Human infertility affects 10–15% of couples. Asthenozoospermia accounts for 18% of men with infertility and is a common male infertility phenotype. The nexin-dynein regulatory complex (N-DRC) is a large protein complex in the sperm flagellum that connects adjacent doublets of microtubules. Defects in the N-DRC can disrupt cilia/flagellum movement, resulting in primary ciliary dyskinesia and male infertility. Using whole-exome sequencing, we identified a pathological homozygous variant of the dynein regulatory complex subunit 3 (DRC3) gene, which expresses leucine-rich repeat-containing protein 48, a component of the N-DRC, in a patient with asthenozoospermia. The variant ENST00000313838.12: c.644dup (p. Glu216GlyfsTer36) causes premature translational arrest of DRC3, resulting in a dysfunctional DRC3 protein. The patient’s semen count, color, and pH were normal according to the reference values of the World Health Organization guidelines; however, sperm motility and progressive motility were reduced. DRC3 protein was not detected in the patient’s sperm and the ultrastructure of the patient’s sperm flagella was destroyed. More importantly, the DRC3 variant reduced its interaction with other components of the N-DRC, including dynein regulatory complex subunits 1, 2, 4, 5, 7, and 8. Our data not only revealed the essential biological functions of DRC3 in sperm flagellum movement and structure but also provided a new basis for the clinical genetic diagnosis of male infertility.
{"title":"Homozygous variant in DRC3 (LRRC48) gene causes asthenozoospermia and male infertility","authors":"Jiao Qin, Jinyu Wang, Jianhai Chen, Jinyan Xu, Shanling Liu, Dong Deng, Fuping Li","doi":"10.1038/s10038-024-01253-6","DOIUrl":"10.1038/s10038-024-01253-6","url":null,"abstract":"Human infertility affects 10–15% of couples. Asthenozoospermia accounts for 18% of men with infertility and is a common male infertility phenotype. The nexin-dynein regulatory complex (N-DRC) is a large protein complex in the sperm flagellum that connects adjacent doublets of microtubules. Defects in the N-DRC can disrupt cilia/flagellum movement, resulting in primary ciliary dyskinesia and male infertility. Using whole-exome sequencing, we identified a pathological homozygous variant of the dynein regulatory complex subunit 3 (DRC3) gene, which expresses leucine-rich repeat-containing protein 48, a component of the N-DRC, in a patient with asthenozoospermia. The variant ENST00000313838.12: c.644dup (p. Glu216GlyfsTer36) causes premature translational arrest of DRC3, resulting in a dysfunctional DRC3 protein. The patient’s semen count, color, and pH were normal according to the reference values of the World Health Organization guidelines; however, sperm motility and progressive motility were reduced. DRC3 protein was not detected in the patient’s sperm and the ultrastructure of the patient’s sperm flagella was destroyed. More importantly, the DRC3 variant reduced its interaction with other components of the N-DRC, including dynein regulatory complex subunits 1, 2, 4, 5, 7, and 8. Our data not only revealed the essential biological functions of DRC3 in sperm flagellum movement and structure but also provided a new basis for the clinical genetic diagnosis of male infertility.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"69 8","pages":"401-409"},"PeriodicalIF":2.6,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141071261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-13DOI: 10.1038/s10038-024-01255-4
Xin Pan, Li Liu, Xu Zhang, Xianglan Tang, Guanhua Qian, Hao Qiu, Shuhong Lin, Hong Yao, Xiaojing Dong, Bo Tan
F-box protein 11 (FBXO11) is a member of F-Box protein family, which has recently been proved to be associated with intellectual developmental disorder with dysmorphic facies and behavioral abnormalities (IDDFBA, OMIM: 618089). In this study, 12 intellectual disability individuals from 5 Chinese ID families were collected, and whole exome sequencing (WES), sanger sequencing, and RNA sequencing (RNA-seq) were conducted. Almost all the affected individuals presented with mild to severe intellectual disability (12/12), global developmental delay (10/12), speech and language development delay (8/12) associated with a range of alternate features including increased body weight (7/12), short stature (6/12), seizures (3/12), reduced visual acuity (4/12), hypotonia (1/12), and auditory hallucinations and hallucinations (1/12). Distinguishingly, malformation was not observed in all the affected individuals. WES analysis showed 5 novel FBXO11 variants, which include an inframe deletion variant, a missense variant, two frameshift variants, and a partial deletion of FBXO11 (exon 22–23). RNA-seq indicated that exon 22–23 deletion of FBXO11 results in a new mRNA structure. Conservation and protein structure prediction demonstrated deleterious effect of these variants. The DEGs analysis revealed 148 differentially expressed genes shared among 6 affected individuals, which were mainly associated with genes of muscle and immune system. Our research is the first report of FBXO11-associated IDDFBA in Chinese individuals, which expands the genetic and clinical spectrum of this newly identified NDD/ID syndrome.
{"title":"FBXO11 variants are associated with intellectual disability and variable clinical manifestation in Chinese affected individuals","authors":"Xin Pan, Li Liu, Xu Zhang, Xianglan Tang, Guanhua Qian, Hao Qiu, Shuhong Lin, Hong Yao, Xiaojing Dong, Bo Tan","doi":"10.1038/s10038-024-01255-4","DOIUrl":"10.1038/s10038-024-01255-4","url":null,"abstract":"F-box protein 11 (FBXO11) is a member of F-Box protein family, which has recently been proved to be associated with intellectual developmental disorder with dysmorphic facies and behavioral abnormalities (IDDFBA, OMIM: 618089). In this study, 12 intellectual disability individuals from 5 Chinese ID families were collected, and whole exome sequencing (WES), sanger sequencing, and RNA sequencing (RNA-seq) were conducted. Almost all the affected individuals presented with mild to severe intellectual disability (12/12), global developmental delay (10/12), speech and language development delay (8/12) associated with a range of alternate features including increased body weight (7/12), short stature (6/12), seizures (3/12), reduced visual acuity (4/12), hypotonia (1/12), and auditory hallucinations and hallucinations (1/12). Distinguishingly, malformation was not observed in all the affected individuals. WES analysis showed 5 novel FBXO11 variants, which include an inframe deletion variant, a missense variant, two frameshift variants, and a partial deletion of FBXO11 (exon 22–23). RNA-seq indicated that exon 22–23 deletion of FBXO11 results in a new mRNA structure. Conservation and protein structure prediction demonstrated deleterious effect of these variants. The DEGs analysis revealed 148 differentially expressed genes shared among 6 affected individuals, which were mainly associated with genes of muscle and immune system. Our research is the first report of FBXO11-associated IDDFBA in Chinese individuals, which expands the genetic and clinical spectrum of this newly identified NDD/ID syndrome.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"69 8","pages":"391-400"},"PeriodicalIF":2.6,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140916565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mitochondrial diseases are a group of genetic diseases caused by mutations in mitochondrial DNA and nuclear DNA. However, the genetic spectrum of this disease is not yet complete. In this study, we identified a novel variant m.4344T>C in mitochondrial tRNAGln from a patient with developmental delay. The mutant loads of m.4344T>C were 95% and 89% in the patient’s blood and oral epithelial cells, respectively. Multialignment analysis showed high evolutionary conservation of this nucleotide. TrRosettaRNA predicted that m.4344T>C variant would introduce an additional hydrogen bond and alter the conformation of the T-loop. The transmitochondrial cybrid-based study demonstrated that m.4344T>C variant impaired the steady-state level of mitochondrial tRNAGln and decreased the contents of mitochondrial OXPHOS complexes I, III, and IV, resulting in defective mitochondrial respiration, elevated mitochondrial ROS production, reduced mitochondrial membrane potential and decreased mitochondrial ATP levels. Altogether, this is the first report in patient carrying the m.4344T>C variant. Our data uncover the pathogenesis of the m.4344T>C variant and expand the genetic mutation spectrum of mitochondrial diseases, thus contributing to the clinical diagnosis of mitochondrial tRNAGln gene variants-associated mitochondrial diseases.
线粒体疾病是由线粒体 DNA 和核 DNA 变异引起的一组遗传疾病。然而,这种疾病的基因谱尚不完整。在这项研究中,我们从一名发育迟缓患者身上发现了线粒体 tRNAGln 的新型变异体 m.4344T>C。在患者的血液和口腔上皮细胞中,m.4344T>C 的突变载量分别为 95% 和 89%。多重排列分析表明该核苷酸具有高度的进化保守性。TrRosettaRNA 预测,m.4344T>C 变体将引入一个额外的氢键,并改变 T 环的构象。基于线粒体细胞杂交的研究表明,m.4344T>C 变体损害了线粒体 tRNAGln 的稳态水平,降低了线粒体 OXPHOS 复合物 I、III 和 IV 的含量,导致线粒体呼吸缺陷、线粒体 ROS 生成增加、线粒体膜电位降低和线粒体 ATP 水平下降。总之,这是首次报道携带 m.4344T>C 变异基因的患者。我们的数据揭示了 m.4344T>C 变体的发病机理,扩大了线粒体疾病的基因突变谱,从而有助于线粒体 tRNAGln 基因变体相关线粒体疾病的临床诊断。
{"title":"A novel pathogenic mitochondrial DNA variant m.4344T>C in tRNAGln causes developmental delay","authors":"Xiaojie Yin, Qiyu Dong, Shuanglong Fan, Lina Yang, Hao Li, Yijun Jin, Mahlatsi Refiloe Laurentinah, Xiandan Chen, Aliaksei Sysa, Hezhi Fang, Jianxin Lyu, Yongguo Yu, Ya Wang","doi":"10.1038/s10038-024-01254-5","DOIUrl":"10.1038/s10038-024-01254-5","url":null,"abstract":"Mitochondrial diseases are a group of genetic diseases caused by mutations in mitochondrial DNA and nuclear DNA. However, the genetic spectrum of this disease is not yet complete. In this study, we identified a novel variant m.4344T>C in mitochondrial tRNAGln from a patient with developmental delay. The mutant loads of m.4344T>C were 95% and 89% in the patient’s blood and oral epithelial cells, respectively. Multialignment analysis showed high evolutionary conservation of this nucleotide. TrRosettaRNA predicted that m.4344T>C variant would introduce an additional hydrogen bond and alter the conformation of the T-loop. The transmitochondrial cybrid-based study demonstrated that m.4344T>C variant impaired the steady-state level of mitochondrial tRNAGln and decreased the contents of mitochondrial OXPHOS complexes I, III, and IV, resulting in defective mitochondrial respiration, elevated mitochondrial ROS production, reduced mitochondrial membrane potential and decreased mitochondrial ATP levels. Altogether, this is the first report in patient carrying the m.4344T>C variant. Our data uncover the pathogenesis of the m.4344T>C variant and expand the genetic mutation spectrum of mitochondrial diseases, thus contributing to the clinical diagnosis of mitochondrial tRNAGln gene variants-associated mitochondrial diseases.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"69 8","pages":"381-389"},"PeriodicalIF":2.6,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140904512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1038/s10038-024-01256-3
Masaru Koido, Kohei Tomizuka, Chikashi Terao
Cell-type-specific regulatory elements, cataloged through extensive experiments and bioinformatics in large-scale consortiums, have enabled enrichment analyses of genetic associations that primarily utilize positional information of the regulatory elements. These analyses have identified cell types and pathways genetically associated with human complex traits. However, our understanding of detailed allelic effects on these elements’ activities and on-off states remains incomplete, hampering the interpretation of human genetic study results. This review introduces machine learning methods to learn sequence-dependent transcriptional regulation mechanisms from DNA sequences for predicting such allelic effects (not associations). We provide a concise history of machine-learning-based approaches, the requirements, and the key computational processes, focusing on primers in machine learning. Convolution and self-attention, pivotal in modern deep-learning models, are explained through geometrical interpretations using dot products. This facilitates understanding of the concept and why these have been used for machine learning for DNA sequences. These will inspire further research in this genetics and genomics field.
通过大规模联盟的广泛实验和生物信息学编目,细胞类型特异性调控元件得以主要利用调控元件的位置信息对遗传关联进行富集分析。这些分析确定了与人类复杂性状相关的细胞类型和遗传途径。然而,我们对等位基因对这些元件的活动和通断状态的详细影响的了解仍然不全面,这妨碍了对人类基因研究结果的解释。本综述介绍了从 DNA 序列中学习序列依赖性转录调控机制的机器学习方法,以预测此类等位基因效应(非关联)。我们简明扼要地介绍了基于机器学习的方法的历史、要求和关键计算过程,重点介绍了机器学习的引子。卷积和自注意是现代深度学习模型的关键,我们通过点积的几何解释对其进行了说明。这有助于理解这一概念,以及为什么这些概念被用于 DNA 序列的机器学习。这些都将激励人们在这一遗传学和基因组学领域开展进一步的研究。
{"title":"Fundamentals for predicting transcriptional regulations from DNA sequence patterns","authors":"Masaru Koido, Kohei Tomizuka, Chikashi Terao","doi":"10.1038/s10038-024-01256-3","DOIUrl":"10.1038/s10038-024-01256-3","url":null,"abstract":"Cell-type-specific regulatory elements, cataloged through extensive experiments and bioinformatics in large-scale consortiums, have enabled enrichment analyses of genetic associations that primarily utilize positional information of the regulatory elements. These analyses have identified cell types and pathways genetically associated with human complex traits. However, our understanding of detailed allelic effects on these elements’ activities and on-off states remains incomplete, hampering the interpretation of human genetic study results. This review introduces machine learning methods to learn sequence-dependent transcriptional regulation mechanisms from DNA sequences for predicting such allelic effects (not associations). We provide a concise history of machine-learning-based approaches, the requirements, and the key computational processes, focusing on primers in machine learning. Convolution and self-attention, pivotal in modern deep-learning models, are explained through geometrical interpretations using dot products. This facilitates understanding of the concept and why these have been used for machine learning for DNA sequences. These will inspire further research in this genetics and genomics field.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"69 10","pages":"499-504"},"PeriodicalIF":2.6,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s10038-024-01256-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140904516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.1038/s10038-024-01246-5
Nicolás Garzón Rodríguez, Ignacio Briceño-Balcázar, Humberto Nicolini, José Jaime Martínez-Magaña, Alma D. Genis-Mendoza, Julio C. Flores-Lázaro, Jorge A. Villatoro Velázquez, Marycarmen Bustos Gamiño, Maria Elena Medina-Mora, Maria Fernanda Quiroz-Padilla
Contemporary research on the genomics of Attention Deficit Hyperactivity Disorder (ADHD) often underrepresents admixed populations of diverse genomic ancestries, such as Latin Americans. This study explores the relationship between admixture and genetic associations for ADHD in Colombian and Mexican cohorts. Some 546 participants in two groups, ADHD and Control, were genotyped with Infinium PsychArray®. Global ancestry levels were estimated using overall admixture proportions and principal component analysis, while local ancestry was determined using a method to estimate ancestral components along the genome. Genome-wide association analysis (GWAS) was conducted to identify significant associations. Differences between Colombia and Mexico were evaluated using appropriate statistical tests. 354 Single-nucleotide polymorphisms (SNPs) and Single-nucleotide variants (SNVs) related to some genes and intergenic regions exhibited suggestive significance (p-value < 5*10e−5) in the GWAS. None of the variants revealed genome-wide significance (p-value < 5*10e−8). The study identified a significant relationship between risk SNPs and the European component of admixture, notably observed in the LOC105379109 gene. Despite differences in risk association loci, such as FOXP2, our findings suggest a possible homogeneity in genetic variation’s impact on ADHD between Colombian and Mexican populations. Current reference datasets for ADHD predominantly consist of samples with high European ancestry, underscoring the need for further research to enhance the representation of reference populations and improve the identification of ADHD risk traits in Latin Americans.
{"title":"Exploring the relationship between admixture and genetic susceptibility to attention deficit hyperactivity disorder in two Latin American cohorts","authors":"Nicolás Garzón Rodríguez, Ignacio Briceño-Balcázar, Humberto Nicolini, José Jaime Martínez-Magaña, Alma D. Genis-Mendoza, Julio C. Flores-Lázaro, Jorge A. Villatoro Velázquez, Marycarmen Bustos Gamiño, Maria Elena Medina-Mora, Maria Fernanda Quiroz-Padilla","doi":"10.1038/s10038-024-01246-5","DOIUrl":"10.1038/s10038-024-01246-5","url":null,"abstract":"Contemporary research on the genomics of Attention Deficit Hyperactivity Disorder (ADHD) often underrepresents admixed populations of diverse genomic ancestries, such as Latin Americans. This study explores the relationship between admixture and genetic associations for ADHD in Colombian and Mexican cohorts. Some 546 participants in two groups, ADHD and Control, were genotyped with Infinium PsychArray®. Global ancestry levels were estimated using overall admixture proportions and principal component analysis, while local ancestry was determined using a method to estimate ancestral components along the genome. Genome-wide association analysis (GWAS) was conducted to identify significant associations. Differences between Colombia and Mexico were evaluated using appropriate statistical tests. 354 Single-nucleotide polymorphisms (SNPs) and Single-nucleotide variants (SNVs) related to some genes and intergenic regions exhibited suggestive significance (p-value < 5*10e−5) in the GWAS. None of the variants revealed genome-wide significance (p-value < 5*10e−8). The study identified a significant relationship between risk SNPs and the European component of admixture, notably observed in the LOC105379109 gene. Despite differences in risk association loci, such as FOXP2, our findings suggest a possible homogeneity in genetic variation’s impact on ADHD between Colombian and Mexican populations. Current reference datasets for ADHD predominantly consist of samples with high European ancestry, underscoring the need for further research to enhance the representation of reference populations and improve the identification of ADHD risk traits in Latin Americans.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"69 8","pages":"373-380"},"PeriodicalIF":2.6,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269173/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140876650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present prospective cohort study evaluated the prevalence of FSH-R receptor Asn680Ser and Ala307Thr among infertile Indian women and the correlation of these polymorphisms with ART outcomes. Total 804 infertile and 209 fertile controls were enrolled for FSH-R analysis. Correlation of different genotypes with ovarian reserve markers, IVF parameters, and cumulative live birth rates (CLBR) was done among women undergoing IVF. In fertile controls, at 680 position GG (Ser/Ser) was the most common genotype; but among infertile women, all the genotypes were equally distributed. There was no significant difference in ovarian response parameters, oocyte yield, and CLBR among the three genotype groups. Empty follicle syndrome (EFS) was highest in women with AA or AG type at both positions. On categorisation of unexpected poor responders according to POSEIDON stratification; GG genotype at both positions had the lowest risk ratio of low-oocyte yield in ART cycles, but these differences were not statistically significant. This is the largest study from Indian ethnicity showing GG (Ser/Ser) genotype is most common among fertile women. The effect of FSH-R genotypes is very marginal on IVF parameters and is not reflected in CLBR. More prospective data may be required on the correlation of these genotypes with genuine EFS, thus stratifying the next cycles with self or donor oocytes. Routine genetic testing of FSH-R polymorphism should not be done except in a research setting. As both 680 and 307 positions are in linkage disequilibrium, only 680 position analysis may be done in a research setting.
{"title":"Prevalence of FSH-R Asn680Ser and Ala307Thr receptor polymorphism and their correlation with ART outcomes among infertile Indian-Asian women-a prospective cohort study","authors":"Reeta Mahey, Monika Rajput, Rima Dada, Mani Kalaivani, Monica Gupta, Rohitha Cheluvaraju, Neena Malhotra, Monika Saini, Ashok Bhatt, Manoj Kumar, Neeta Singh, Neerja Bhatla","doi":"10.1038/s10038-024-01251-8","DOIUrl":"10.1038/s10038-024-01251-8","url":null,"abstract":"The present prospective cohort study evaluated the prevalence of FSH-R receptor Asn680Ser and Ala307Thr among infertile Indian women and the correlation of these polymorphisms with ART outcomes. Total 804 infertile and 209 fertile controls were enrolled for FSH-R analysis. Correlation of different genotypes with ovarian reserve markers, IVF parameters, and cumulative live birth rates (CLBR) was done among women undergoing IVF. In fertile controls, at 680 position GG (Ser/Ser) was the most common genotype; but among infertile women, all the genotypes were equally distributed. There was no significant difference in ovarian response parameters, oocyte yield, and CLBR among the three genotype groups. Empty follicle syndrome (EFS) was highest in women with AA or AG type at both positions. On categorisation of unexpected poor responders according to POSEIDON stratification; GG genotype at both positions had the lowest risk ratio of low-oocyte yield in ART cycles, but these differences were not statistically significant. This is the largest study from Indian ethnicity showing GG (Ser/Ser) genotype is most common among fertile women. The effect of FSH-R genotypes is very marginal on IVF parameters and is not reflected in CLBR. More prospective data may be required on the correlation of these genotypes with genuine EFS, thus stratifying the next cycles with self or donor oocytes. Routine genetic testing of FSH-R polymorphism should not be done except in a research setting. As both 680 and 307 positions are in linkage disequilibrium, only 680 position analysis may be done in a research setting.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"69 8","pages":"365-372"},"PeriodicalIF":2.6,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140653303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-23DOI: 10.1038/s10038-024-01247-4
Jin Liu, Weijing Wang, Jia Luo, Haiping Duan, Chunsheng Xu, Xiaocao Tian, Shumin Chen, Lin Ge, Dongfeng Zhang
Handgrip strength is a crucial indicator to monitor the change of cognitive function over time, but its mechanism still needs to be further explored. We sampled 59 monozygotic twin pairs to explore the potential mediating effect of DNA methylation (DNAm) on the association between handgrip strength and cognitive function. The initial step was the implementation of an epigenome-wide association analysis (EWAS) in the study participants, with the aim of identifying DNAm variations that are associated with handgrip strength. Following that, we conducted an assessment of the mediated effect of DNAm by the use of mediation analysis. In order to do an ontology enrichment study for CpGs, the GREAT program was used. There was a significant positive association between handgrip strength and cognitive function (β = 0.194, P < 0.001). The association between handgrip strength and DNAm of 124 CpGs was found to be statistically significant at a significance level of P < 1 × 10−4. Fifteen differentially methylated regions (DMRs) related to handgrip strength were found in genes such as SNTG2, KLB, CDH11, and PANX2. Of the 124 CpGs, 4 within KRBA1, and TRAK1 mediated the association between handgrip strength and cognitive function: each 1 kg increase in handgrip strength was associated with a potential decrease of 0.050 points in cognitive function scores, mediated by modifications in DNAm. The parallel mediating effect of these 4 CpGs was −0.081. The presence of DNAm variation associated with handgrip strength may play a mediated role in the association between handgrip strength and cognitive function.
{"title":"Mediation role of DNA methylation in association between handgrip strength and cognitive function in monozygotic twins","authors":"Jin Liu, Weijing Wang, Jia Luo, Haiping Duan, Chunsheng Xu, Xiaocao Tian, Shumin Chen, Lin Ge, Dongfeng Zhang","doi":"10.1038/s10038-024-01247-4","DOIUrl":"10.1038/s10038-024-01247-4","url":null,"abstract":"Handgrip strength is a crucial indicator to monitor the change of cognitive function over time, but its mechanism still needs to be further explored. We sampled 59 monozygotic twin pairs to explore the potential mediating effect of DNA methylation (DNAm) on the association between handgrip strength and cognitive function. The initial step was the implementation of an epigenome-wide association analysis (EWAS) in the study participants, with the aim of identifying DNAm variations that are associated with handgrip strength. Following that, we conducted an assessment of the mediated effect of DNAm by the use of mediation analysis. In order to do an ontology enrichment study for CpGs, the GREAT program was used. There was a significant positive association between handgrip strength and cognitive function (β = 0.194, P < 0.001). The association between handgrip strength and DNAm of 124 CpGs was found to be statistically significant at a significance level of P < 1 × 10−4. Fifteen differentially methylated regions (DMRs) related to handgrip strength were found in genes such as SNTG2, KLB, CDH11, and PANX2. Of the 124 CpGs, 4 within KRBA1, and TRAK1 mediated the association between handgrip strength and cognitive function: each 1 kg increase in handgrip strength was associated with a potential decrease of 0.050 points in cognitive function scores, mediated by modifications in DNAm. The parallel mediating effect of these 4 CpGs was −0.081. The presence of DNAm variation associated with handgrip strength may play a mediated role in the association between handgrip strength and cognitive function.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"69 8","pages":"357-363"},"PeriodicalIF":2.6,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140665731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Distal Xq28 duplication, or int22h1/int22h2-mediated Xq28 duplication syndrome, leads to cognitive impairment, neurobehavioral issues, and facial dysmorphisms. Existing literature has limited information on clinical traits and penetrance. We identified cases of distal Xq28 duplication (chrX: 154,126,575–154,709,680, GRCh37/hg19) through a review of clinical records and microarray reports from five centers, encompassing both postnatal and prenatal cases, with no prior family knowledge of the duplication. Our search found 47 cases across 26 families, with duplications ranging from 208 to 935 Kb. In total, 8 out of 26 index cases featured a 200–300 kb partial duplication, mainly from Armenian/Caucasian Jewish backgrounds. Most prenatal cases showed no major fetal ultrasound malformations. Of cases with known inheritance mode (15 out of 26), maternal inheritance was more common (80%). The study identified seven male carriers of the duplication from six unrelated families, indicating partial penetrance in males. Our study provides key insights into distal Xq28 duplication. Most prenatal tests showed no major fetal ultrasound issues. Maternal inheritance was common, with unaffected mothers. In the postnatal group, a balanced gender distribution was observed. Among male family members, two fathers had ADHD, one was healthy, and one brother had mild symptoms, indicating partial penetrance in males.
{"title":"Exploring inheritance, and clinical penetrance of distal Xq28 duplication syndrome: insights from 47 new unpublished cases","authors":"Michal Levy, Eyal Elron, Mordechai Shohat, Shira Lifshitz, Sarit Kahana, Hagit Shani, Anat Grossman, Shirly Amar, Ginat Narkis, Lena Sagi-Dain, Lina Basel-Salmon, Idit Maya","doi":"10.1038/s10038-024-01252-7","DOIUrl":"10.1038/s10038-024-01252-7","url":null,"abstract":"Distal Xq28 duplication, or int22h1/int22h2-mediated Xq28 duplication syndrome, leads to cognitive impairment, neurobehavioral issues, and facial dysmorphisms. Existing literature has limited information on clinical traits and penetrance. We identified cases of distal Xq28 duplication (chrX: 154,126,575–154,709,680, GRCh37/hg19) through a review of clinical records and microarray reports from five centers, encompassing both postnatal and prenatal cases, with no prior family knowledge of the duplication. Our search found 47 cases across 26 families, with duplications ranging from 208 to 935 Kb. In total, 8 out of 26 index cases featured a 200–300 kb partial duplication, mainly from Armenian/Caucasian Jewish backgrounds. Most prenatal cases showed no major fetal ultrasound malformations. Of cases with known inheritance mode (15 out of 26), maternal inheritance was more common (80%). The study identified seven male carriers of the duplication from six unrelated families, indicating partial penetrance in males. Our study provides key insights into distal Xq28 duplication. Most prenatal tests showed no major fetal ultrasound issues. Maternal inheritance was common, with unaffected mothers. In the postnatal group, a balanced gender distribution was observed. Among male family members, two fathers had ADHD, one was healthy, and one brother had mild symptoms, indicating partial penetrance in males.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"69 7","pages":"337-343"},"PeriodicalIF":2.6,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s10038-024-01252-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140614538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biallelic TOE1 variants can cause pontocerebellar hypoplasia type 7 (PCH7), a condition characterized by pontocerebellar hypoplasia with genital abnormality. TOE1 is a 3’-exonuclese for 3’-end maturation in small nuclear RNA. TOE1 pathogenic variants have been reported at the DEDD catalytic domain and zinc finger motif. Here, we describe a PCH7 patient with novel compound heterozygous TOE1 variants and a detailed clinical course. The patient was a 3-year-old female and showed developmental delay without cerebellar ataxic behavior. Head MRI revealed delayed myelination without pontocerebellar hypoplasia at 9 months of age. Progressive pontocerebellar atrophy was prominent at follow-up MRI. Cerebral abnormalities are characteristic features of PCH7 before pontocerebellar atrophy is observed. One variant, p.Arg331*, was located at the nuclear localization motif (NLM) and partially escaped from nonsense-mediated decay. This variant affected nuclear localization in mutant expressing cells, thus, the TOE1 variant at NLM leads to TOE1 dysfunction associated with nuclear mis-localization.
{"title":"Role of TOE1 variants at the nuclear localization motif in pontocerebellar hypoplasia 7","authors":"Yukiko Kuroda, Takuya Naruto, Yu Tsuyusaki, Ayumi Kato, Noriko Aida, Kenji Kurosawa","doi":"10.1038/s10038-024-01244-7","DOIUrl":"10.1038/s10038-024-01244-7","url":null,"abstract":"Biallelic TOE1 variants can cause pontocerebellar hypoplasia type 7 (PCH7), a condition characterized by pontocerebellar hypoplasia with genital abnormality. TOE1 is a 3’-exonuclese for 3’-end maturation in small nuclear RNA. TOE1 pathogenic variants have been reported at the DEDD catalytic domain and zinc finger motif. Here, we describe a PCH7 patient with novel compound heterozygous TOE1 variants and a detailed clinical course. The patient was a 3-year-old female and showed developmental delay without cerebellar ataxic behavior. Head MRI revealed delayed myelination without pontocerebellar hypoplasia at 9 months of age. Progressive pontocerebellar atrophy was prominent at follow-up MRI. Cerebral abnormalities are characteristic features of PCH7 before pontocerebellar atrophy is observed. One variant, p.Arg331*, was located at the nuclear localization motif (NLM) and partially escaped from nonsense-mediated decay. This variant affected nuclear localization in mutant expressing cells, thus, the TOE1 variant at NLM leads to TOE1 dysfunction associated with nuclear mis-localization.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"69 7","pages":"349-355"},"PeriodicalIF":2.6,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140590772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We herein report a case with a novel homozygous variant in the kyphoscoliosis peptidase (KY) gene. A 58-year-old Japanese female was referred to our hospital with a gait disturbance that gradually worsened after the age of 50. She had bilateral equinus foot deformity since early childhood. Neurological examination revealed moderate weakness of the neck, trunk, femoral, and brachial muscles, mild respiratory failure, and areflexia. Whole-exome sequencing revealed a novel homozygous frameshift variant of the KY gene, NM_178554.6:c.824del p.(Glu275Glyfs*53). Our case demonstrated that KY-associated neuromuscular disease can present with extremely slow progressive muscle weakness and respiratory failure over a long natural course.
{"title":"Long-term course of a case with a novel homozygous kyphoscoliosis peptidase variant","authors":"Yohei Misumi, Taro Yamashita, Aki Kuratomi, Yoshitaka Murakami, Atsushi Fujita, Naomichi Matsumoto, Mitsuharu Ueda","doi":"10.1038/s10038-024-01250-9","DOIUrl":"10.1038/s10038-024-01250-9","url":null,"abstract":"We herein report a case with a novel homozygous variant in the kyphoscoliosis peptidase (KY) gene. A 58-year-old Japanese female was referred to our hospital with a gait disturbance that gradually worsened after the age of 50. She had bilateral equinus foot deformity since early childhood. Neurological examination revealed moderate weakness of the neck, trunk, femoral, and brachial muscles, mild respiratory failure, and areflexia. Whole-exome sequencing revealed a novel homozygous frameshift variant of the KY gene, NM_178554.6:c.824del p.(Glu275Glyfs*53). Our case demonstrated that KY-associated neuromuscular disease can present with extremely slow progressive muscle weakness and respiratory failure over a long natural course.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"69 7","pages":"345-348"},"PeriodicalIF":2.6,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140590776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}