Pub Date : 2024-10-15DOI: 10.1038/s10038-024-01295-w
Jonghyun Kim, Fuzuki Mizuno, Takayuki Matsushita, Masami Matsushita, Saki Aoto, Koji Ishiya, Mami Kamio, Izumi Naka, Michiko Hayashi, Kunihiko Kurosaki, Shintaroh Ueda, Jun Ohashi
Mainland Japanese have been recognized as having dual ancestry, originating from indigenous Jomon people and immigrants from continental East Eurasia. Although migration from the continent to the Japanese Archipelago continued from the Yayoi to the Kofun period, our understanding of these immigrants, particularly their origins, remains insufficient due to the lack of high-quality genome samples from the Yayoi period, complicating predictions about the admixture process. To address this, we sequenced the whole nuclear genome of a Yayoi individual from the Doigahama site in Yamaguchi prefecture, Japan. A comprehensive population genetic analysis of the Doigahama Yayoi individual, along with ancient and modern populations in East Asia and Northeastern Eurasia, revealed that the Doigahama Yayoi individual, similar to Kofun individuals and modern Mainland Japanese, had three distinct genetic ancestries: Jomon-related, East Asian-related, and Northeastern Siberian-related. Among non-Japanese populations, the Korean population, possessing both East Asian-related and Northeastern Siberian-related ancestries, exhibited the highest degree of genetic similarity to the Doigahama Yayoi individual. The analysis of admixture modeling for Yayoi individuals, Kofun individuals, and modern Japanese respectively supported a two-way admixture model assuming Jomon-related and Korean-related ancestries. These results suggest that between the Yayoi and Kofun periods, the majority of immigrants to the Japanese Archipelago originated primarily from the Korean Peninsula.
{"title":"Genetic analysis of a Yayoi individual from the Doigahama site provides insights into the origins of immigrants to the Japanese Archipelago.","authors":"Jonghyun Kim, Fuzuki Mizuno, Takayuki Matsushita, Masami Matsushita, Saki Aoto, Koji Ishiya, Mami Kamio, Izumi Naka, Michiko Hayashi, Kunihiko Kurosaki, Shintaroh Ueda, Jun Ohashi","doi":"10.1038/s10038-024-01295-w","DOIUrl":"https://doi.org/10.1038/s10038-024-01295-w","url":null,"abstract":"<p><p>Mainland Japanese have been recognized as having dual ancestry, originating from indigenous Jomon people and immigrants from continental East Eurasia. Although migration from the continent to the Japanese Archipelago continued from the Yayoi to the Kofun period, our understanding of these immigrants, particularly their origins, remains insufficient due to the lack of high-quality genome samples from the Yayoi period, complicating predictions about the admixture process. To address this, we sequenced the whole nuclear genome of a Yayoi individual from the Doigahama site in Yamaguchi prefecture, Japan. A comprehensive population genetic analysis of the Doigahama Yayoi individual, along with ancient and modern populations in East Asia and Northeastern Eurasia, revealed that the Doigahama Yayoi individual, similar to Kofun individuals and modern Mainland Japanese, had three distinct genetic ancestries: Jomon-related, East Asian-related, and Northeastern Siberian-related. Among non-Japanese populations, the Korean population, possessing both East Asian-related and Northeastern Siberian-related ancestries, exhibited the highest degree of genetic similarity to the Doigahama Yayoi individual. The analysis of admixture modeling for Yayoi individuals, Kofun individuals, and modern Japanese respectively supported a two-way admixture model assuming Jomon-related and Korean-related ancestries. These results suggest that between the Yayoi and Kofun periods, the majority of immigrants to the Japanese Archipelago originated primarily from the Korean Peninsula.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Serotonin-transporter-linked polymorphic region (5-HTTLPR), a variable number of tandem repeats in the promoter region of serotonin transporter gene, is classified into short (S) and long (L) alleles. Initial case-control association studies claiming the risks of the S allele in depression and anxiety were not completely supported by recent studies. However, most studies, especially those on East Asian populations, have overlooked the complexity of 5-HTTLPR, which involves multiple different alleles with distinct functional properties. To address this issue, distinguishing multiple 5-HTTLPR alleles is essential. Here, using the 5-HTTLPR genotypes previously determined by exhaustive Sanger sequencing of approximately 1,500 Japanese subjects and their comprehensive SNP data, we constructed a method for 5-HTTLPR genotype imputation. We identified 28 tag SNPs for the imputation of four major 5-HTTLPR alleles, which collectively account for 97.6% of 5-HTTLPR alleles in the Japanese population. Our imputation method, achieved an accuracy of 0.872 in cross-validation, will contribute to association analysis of 5-HTTLPR in the Japanese subjects.
{"title":"Development of a method for the imputation of the multi-allelic serotonin-transporter-linked polymorphic region (5-HTTLPR) in the Japanese population.","authors":"Yutaro Yanagida, Izumi Naka, Yutaka Nakachi, Tempei Ikegame, Kiyoto Kasai, Naoto Kajitani, Minoru Takebayashi, Miki Bundo, Jun Ohashi, Kazuya Iwamoto","doi":"10.1038/s10038-024-01296-9","DOIUrl":"https://doi.org/10.1038/s10038-024-01296-9","url":null,"abstract":"<p><p>Serotonin-transporter-linked polymorphic region (5-HTTLPR), a variable number of tandem repeats in the promoter region of serotonin transporter gene, is classified into short (S) and long (L) alleles. Initial case-control association studies claiming the risks of the S allele in depression and anxiety were not completely supported by recent studies. However, most studies, especially those on East Asian populations, have overlooked the complexity of 5-HTTLPR, which involves multiple different alleles with distinct functional properties. To address this issue, distinguishing multiple 5-HTTLPR alleles is essential. Here, using the 5-HTTLPR genotypes previously determined by exhaustive Sanger sequencing of approximately 1,500 Japanese subjects and their comprehensive SNP data, we constructed a method for 5-HTTLPR genotype imputation. We identified 28 tag SNPs for the imputation of four major 5-HTTLPR alleles, which collectively account for 97.6% of 5-HTTLPR alleles in the Japanese population. Our imputation method, achieved an accuracy of 0.872 in cross-validation, will contribute to association analysis of 5-HTTLPR in the Japanese subjects.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction: Association study of GBA1 variants with MSA based on comprehensive sequence analysis -Pitfalls in short-read sequence analysis depending on the human reference genome-","authors":"Kenta Orimo, Jun Mitsui, Takashi Matsukawa, Masaki Tanaka, Junko Nomoto, Hiroyuki Ishiura, Yosuke Omae, Yosuke Kawai, Katsushi Tokunaga, NCBN Controls WGS Consortium, Tatsushi Toda, Shoji Tsuji","doi":"10.1038/s10038-024-01293-y","DOIUrl":"10.1038/s10038-024-01293-y","url":null,"abstract":"","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"69 12","pages":"679-680"},"PeriodicalIF":2.6,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s10038-024-01293-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142289278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TXNDC15 encodes thioredoxin domain-containing protein 15, a protein disulfide isomerase that plays a role in ciliogenesis. Biallelic TXNDC15 variants have been reported in six individuals of Meckel syndrome (MKS) with perinatal lethal phenotypes, but have not been reported in patients with Joubert syndrome (JS). Here, we describe a 1-year-old female patient with compound heterozygous TXNDC15 variants demonstrating cerebellar vermis hypoplasia with the molar tooth sign, mild holoprosencephaly, and cortical abnormalities. She had severe developmental delay and epilepsy. Her clinical features were similar to those of JS, but distinctive forebrain abnormalities were also noted including mild holoprosencephaly and cortical abnormalities, which have been reported in a severe form of ciliopathy. Biallelic TXNDC15 variants manifest as overlapping phenotypes of JS and MKS, including the molar tooth sign, cortical dysgenesis, and mild holoprosencephaly. This report supports the hypothesis that JS and MKS are spectrum ciliopathy disorders with overlapping causative genes and hypomorphic TXNDC15 variants might contribute to JS.
{"title":"Biallelic TXNDC15 variants associated with Joubert syndrome-related molar tooth sign and forebrain malformation.","authors":"Yukiko Kuroda, Tamaki Ikegawa, Ayumi Kato, Noriko Aida, Takuya Naruto, Kenji Kurosawa","doi":"10.1038/s10038-024-01290-1","DOIUrl":"https://doi.org/10.1038/s10038-024-01290-1","url":null,"abstract":"<p><p>TXNDC15 encodes thioredoxin domain-containing protein 15, a protein disulfide isomerase that plays a role in ciliogenesis. Biallelic TXNDC15 variants have been reported in six individuals of Meckel syndrome (MKS) with perinatal lethal phenotypes, but have not been reported in patients with Joubert syndrome (JS). Here, we describe a 1-year-old female patient with compound heterozygous TXNDC15 variants demonstrating cerebellar vermis hypoplasia with the molar tooth sign, mild holoprosencephaly, and cortical abnormalities. She had severe developmental delay and epilepsy. Her clinical features were similar to those of JS, but distinctive forebrain abnormalities were also noted including mild holoprosencephaly and cortical abnormalities, which have been reported in a severe form of ciliopathy. Biallelic TXNDC15 variants manifest as overlapping phenotypes of JS and MKS, including the molar tooth sign, cortical dysgenesis, and mild holoprosencephaly. This report supports the hypothesis that JS and MKS are spectrum ciliopathy disorders with overlapping causative genes and hypomorphic TXNDC15 variants might contribute to JS.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142289277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We surveyed the status of the secondary finding (SF) disclosure in comprehensive genome profiling (CGP) in 2020. The situation has changed: increase in the number of hospitals that provide CGP, an update to the Comprehensive Tumor Genomic Profiling: Materials for Review of Secondary Findings (CTGPMRSF), and the addition of a liquid biopsy test, FoundationOne® Liquid CDx (F1L). Moreover, the actual situation was unclear because the 2020 survey did not include all designated and cooperative hospitals. Herein, we conducted a questionnaire survey of all designated-core, designated, and cooperative hospitals to identify the current status and challenges concerning SF in the CGP in 2022. A total of 82.1% of the hospitals responded and 77.7% of the response was from cooperative hospitals. Approximately 80% of the hospitals used CTGPMRSF. SF disclosure, confirmatory test implementation, and SF confirmation rates were 12.4%, 31.6%, and 46.6% for FoundationOne® CDx (F1CDx), respectively, and 6.8%, 31.8%, and 70.7% for F1L, respectively. The implementation rate of the confirmatory test was substantially higher in hospitals with genetic experts and in hospitals that could conduct confirmatory tests on the same day. Our survey provides insight into how SF is handled in Japan. The percentage of cases leading to confirmatory tests has gradually increased, although challenges such as insurance coverage limitations and varied understanding of SF among patients and healthcare providers persist. With the increasing use of whole-genome analysis, our findings will provide valuable insights into establishing an effective SF disclosure system.
我们调查了2020年全面基因组剖析(CGP)中二次发现(SF)的披露情况。情况已经发生了变化:提供 CGP 的医院数量增加,《肿瘤基因组综合分析》(Comprehensive Tumor Genomic Profiling:次要结果审查材料》(CTGPMRSF)的更新,以及液体活检试验 FoundationOne® Liquid CDx (F1L) 的增加。此外,由于 2020 年的调查并未包括所有指定医院和合作医院,因此实际情况并不清楚。在此,我们对所有指定核心医院、指定医院和合作医院进行了问卷调查,以确定2022年CGP中有关SF的现状和挑战。共有 82.1% 的医院做出了回应,其中 77.7% 的回应来自合作医院。约 80% 的医院使用 CTGPMRSF。FoundationOne® CDx (F1CDx) 的 SF 披露率、确证试验实施率和 SF 确认率分别为 12.4%、31.6% 和 46.6%,F1L 的 SF 披露率、确证试验实施率和 SF 确认率分别为 6.8%、31.8% 和 70.7%。在拥有遗传专家的医院和能在同一天进行确证检验的医院,确证检验的实施率要高得多。我们的调查有助于了解日本如何处理 SF。尽管仍存在保险范围限制、患者和医疗服务提供者对 SF 的理解不同等挑战,但进行确证检验的病例比例已逐渐增加。随着全基因组分析的应用日益广泛,我们的调查结果将为建立有效的 SF 披露系统提供有价值的见解。
{"title":"Nationwide survey of the secondary findings in cancer genomic profiling: survey including liquid biopsy","authors":"Saki Shimada, Takahiro Yamada, Akari Minamoto, Manami Matsukawa, Ichiro Yabe, Hiroshi Tada, Katsutoshi Oda, Arisa Ueki, Satomi Higashigawa, Maki Morikawa, Yuki Sato, Akira Hirasawa, Masanobu Ogawa, Tomohiro Kondo, Masahiro Yoshioka, Masashi Kanai, Manabu Muto, Shinji Kosugi","doi":"10.1038/s10038-024-01294-x","DOIUrl":"https://doi.org/10.1038/s10038-024-01294-x","url":null,"abstract":"<p>We surveyed the status of the secondary finding (SF) disclosure in comprehensive genome profiling (CGP) in 2020. The situation has changed: increase in the number of hospitals that provide CGP, an update to the Comprehensive Tumor Genomic Profiling: Materials for Review of Secondary Findings (CTGPMRSF), and the addition of a liquid biopsy test, FoundationOne<sup>®</sup> Liquid CDx (F1L). Moreover, the actual situation was unclear because the 2020 survey did not include all designated and cooperative hospitals. Herein, we conducted a questionnaire survey of all designated-core, designated, and cooperative hospitals to identify the current status and challenges concerning SF in the CGP in 2022. A total of 82.1% of the hospitals responded and 77.7% of the response was from cooperative hospitals. Approximately 80% of the hospitals used CTGPMRSF. SF disclosure, confirmatory test implementation, and SF confirmation rates were 12.4%, 31.6%, and 46.6% for FoundationOne<sup>®</sup> CDx (F1CDx), respectively, and 6.8%, 31.8%, and 70.7% for F1L, respectively. The implementation rate of the confirmatory test was substantially higher in hospitals with genetic experts and in hospitals that could conduct confirmatory tests on the same day. Our survey provides insight into how SF is handled in Japan. The percentage of cases leading to confirmatory tests has gradually increased, although challenges such as insurance coverage limitations and varied understanding of SF among patients and healthcare providers persist. With the increasing use of whole-genome analysis, our findings will provide valuable insights into establishing an effective SF disclosure system.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"18 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142262710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mutations in IBA57 disrupt iron-sulfur clusters maturation, causing a rare mitochondrial disease. Clinical manifestations vary from neonatal lethality to childhood-onset spastic paraparesis, yet the ethnic heterogeneity and natural history remain unclear, necessitating further exploration. This study aimed to delineate the genotype-phenotype correlation of IBA57 mutations by analyzing diverse clinical presentations. We report 11 Chinese patients and include literature-reported cases, totaling 61 patients enrolled for analysis. Clinical, neuroimaging, genetic, and disease progression information were collected. Among these, 46 presented as multiple mitochondrial dysfunctions syndrome 3 (MMDS3), with 58.7% originating from Chinese population. Based on disease course, we propose three clinical subtypes: neonatal, infant and childhood subtypes. Neonatal cases universally displayed hypotonia and respiratory distress at presentation, deceased within three months. Most infancy and childhood cases exhibited developmental regression and impaired motor function. Cavitating leukoencephalopathy was a typical neuroimaging finding in MMDS3 patients. The c.286 T > C mutation was reported in 85.2% of Chinese patients. A significantly lower mortality rate was observed compared to the non-Chinese group (P = 0.002), with a survival rate exceeding 90% at 5 years, indicating a relatively stable disease progression. Fifteen cases from three families manifested the spastic paraplegia 74 phenotype, demonstrating normal development before onset, with common clinical manifestations including spastic paraplegia (14/15), visual impairment (10/13), and peripheral neuropathy (9/13). In conclusion, this study indicates a hotspot mutation in Chinese and analyses the disease progression with different clinical subtypes.
{"title":"Phenotypic spectrum of iron-sulfur cluster assembly gene IBA57 mutations: c.286 T > C identified as a hotspot mutation in Chinese patients with a stable natural history.","authors":"Huafang Jiang, Chaolong Xu, Ruoyu Duan, Zhimei Liu, Xiaotun Ren, Jiuwei Li, Chunhong Chen, Hongmei Wang, Tongli Han, Xiaojuan Tian, Xin Duan, Minhan Song, Tongyue Li, Fang Fang","doi":"10.1038/s10038-024-01291-0","DOIUrl":"https://doi.org/10.1038/s10038-024-01291-0","url":null,"abstract":"<p><p>Mutations in IBA57 disrupt iron-sulfur clusters maturation, causing a rare mitochondrial disease. Clinical manifestations vary from neonatal lethality to childhood-onset spastic paraparesis, yet the ethnic heterogeneity and natural history remain unclear, necessitating further exploration. This study aimed to delineate the genotype-phenotype correlation of IBA57 mutations by analyzing diverse clinical presentations. We report 11 Chinese patients and include literature-reported cases, totaling 61 patients enrolled for analysis. Clinical, neuroimaging, genetic, and disease progression information were collected. Among these, 46 presented as multiple mitochondrial dysfunctions syndrome 3 (MMDS3), with 58.7% originating from Chinese population. Based on disease course, we propose three clinical subtypes: neonatal, infant and childhood subtypes. Neonatal cases universally displayed hypotonia and respiratory distress at presentation, deceased within three months. Most infancy and childhood cases exhibited developmental regression and impaired motor function. Cavitating leukoencephalopathy was a typical neuroimaging finding in MMDS3 patients. The c.286 T > C mutation was reported in 85.2% of Chinese patients. A significantly lower mortality rate was observed compared to the non-Chinese group (P = 0.002), with a survival rate exceeding 90% at 5 years, indicating a relatively stable disease progression. Fifteen cases from three families manifested the spastic paraplegia 74 phenotype, demonstrating normal development before onset, with common clinical manifestations including spastic paraplegia (14/15), visual impairment (10/13), and peripheral neuropathy (9/13). In conclusion, this study indicates a hotspot mutation in Chinese and analyses the disease progression with different clinical subtypes.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wilson's disease (WD) is a rare metabolic disorder caused by variations in the ATP7B gene. It usually manifests hepatic, neurologic, and psychiatric symptoms due to excessive copper accumulation. The prevalence of WD and its common variants differ across populations. This study aimed to examine these aspects of WD within the Thai population, where information has been limited. We reviewed ClinVar and the Wilson Disease Mutation Database, organizing variants classified as pathogenic or likely pathogenic in one or both databases as "relaxed" and "strict" lists. Allele frequencies were estimated from genotyping array data (Asian Screening Array: ASA; Illumina Corp, CA) of 6291 Thai subjects, which also underwent genotype imputation. The prevalence of WD in the Thai population was estimated assuming Hardy-Weinberg Equilibrium. The strict list yielded a prevalence of 1/24,128 (carrier frequency=1/78), while the relaxed list yielded a prevalence of 1/9971 (carrier frequency=1/50). The most common WD variants in Thai subjects were c.2333 G > T, c.3443 T > C, and c.813 C > A from the strict list, and c.3316 G > A and c.2605 G > A from the relaxed list. The ASA chip covered approximately 59 and 24% of WD variants from the strict and relaxed lists, respectively. Based on the estimated prevalence, a carrier screening program for WD is not currently required in Thailand. However, as genotyping services become more affordable and accessible, such a program would facilitate early identification, treatment, and prevention of WD.
威尔逊氏病(WD)是一种罕见的代谢性疾病,由 ATP7B 基因变异引起。由于铜积累过多,它通常表现为肝脏、神经和精神症状。WD的发病率及其常见变异在不同人群中存在差异。本研究的目的是在信息有限的泰国人群中研究 WD 的这些方面。我们查阅了 ClinVar 和威尔森氏病突变数据库,将在一个或两个数据库中被归类为致病或可能致病的变异体整理为 "宽松 "和 "严格 "列表。根据 6291 名泰国受试者的基因分型阵列数据(Asian Screening Array: ASA; Illumina Corp, CA)估算了等位基因频率,并对这些数据进行了基因型归因。假定Hardy-Weinberg Equilibrium平衡,对泰国人群的WD患病率进行了估计。严格列表的患病率为1/24,128(携带者频率=1/78),而宽松列表的患病率为1/9971(携带者频率=1/50)。泰国受试者中最常见的 WD 变异是严格列表中的 c.2333 G > T、c.3443 T > C 和 c.813 C > A,以及宽松列表中的 c.3316 G > A 和 c.2605 G > A。ASA 芯片分别覆盖了严格列表和宽松列表中约 59% 和 24% 的 WD 变异。根据估计的发病率,泰国目前不需要开展 WD 携带者筛查项目。不过,随着基因分型服务变得更加经济实惠和容易获得,这样的项目将有助于WD的早期识别、治疗和预防。
{"title":"Investigating common mutations in ATP7B gene and the prevalence of Wilson's disease in the Thai population using population-based genome-wide datasets.","authors":"Paravee Own-Eium, Donniphat Dejsuphong, Prin Vathesatogkit, Piyamitr Sritara, Thanyachai Sura, Wichai Aekplakorn, Bhoom Suktitipat, Jakris Eu-Ahsunthornwattana","doi":"10.1038/s10038-024-01292-z","DOIUrl":"https://doi.org/10.1038/s10038-024-01292-z","url":null,"abstract":"<p><p>Wilson's disease (WD) is a rare metabolic disorder caused by variations in the ATP7B gene. It usually manifests hepatic, neurologic, and psychiatric symptoms due to excessive copper accumulation. The prevalence of WD and its common variants differ across populations. This study aimed to examine these aspects of WD within the Thai population, where information has been limited. We reviewed ClinVar and the Wilson Disease Mutation Database, organizing variants classified as pathogenic or likely pathogenic in one or both databases as \"relaxed\" and \"strict\" lists. Allele frequencies were estimated from genotyping array data (Asian Screening Array: ASA; Illumina Corp, CA) of 6291 Thai subjects, which also underwent genotype imputation. The prevalence of WD in the Thai population was estimated assuming Hardy-Weinberg Equilibrium. The strict list yielded a prevalence of 1/24,128 (carrier frequency=1/78), while the relaxed list yielded a prevalence of 1/9971 (carrier frequency=1/50). The most common WD variants in Thai subjects were c.2333 G > T, c.3443 T > C, and c.813 C > A from the strict list, and c.3316 G > A and c.2605 G > A from the relaxed list. The ASA chip covered approximately 59 and 24% of WD variants from the strict and relaxed lists, respectively. Based on the estimated prevalence, a carrier screening program for WD is not currently required in Thailand. However, as genotyping services become more affordable and accessible, such a program would facilitate early identification, treatment, and prevention of WD.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142093514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1038/s10038-024-01282-1
Yoichiro Kamatani, Tadashi Kaname
{"title":"Artificial intelligence in medical genomics","authors":"Yoichiro Kamatani, Tadashi Kaname","doi":"10.1038/s10038-024-01282-1","DOIUrl":"10.1038/s10038-024-01282-1","url":null,"abstract":"","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"69 10","pages":"475-475"},"PeriodicalIF":2.6,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s10038-024-01282-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Obesity and overweight, fundamental components of the metabolic syndrome, predispose individuals to lifestyle-related diseases. The extent to which adopting healthy lifestyles can reduce obesity risk, even in those with a high genetic risk, remains uncertain. Our aim was to assess the extent to which lifestyle modifications can improve outcomes in individuals with a high polygenic score (PGS) for obesity. We quantified the genetic risk of obesity using PGSs. Four datasets from the Tohoku Medical Megabank Community-Based Cohort (TMM CommCohort) were employed in the study. One dataset (n = 9958) was used to select the best model for calculating PGS. The remaining datasets (total n = 69,341) were used in a meta-analysis to validate the model and to evaluate associated risks. The odds ratio (OR) for obesity risk in the intermediate (11th-90th percentiles in the dataset) and high PGS categories (91st-100th) was 2.27 [95% confidence intervals: 2.12-2.44] and 4.83 [4.45-5.25], respectively, compared to that in the low PGS category (1st-10th). Trend analysis showed that an increase in leisure-time physical activity was significantly associated with reduced obesity risk across all genetic risk categories, representing an OR of 0.9 [0.87-0.94] even among individuals in the high PGS category. Similarly, sodium intake displayed a positive association with obesity across all genetic risk categories, yielding an OR of 1.24 [1.17-1.31] in the high PGS category. The risk of obesity was linked to the adoption of healthy lifestyles, even in individuals with high PGS. Our results may provide perspectives for integrating PGSs into preventive medicine.
{"title":"Healthy lifestyle practice correlates with decreased obesity prevalence in individuals with high polygenic risk: TMM CommCohort study.","authors":"Yoichi Sutoh, Tsuyoshi Hachiya, Yayoi Otsuka-Yamasaki, Shohei Komaki, Shiori Minabe, Hideki Ohmomo, Makoto Sasaki, Atsushi Shimizu","doi":"10.1038/s10038-024-01280-3","DOIUrl":"https://doi.org/10.1038/s10038-024-01280-3","url":null,"abstract":"<p><p>Obesity and overweight, fundamental components of the metabolic syndrome, predispose individuals to lifestyle-related diseases. The extent to which adopting healthy lifestyles can reduce obesity risk, even in those with a high genetic risk, remains uncertain. Our aim was to assess the extent to which lifestyle modifications can improve outcomes in individuals with a high polygenic score (PGS) for obesity. We quantified the genetic risk of obesity using PGSs. Four datasets from the Tohoku Medical Megabank Community-Based Cohort (TMM CommCohort) were employed in the study. One dataset (n = 9958) was used to select the best model for calculating PGS. The remaining datasets (total n = 69,341) were used in a meta-analysis to validate the model and to evaluate associated risks. The odds ratio (OR) for obesity risk in the intermediate (11th-90th percentiles in the dataset) and high PGS categories (91st-100th) was 2.27 [95% confidence intervals: 2.12-2.44] and 4.83 [4.45-5.25], respectively, compared to that in the low PGS category (1st-10th). Trend analysis showed that an increase in leisure-time physical activity was significantly associated with reduced obesity risk across all genetic risk categories, representing an OR of 0.9 [0.87-0.94] even among individuals in the high PGS category. Similarly, sodium intake displayed a positive association with obesity across all genetic risk categories, yielding an OR of 1.24 [1.17-1.31] in the high PGS category. The risk of obesity was linked to the adoption of healthy lifestyles, even in individuals with high PGS. Our results may provide perspectives for integrating PGSs into preventive medicine.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hydrops fetalis, characterized by abnormal fluid accumulation in fetuses, presents a significant risk of stillbirth and neonatal mortality. Although the etiology of nonimmune hydrops fetalis (NIHF) is multifaceted, recent studies have highlighted genetic factors as crucial determinants. This study focused on a family with three consecutive stillbirths, each with pronounced hydrops fetalis. Using whole-exome sequencing (WES), we identified compound heterozygous variants of the SCN4A gene encoding the voltage-gated sodium channel of the skeletal muscle (hNav1.4), c.2429T>A p.L810Q and c.4556T>C p.F1519S, in all three deceased infants. A functional analysis conducted using the whole-cell patch-clamp technique revealed loss-of-function defects in both variant channels, with F1519S exhibiting a complete loss of ionic current and L810Q showing a reduced channel opening. These findings support the pathogenicity of SCN4A variants in NIHF and underscore the significance of functional studies in elucidating genotype-phenotype correlations. Furthermore, our study emphasizes the diagnostic value of WES in cases of NIHF in where standard genetic testing fails to identify causative variants.
{"title":"Hydrops fetalis due to loss of function of hNav1.4 channel via compound heterozygous variants.","authors":"Tomoya Kubota, Miho Nagata, Kazuko Takagi, Yasuki Ishihara, Kurumi Kojima, Yuka Uchikura, Reina Yamamoto, Ayumi Yonei, Erina Ozaki, Natsuki Kira, Satoe Takahashi, Kazuaki Homma, Yohei Miyashita, Minenori Eguchi-Ishimae, Norio Sakai, Yohihiro Asano, Yasushi Sakata, Keiichi Ozono, Mariko Eguchi, Masanori P Takahashi","doi":"10.1038/s10038-024-01284-z","DOIUrl":"https://doi.org/10.1038/s10038-024-01284-z","url":null,"abstract":"<p><p>Hydrops fetalis, characterized by abnormal fluid accumulation in fetuses, presents a significant risk of stillbirth and neonatal mortality. Although the etiology of nonimmune hydrops fetalis (NIHF) is multifaceted, recent studies have highlighted genetic factors as crucial determinants. This study focused on a family with three consecutive stillbirths, each with pronounced hydrops fetalis. Using whole-exome sequencing (WES), we identified compound heterozygous variants of the SCN4A gene encoding the voltage-gated sodium channel of the skeletal muscle (hNav1.4), c.2429T>A p.L810Q and c.4556T>C p.F1519S, in all three deceased infants. A functional analysis conducted using the whole-cell patch-clamp technique revealed loss-of-function defects in both variant channels, with F1519S exhibiting a complete loss of ionic current and L810Q showing a reduced channel opening. These findings support the pathogenicity of SCN4A variants in NIHF and underscore the significance of functional studies in elucidating genotype-phenotype correlations. Furthermore, our study emphasizes the diagnostic value of WES in cases of NIHF in where standard genetic testing fails to identify causative variants.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}