic effect. Nevertheless, few studies have evaluated peptide-derived drug immunogenicity. In this study, the immunogenicity of Transferon was examined in a murine model during an immunization scheme using the following adjuvants: Al(OH)3, incomplete Freund's adjuvant (IFA), or Titermax Gold. The inoculation scheme entailed three routes of administration (intraperitoneal, Day 1; subcutaneous, Day 7; and intramuscular, Day 14) using 200 μg Transferon/inoculation. Serum samples were collected on Day 21. Total IgG levels were quantitated by affinity chromatography, and specific antibodies against components of Transferon were analyzed by dot-blot and ELISA. Ovalbumin (OVA, 44 kDa) and peptides from hydrolyzed collagen (PFHC, < 17 kDa) were used as positive and negative controls, respectively, in the same inoculation scheme and analyses for Transferon. OVA, PFHC, and Transferon increased total IgG concentrations in mice. However, only IgG antibodies against OVA were detected. Based on the results, it is concluded that Transferon does not induce generation of specific antibodies against its components in this model, regardless of adjuvant and route of administration. These results support the safety of Transferon by confirming its inability to induce ADA in this animal model.
{"title":"Transferon™, a peptide mixture with immunomodulatory properties is not immunogenic when administered with various adjuvants.","authors":"Sandra Avila, Leslie Muñoz-García, Said Vázquez-Leyva, Nohemí Salinas-Jazmín, Emilio Medina-Rivero, Lenin Pavón, Gabriela Mellado-Sánchez, Rommel Chacón-Salinas, Sergio Estrada-Parra, Luis Vallejo-Castillo, Sonia Mayra Pérez-Tapia","doi":"10.1080/1547691X.2017.1346009","DOIUrl":"https://doi.org/10.1080/1547691X.2017.1346009","url":null,"abstract":"<p><p>Transferon, a human dialyzable leukocyte extract (hDLE), is a biotherapeutic that comprises a complex mixture of low-molecular-weight peptides (< 10 kDa) and is used to treat diseases with an inflammatory component. Some biotherapeutics, including those composed of peptides, can induce anti-drug antibodies (ADA) that block or diminish their therapeutic effect. Nevertheless, few studies have evaluated peptide-derived drug immunogenicity. In this study, the immunogenicity of Transferon was examined in a murine model during an immunization scheme using the following adjuvants: Al(OH)<sub>3</sub>, incomplete Freund's adjuvant (IFA), or Titermax Gold. The inoculation scheme entailed three routes of administration (intraperitoneal, Day 1; subcutaneous, Day 7; and intramuscular, Day 14) using 200 μg Transferon/inoculation. Serum samples were collected on Day 21. Total IgG levels were quantitated by affinity chromatography, and specific antibodies against components of Transferon were analyzed by dot-blot and ELISA. Ovalbumin (OVA, 44 kDa) and peptides from hydrolyzed collagen (PFHC, < 17 kDa) were used as positive and negative controls, respectively, in the same inoculation scheme and analyses for Transferon. OVA, PFHC, and Transferon increased total IgG concentrations in mice. However, only IgG antibodies against OVA were detected. Based on the results, it is concluded that Transferon does not induce generation of specific antibodies against its components in this model, regardless of adjuvant and route of administration. These results support the safety of Transferon by confirming its inability to induce ADA in this animal model.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"14 1","pages":"169-177"},"PeriodicalIF":3.3,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1547691X.2017.1346009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35168185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-01DOI: 10.1080/1547691X.2017.1394934
Connor F Laule, Cameron R Wing, Evan J Odean, Jacob A Wilcox, Jeffrey S Gilbert, Jean F Regal
Preeclampsia is a pregnancy-specific condition manifested by new-onset maternal hypertension with systemic inflammation, including increased innate immune system complement activation. While exact pathophysiology is unknown, evidence suggests that inadequate spiral artery invasion and resulting utero-placental insufficiency is the initiating event. Cigarette smoking during pregnancy decreases the risk of preeclampsia. Nicotine, a major component of cigarettes, stimulates the efferent cholinergic anti-inflammatory pathway through peripherally expressed nicotinic acetylcholine receptors (nAChR) and is known to attenuate ischemia-reperfusion injury in kidney and liver. Prior studies indicated that complement activation was critical for placental ischemia-induced hypertension in a rat model. Thus, it was hypothesized here that nicotine was responsible for the protective effect of cigarette smoking in preeclampsia and would attenuate placental ischemia-induced systemic complement activation and hypertension. The Reduced Utero-placental Perfusion Pressure (RUPP) model in the pregnant rat was employed to induce placental ischemia, resulting in complement activation, fetal resorptions, and hypertension. On gestation day (GD)14, nicotine (1 mg/kg) or saline was administered via subcutaneous injection prior to RUPP surgery and daily through GD18. On GD19, placental ischemia significantly increased mean arterial pressure (MAP) in saline injected animals. However, the placental ischemia-induced increase in blood pressure was not evident in nicotine-treated animals and nicotine treatment significantly increased MAP variability. Circulating C3a was measured as an indicator of complement activation and increased C3a in RUPP compared to Sham persisted with nicotine treatment, as did fetal resorptions. These data suggested to us that nicotine may contribute to the decreased risk of preeclampsia with cigarette smoking, but this protective effect was confounded by additional effects of nicotine on the cardiovascular system.
{"title":"Effect of nicotine on placental ischemia-induced complement activation and hypertension in the rat.","authors":"Connor F Laule, Cameron R Wing, Evan J Odean, Jacob A Wilcox, Jeffrey S Gilbert, Jean F Regal","doi":"10.1080/1547691X.2017.1394934","DOIUrl":"https://doi.org/10.1080/1547691X.2017.1394934","url":null,"abstract":"<p><p>Preeclampsia is a pregnancy-specific condition manifested by new-onset maternal hypertension with systemic inflammation, including increased innate immune system complement activation. While exact pathophysiology is unknown, evidence suggests that inadequate spiral artery invasion and resulting utero-placental insufficiency is the initiating event. Cigarette smoking during pregnancy decreases the risk of preeclampsia. Nicotine, a major component of cigarettes, stimulates the efferent cholinergic anti-inflammatory pathway through peripherally expressed nicotinic acetylcholine receptors (nAChR) and is known to attenuate ischemia-reperfusion injury in kidney and liver. Prior studies indicated that complement activation was critical for placental ischemia-induced hypertension in a rat model. Thus, it was hypothesized here that nicotine was responsible for the protective effect of cigarette smoking in preeclampsia and would attenuate placental ischemia-induced systemic complement activation and hypertension. The Reduced Utero-placental Perfusion Pressure (RUPP) model in the pregnant rat was employed to induce placental ischemia, resulting in complement activation, fetal resorptions, and hypertension. On gestation day (GD)14, nicotine (1 mg/kg) or saline was administered via subcutaneous injection prior to RUPP surgery and daily through GD18. On GD19, placental ischemia significantly increased mean arterial pressure (MAP) in saline injected animals. However, the placental ischemia-induced increase in blood pressure was not evident in nicotine-treated animals and nicotine treatment significantly increased MAP variability. Circulating C3a was measured as an indicator of complement activation and increased C3a in RUPP compared to Sham persisted with nicotine treatment, as did fetal resorptions. These data suggested to us that nicotine may contribute to the decreased risk of preeclampsia with cigarette smoking, but this protective effect was confounded by additional effects of nicotine on the cardiovascular system.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"14 1","pages":"235-240"},"PeriodicalIF":3.3,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1547691X.2017.1394934","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35650068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-01DOI: 10.1080/1547691X.2017.1290716
Alastair Mak, Alexander Johnston, Jack Uetrecht
If idiosyncratic drug-induced liver injury (IDILI) is immune-mediated, it is possible that an individual's prior exposure to antigens may affect their susceptibility to IDILI. An individual's repertoire of memory immune cells is shaped by every past exposure to antigens. Subsequent drug-induced adverse drug reactions may therefore involve an immune cell's cross reactivity between a prior antigen and resulting drug-modified proteins. Therefore in this experiment, mice were immunized with amodiaquine (AQ)-modified hepatic proteins to mimic a previous exposure; treated with a RIBI adjuvant and anti-CD40 antibodies to stimulate an immune response; and, treated with anti-PD1 and anti-CTLA-4 antibodies prior to AQ treatment in order to overcome immune tolerance. This treatment led to greater liver injury than treatment with AQ alone. However, the mice did not develop serious liver injury. PD1-/- mice were then immunized and treated with AQ and anti-CTLA-4 antibodies so that immune tolerance would be impaired, both during immunization and also during AQ treatment. However, even this did not result in liver failure, and the liver injury was not significantly increased relative to un-immunized PD1-/- mice treated with anti-CTLA-4 and AQ. From these results we conclude that, although previous antigen exposure may affect the risk of IDILI, it appears that a very strong stimulus is required, and impairing immune tolerance remains the most effective method for producing an animal model of IDILI.
{"title":"Effects of immunization and checkpoint inhibition on amodiaquine-induced liver injury.","authors":"Alastair Mak, Alexander Johnston, Jack Uetrecht","doi":"10.1080/1547691X.2017.1290716","DOIUrl":"https://doi.org/10.1080/1547691X.2017.1290716","url":null,"abstract":"<p><p>If idiosyncratic drug-induced liver injury (IDILI) is immune-mediated, it is possible that an individual's prior exposure to antigens may affect their susceptibility to IDILI. An individual's repertoire of memory immune cells is shaped by every past exposure to antigens. Subsequent drug-induced adverse drug reactions may therefore involve an immune cell's cross reactivity between a prior antigen and resulting drug-modified proteins. Therefore in this experiment, mice were immunized with amodiaquine (AQ)-modified hepatic proteins to mimic a previous exposure; treated with a RIBI adjuvant and anti-CD40 antibodies to stimulate an immune response; and, treated with anti-PD1 and anti-CTLA-4 antibodies prior to AQ treatment in order to overcome immune tolerance. This treatment led to greater liver injury than treatment with AQ alone. However, the mice did not develop serious liver injury. PD1<sup>-/-</sup> mice were then immunized and treated with AQ and anti-CTLA-4 antibodies so that immune tolerance would be impaired, both during immunization and also during AQ treatment. However, even this did not result in liver failure, and the liver injury was not significantly increased relative to un-immunized PD1<sup>-/-</sup> mice treated with anti-CTLA-4 and AQ. From these results we conclude that, although previous antigen exposure may affect the risk of IDILI, it appears that a very strong stimulus is required, and impairing immune tolerance remains the most effective method for producing an animal model of IDILI.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"14 1","pages":"89-94"},"PeriodicalIF":3.3,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1547691X.2017.1290716","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34799847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Behçet's disease (BD) is a chronic autoimmune condition primarily prevalent in populations along the Mediterranean Sea. The exact etiology of BD has not been fully explained yet, but the disease occurrence is associated with a genetic factor, human leukocyte antigen (HLA)-B51 antigen. Among the various immunodysfunctions that are found in BD, patients are increased neutrophil motility and superoxide production, as well as elevated production of tumor necrosis factor (TNF)-α and decreased production of interleukin (IL)-10. Elevated levels of inflammatory cytokines like IL-1 and IL-17 in BD have been found associated with aberrant expression of microRNA. Gene polymorphisms in BD patients have been observed in molecules involved in responses to pathogens that can ultimately modulate the host antimicrobial response. Moreover, several single nucleotide polymorphisms (SNPs) have been reported in genes encoding chemokines and adhesion molecules; many of these changes manifest as increases in vascular inflammation and vascular damage. Lastly, genetic and epigenetic changes have been suggested as involved in the pathogenesis of BD. Modifications in DNA methylation have been found in BD patient monocytes and lymphocytes, leading to adverse function of these cells. This review presents a comprehensive compilation of the literature with regard to the immunodysfunction underlying BD, as well as of the genetics, newly described clinical specifications and novel treatment strategies using immunomodulants based on the current understanding of BD.
{"title":"Genetics and immunodysfunction underlying Behçet's disease and immunomodulant treatment approaches.","authors":"Arash Salmaninejad, Arezoo Gowhari, Seyedmojtaba Hosseini, Saeed Aslani, Meysam Yousefi, Tayyeb Bahrami, Masoume Ebrahimi, Abolfazl Nesaei, Masoud Zal","doi":"10.1080/1547691X.2017.1346008","DOIUrl":"https://doi.org/10.1080/1547691X.2017.1346008","url":null,"abstract":"<p><p>Behçet's disease (BD) is a chronic autoimmune condition primarily prevalent in populations along the Mediterranean Sea. The exact etiology of BD has not been fully explained yet, but the disease occurrence is associated with a genetic factor, human leukocyte antigen (HLA)-B51 antigen. Among the various immunodysfunctions that are found in BD, patients are increased neutrophil motility and superoxide production, as well as elevated production of tumor necrosis factor (TNF)-α and decreased production of interleukin (IL)-10. Elevated levels of inflammatory cytokines like IL-1 and IL-17 in BD have been found associated with aberrant expression of microRNA. Gene polymorphisms in BD patients have been observed in molecules involved in responses to pathogens that can ultimately modulate the host antimicrobial response. Moreover, several single nucleotide polymorphisms (SNPs) have been reported in genes encoding chemokines and adhesion molecules; many of these changes manifest as increases in vascular inflammation and vascular damage. Lastly, genetic and epigenetic changes have been suggested as involved in the pathogenesis of BD. Modifications in DNA methylation have been found in BD patient monocytes and lymphocytes, leading to adverse function of these cells. This review presents a comprehensive compilation of the literature with regard to the immunodysfunction underlying BD, as well as of the genetics, newly described clinical specifications and novel treatment strategies using immunomodulants based on the current understanding of BD.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"14 1","pages":"137-151"},"PeriodicalIF":3.3,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1547691X.2017.1346008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35156286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The proteoliposome (PL) of Neisseria meningitidis serogroup B has been reported as a safe and potent vaccine adjuvant, inducing a TH1-skewed response. The present study describes a pre-clinical safety evaluation of an allergy therapeutic vaccine candidate based on purified allergens from Dermatophagoides siboney house dust mite and PL as adjuvant, both components adsorbed onto aluminum hydroxide gel. Two separate studies of acute toxicity evaluation were performed in mice and rabbits, and two repeat-dose studies were conducted in non-sensitized and allergen-sensitized Balb/c mice, respectively. The study in sensitized mice intends to model a therapeutic setting. Aerosolized allergen challenge was used in both settings to model natural respiratory exposure. In the therapeutic setting, mice were administered with three doses containing 2 μg allergen at weekly intervals [subcutaneous route] and subsequently challenged with aerosolized allergen for 6 consecutive days. Parameters of general toxicity effects were assessed via measures of behavior, body weight, food and water consumption, and macroscopic evaluation of organs. Histological examination of organs and the injection site was performed. Potential immunotoxicity effects at the systemic level were assessed by blood eosinophil counting and serum allergen specific IgE by ELISA The vaccine did not produce general or functional toxic effects of significance, at a dose up to 100 μg allergen per kg body weight. An expected local reaction at the injection site was observed, which could be attributed mostly to the immunological effect of aluminum hydroxide. The models implemented here suggest an acceptable safety profile of this vaccine for testing in clinical trials of allergy immunotherapy.
{"title":"Safety of a proteoliposome from Neisseria meningitides as adjuvant for a house dust mite allergy vaccine.","authors":"Wendy Ramírez, Virgilio Bourg, Damaris Torralba, Elisa Facenda, Beatriz Tamargo, Bárbara O González, Gustavo Sierra, Oliver Pérez, Yordanis Perez-Llano, Alexis Labrada","doi":"10.1080/1547691X.2017.1346007","DOIUrl":"https://doi.org/10.1080/1547691X.2017.1346007","url":null,"abstract":"<p><p>The proteoliposome (PL) of Neisseria meningitidis serogroup B has been reported as a safe and potent vaccine adjuvant, inducing a T<sub>H</sub>1-skewed response. The present study describes a pre-clinical safety evaluation of an allergy therapeutic vaccine candidate based on purified allergens from Dermatophagoides siboney house dust mite and PL as adjuvant, both components adsorbed onto aluminum hydroxide gel. Two separate studies of acute toxicity evaluation were performed in mice and rabbits, and two repeat-dose studies were conducted in non-sensitized and allergen-sensitized Balb/c mice, respectively. The study in sensitized mice intends to model a therapeutic setting. Aerosolized allergen challenge was used in both settings to model natural respiratory exposure. In the therapeutic setting, mice were administered with three doses containing 2 μg allergen at weekly intervals [subcutaneous route] and subsequently challenged with aerosolized allergen for 6 consecutive days. Parameters of general toxicity effects were assessed via measures of behavior, body weight, food and water consumption, and macroscopic evaluation of organs. Histological examination of organs and the injection site was performed. Potential immunotoxicity effects at the systemic level were assessed by blood eosinophil counting and serum allergen specific IgE by ELISA The vaccine did not produce general or functional toxic effects of significance, at a dose up to 100 μg allergen per kg body weight. An expected local reaction at the injection site was observed, which could be attributed mostly to the immunological effect of aluminum hydroxide. The models implemented here suggest an acceptable safety profile of this vaccine for testing in clinical trials of allergy immunotherapy.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"14 1","pages":"152-159"},"PeriodicalIF":3.3,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1547691X.2017.1346007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35160061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-01DOI: 10.1080/1547691X.2017.1332699
Tegan Kastelein, Rob Duffield, Frank Marino
This study examined immune/inflammatory parameters following an acute tobacco smoking episode in smokers with varying smoking histories. Twenty-eight male habitual smokers were categorized according to smoking history, e.g. younger smoker (YSM) or middle-aged smoker (MSM). Participants were matched for fitness and smoking habits and following baseline testing, undertook a smoking protocol involving consumption of two cigarettes within 15 min. Venous blood was collected pre- and immediately, 1 h, and 4 h post-protocol to permit analyses of circulating levels of interleukin (IL)-6, IL-1β, IL-1ra, monocyte chemoattractant protein-1 (MCP-1), C-reactive protein (CRP), and leukocytes. No baseline differences were observed between groups for IL-1ra, IL-1β, or leukocytes. MCP-1 and IL-6 levels were significantly (p < 0.05) elevated at baseline in YSM. Both groups showed an increase in MCP-1 levels from pre- to immediately post-cigarette consumption. The MSM also displayed an increase in IL-6 post-smoking, followed by a decline over the period from 1 to 4 h thereafter. A significant decline in circulating lymphocyte and eosinophil levels from immediately post-cigarette consumption to 1 h later was observed in both groups. Monocyte levels in the YSM followed a similar profile but no significant effects on this cell type were evident in the MSM. From these results, a 10-year difference in smoking history induces mild leukopenia. Altered responses due to smoking were also evident with respect to levels of circulating biomarkers, which may be indicative of an effect of differences in cumulative smoking history.
{"title":"Human in situ cytokine and leukocyte responses to acute smoking.","authors":"Tegan Kastelein, Rob Duffield, Frank Marino","doi":"10.1080/1547691X.2017.1332699","DOIUrl":"https://doi.org/10.1080/1547691X.2017.1332699","url":null,"abstract":"<p><p>This study examined immune/inflammatory parameters following an acute tobacco smoking episode in smokers with varying smoking histories. Twenty-eight male habitual smokers were categorized according to smoking history, e.g. younger smoker (YSM) or middle-aged smoker (MSM). Participants were matched for fitness and smoking habits and following baseline testing, undertook a smoking protocol involving consumption of two cigarettes within 15 min. Venous blood was collected pre- and immediately, 1 h, and 4 h post-protocol to permit analyses of circulating levels of interleukin (IL)-6, IL-1β, IL-1ra, monocyte chemoattractant protein-1 (MCP-1), C-reactive protein (CRP), and leukocytes. No baseline differences were observed between groups for IL-1ra, IL-1β, or leukocytes. MCP-1 and IL-6 levels were significantly (p < 0.05) elevated at baseline in YSM. Both groups showed an increase in MCP-1 levels from pre- to immediately post-cigarette consumption. The MSM also displayed an increase in IL-6 post-smoking, followed by a decline over the period from 1 to 4 h thereafter. A significant decline in circulating lymphocyte and eosinophil levels from immediately post-cigarette consumption to 1 h later was observed in both groups. Monocyte levels in the YSM followed a similar profile but no significant effects on this cell type were evident in the MSM. From these results, a 10-year difference in smoking history induces mild leukopenia. Altered responses due to smoking were also evident with respect to levels of circulating biomarkers, which may be indicative of an effect of differences in cumulative smoking history.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"14 1","pages":"109-115"},"PeriodicalIF":3.3,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1547691X.2017.1332699","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35031908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-01DOI: 10.1080/1547691X.2017.1340371
Mohammad Rafiqul Islam, Jong Won Kim, Yoon-Seok Roh, Jong-Hoon Kim, Kang Min Han, Hyung-Joo Kwon, Chae Woong Lim, Bumseok Kim
Zearalenone (ZEA) is a non-steroidal estrogenic mycotoxin produced by Fusarium species. The toxicity of ZEA has been evaluated for reproductive and developmental effects; however, there is little evidence about its acute toxicity or general immunotoxicity. In the present study, immune regulatory functions were investigated in mice that had been exposed to ZEA (5 or 20 mg/kg BW) daily for 14 days. Results showed that sub-populations of CD4+, CD8+ and CD11c+ cells in the spleen and CD4+, CD8+ and F4/80+ cells in the mesenteric lymph nodes (MLN) of ZEA (20 mg/kg)-exposed hosts were decreased compared to those in the control mice. However, CD19+ and CD11c+ cells were increased in the MLN of the ZEA mice and CD4+CD25+Foxp3+ cells were decreased in the spleen and MLN. There were differential changes in the immune cell populations of the small intestine of the ZEA mice as well, depending on small intestine location. In ex vivo experiments, ZEA treatments resulted in increased proliferative capacities of mitogen-induced splenocytes and MLN cells; such changes were paralleled by significant increases in interferon (IFN)-γ production. With regard to serum isotypes, IgM levels were decreased and IgE levels were increased in the 20 mg/kg ZEA-treated mice. Mucosal IgA levels were decreased in the duodenum and vagina of these hosts. Serum analyzes also revealed that tumor necrosis factor (TNF)-α levels were decreased and interleukin (IL)-6 levels increased as a result of ZEA exposures. ZEA treatment also led to increased apoptosis in the spleen and Peyer's patches; these changes were associated with changes in the ratios of Bax:Bcl-2. Following priming with different TLR ligands, ZEA exposure led to differentially modulated TLR signaling and variable production of pro- and anti-inflammatory cytokines in RAW 264.7 macrophage cells. Taken together, these results indicated that ZEA could alter the normal expression/function of different immune system components and this would likely lead to immunomodulation in situ.
{"title":"Evaluation of immunomodulatory effects of zearalenone in mice.","authors":"Mohammad Rafiqul Islam, Jong Won Kim, Yoon-Seok Roh, Jong-Hoon Kim, Kang Min Han, Hyung-Joo Kwon, Chae Woong Lim, Bumseok Kim","doi":"10.1080/1547691X.2017.1340371","DOIUrl":"https://doi.org/10.1080/1547691X.2017.1340371","url":null,"abstract":"<p><p>Zearalenone (ZEA) is a non-steroidal estrogenic mycotoxin produced by Fusarium species. The toxicity of ZEA has been evaluated for reproductive and developmental effects; however, there is little evidence about its acute toxicity or general immunotoxicity. In the present study, immune regulatory functions were investigated in mice that had been exposed to ZEA (5 or 20 mg/kg BW) daily for 14 days. Results showed that sub-populations of CD4<sup>+</sup>, CD8<sup>+</sup> and CD11c<sup>+</sup> cells in the spleen and CD4<sup>+</sup>, CD8<sup>+</sup> and F4/80<sup>+</sup> cells in the mesenteric lymph nodes (MLN) of ZEA (20 mg/kg)-exposed hosts were decreased compared to those in the control mice. However, CD19<sup>+</sup> and CD11c<sup>+</sup> cells were increased in the MLN of the ZEA mice and CD4<sup>+</sup>CD25<sup>+</sup>Foxp3<sup>+</sup> cells were decreased in the spleen and MLN. There were differential changes in the immune cell populations of the small intestine of the ZEA mice as well, depending on small intestine location. In ex vivo experiments, ZEA treatments resulted in increased proliferative capacities of mitogen-induced splenocytes and MLN cells; such changes were paralleled by significant increases in interferon (IFN)-γ production. With regard to serum isotypes, IgM levels were decreased and IgE levels were increased in the 20 mg/kg ZEA-treated mice. Mucosal IgA levels were decreased in the duodenum and vagina of these hosts. Serum analyzes also revealed that tumor necrosis factor (TNF)-α levels were decreased and interleukin (IL)-6 levels increased as a result of ZEA exposures. ZEA treatment also led to increased apoptosis in the spleen and Peyer's patches; these changes were associated with changes in the ratios of Bax:Bcl-2. Following priming with different TLR ligands, ZEA exposure led to differentially modulated TLR signaling and variable production of pro- and anti-inflammatory cytokines in RAW 264.7 macrophage cells. Taken together, these results indicated that ZEA could alter the normal expression/function of different immune system components and this would likely lead to immunomodulation in situ.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"14 1","pages":"125-136"},"PeriodicalIF":3.3,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1547691X.2017.1340371","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35113103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-01Epub Date: 2017-07-12DOI: 10.1080/1547691X.2017.1353242
{"title":"Correction to: Islam et al., Evaluation of immunomodulatory effects of zearalenone in mice.","authors":"","doi":"10.1080/1547691X.2017.1353242","DOIUrl":"https://doi.org/10.1080/1547691X.2017.1353242","url":null,"abstract":"","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"14 1","pages":"241"},"PeriodicalIF":3.3,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1547691X.2017.1353242","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35162694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-01DOI: 10.1080/1547691X.2017.1334722
Marina Cetkovic-Cvrlje, Sinduja Thinamany, Kylie A Bruner
Type 1 diabetes (T1D) is a T-cell-mediated autoimmune disorder characterized by destruction of insulin-producing pancreatic β-cells. Whereas epidemiological data implicate environmental factors in the increasing incidence of T1D, their identity remains unknown. Though exposure to bisphenol A (BPA) has been associated with several disorders, no epidemiologic evidence has linked BPA exposure and T1D. The goal of this study was to elucidate diabetogenic potentials of BPA and underlying mechanisms in the context of T-cell immunity, in a multiple low-dose streptozotocin (MLDSTZ)-induced autoimmune mouse T1D model. C57BL/6 mice were orally exposed to 1 or 10 mg BPA/L starting at 4 wk of age; diabetes was induced at 9 wk of age with STZ. T-cell composition, function, and insulitis levels were studied at Days 11 and 50 during diabetes development (i.e. post-first STZ injection). Results showed both BPA doses increased diabetes incidence and affected T-cell immunity. However, mechanisms of diabetogenic action appeared divergent based on dose. Low-dose BPA fits a profile of an agent that exhibits pro-diabetogenic effects via T-cell immunomodulation in the early stages of disease development, i.e. decreases in splenic T-cell subpopulations [especially CD4+ T-cells] along with a trend in elevation of splenic T-cell formation of pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-6). In contrast, high-dose BPA did not affect T-cell populations and led to decreased levels of IFN-γ and TNF-α. Both treatments did not affect insulitis levels at the disease early stage, but aggravated it later on. By the study end, besides decreasing T-cell proliferative capacity, low-dose BPA did not affect other T-cell-related parameters, including cytokine secretion, comparable to the effects of high-dose BPA. In conclusion, this study confirmed BPA as a potential diabetogenic compound with immunomodulatory mechanisms of action - in the context of T-cell immunity - that seemed to be dose dependent in the early immunopathogenesis of a MLDSTZ-induced model of T1D.
{"title":"Bisphenol A (BPA) aggravates multiple low-dose streptozotocin-induced Type 1 diabetes in C57BL/6 mice.","authors":"Marina Cetkovic-Cvrlje, Sinduja Thinamany, Kylie A Bruner","doi":"10.1080/1547691X.2017.1334722","DOIUrl":"https://doi.org/10.1080/1547691X.2017.1334722","url":null,"abstract":"<p><p>Type 1 diabetes (T1D) is a T-cell-mediated autoimmune disorder characterized by destruction of insulin-producing pancreatic β-cells. Whereas epidemiological data implicate environmental factors in the increasing incidence of T1D, their identity remains unknown. Though exposure to bisphenol A (BPA) has been associated with several disorders, no epidemiologic evidence has linked BPA exposure and T1D. The goal of this study was to elucidate diabetogenic potentials of BPA and underlying mechanisms in the context of T-cell immunity, in a multiple low-dose streptozotocin (MLDSTZ)-induced autoimmune mouse T1D model. C57BL/6 mice were orally exposed to 1 or 10 mg BPA/L starting at 4 wk of age; diabetes was induced at 9 wk of age with STZ. T-cell composition, function, and insulitis levels were studied at Days 11 and 50 during diabetes development (i.e. post-first STZ injection). Results showed both BPA doses increased diabetes incidence and affected T-cell immunity. However, mechanisms of diabetogenic action appeared divergent based on dose. Low-dose BPA fits a profile of an agent that exhibits pro-diabetogenic effects via T-cell immunomodulation in the early stages of disease development, i.e. decreases in splenic T-cell subpopulations [especially CD4<sup>+</sup> T-cells] along with a trend in elevation of splenic T-cell formation of pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-6). In contrast, high-dose BPA did not affect T-cell populations and led to decreased levels of IFN-γ and TNF-α. Both treatments did not affect insulitis levels at the disease early stage, but aggravated it later on. By the study end, besides decreasing T-cell proliferative capacity, low-dose BPA did not affect other T-cell-related parameters, including cytokine secretion, comparable to the effects of high-dose BPA. In conclusion, this study confirmed BPA as a potential diabetogenic compound with immunomodulatory mechanisms of action - in the context of T-cell immunity - that seemed to be dose dependent in the early immunopathogenesis of a MLDSTZ-induced model of T1D.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"14 1","pages":"160-168"},"PeriodicalIF":3.3,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1547691X.2017.1334722","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35168186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-01DOI: 10.1080/1547691X.2017.1394933
Yongjun Wei, Yu Wang
Celastrol, a constituent from a traditional Chinese medicinal herb belonging to the family Celastraceae, has been shown to impart anti-inflammatory properties, in part, by inhibiting NF-κB activity and related induction of pro-inflammatory cytokine formation/release. The present study investigated the effects of celastrol in an animal model of acute respiratory distress syndrome (ARDS) induced by intratracheal administration of lipopolysaccharides (LPSs). Celastrol pre-treatment groups received celastrol by intraperitoneal injection on seven consecutive days before LPS treatment. In rats evaluated 24 h after LPS administration, oxygenation indices and lung injury were measured, as were levels of inflammatory cells and cytokines in isolated bronchoalveolar lavage fluid (BALF). Lung tissue expression of proteins involved in NF-κB and ERK/MAPK pathways were measured by Western blot analyses. Celastrol pre-treatments appeared to attenuate LPS-induced lung injury and inflammatory responses in the rats, including decreases in inducible aggregationinfiltration of inflammatory cells and production/release of pro-inflammatory cytokines into the lung airways. Celastrol appeared to also inhibit NF-κB activation, but had no effect on ERK/MAPK pathways in the LPS-induced ARDS. The results here thus indicated that celastrol pre-treatment could impart protective effects against LPS-induced ARDS, and that these effects may be occurring through an inhibition of induction of NF-κB signaling pathways.
{"title":"Celastrol attenuates impairments associated with lipopolysaccharide-induced acute respiratory distress syndrome (ARDS) in rats.","authors":"Yongjun Wei, Yu Wang","doi":"10.1080/1547691X.2017.1394933","DOIUrl":"https://doi.org/10.1080/1547691X.2017.1394933","url":null,"abstract":"<p><p>Celastrol, a constituent from a traditional Chinese medicinal herb belonging to the family Celastraceae, has been shown to impart anti-inflammatory properties, in part, by inhibiting NF-κB activity and related induction of pro-inflammatory cytokine formation/release. The present study investigated the effects of celastrol in an animal model of acute respiratory distress syndrome (ARDS) induced by intratracheal administration of lipopolysaccharides (LPSs). Celastrol pre-treatment groups received celastrol by intraperitoneal injection on seven consecutive days before LPS treatment. In rats evaluated 24 h after LPS administration, oxygenation indices and lung injury were measured, as were levels of inflammatory cells and cytokines in isolated bronchoalveolar lavage fluid (BALF). Lung tissue expression of proteins involved in NF-κB and ERK/MAPK pathways were measured by Western blot analyses. Celastrol pre-treatments appeared to attenuate LPS-induced lung injury and inflammatory responses in the rats, including decreases in inducible aggregationinfiltration of inflammatory cells and production/release of pro-inflammatory cytokines into the lung airways. Celastrol appeared to also inhibit NF-κB activation, but had no effect on ERK/MAPK pathways in the LPS-induced ARDS. The results here thus indicated that celastrol pre-treatment could impart protective effects against LPS-induced ARDS, and that these effects may be occurring through an inhibition of induction of NF-κB signaling pathways.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"14 1","pages":"228-234"},"PeriodicalIF":3.3,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1547691X.2017.1394933","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35593081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}