首页 > 最新文献

Journal of Industrial Microbiology & Biotechnology最新文献

英文 中文
Biosensor development for single-cell detection of glucuronate. 葡萄糖醛酸单细胞检测生物传感器的研制。
IF 3.4 4区 生物学 Q1 Medicine Pub Date : 2023-02-17 DOI: 10.1093/jimb/kuad013
Jennifer Kaczmarek Nash, Kristala L J Prather

Recent work in biosensors has shown promise to enable high throughput searches through large genetic libraries. However, just as physiological limitations and lack of in-depth mechanistic knowledge can prevent us from achieving high titers in microbial systems; similar roadblocks can appear in the application of biosensors. Here, we characterized a previously developed transcription-factor (ExuR) based galacturonate biosensor for its other cognate ligand, glucuronate. Though we saw an ideal response to glucuronate from the biosensor in controlled and ideal experimental circumstances, these results began to deviate from a well-behaved system when we explored the application of the sensor to different MIOX homologs. Through modifications to circuit architecture and culture conditions, we were able to decrease this variation and use these more optimal conditions to apply the biosensor for the separation of two closely related MIOX homologs.

One-sentence summary: In this work, a transcription-factor biosensor was investigated for its potential to screen a library of myo -inositol oxygenase variants while seeking to mitigate the impact the production pathway appeared to have on the biosensor.

最近在生物传感器方面的工作已经显示出通过大型遗传文库进行高通量搜索的希望。然而,正如生理限制和缺乏深入的机制知识可以阻止我们在微生物系统中实现高滴度;类似的障碍也可能出现在生物传感器的应用中。在这里,我们表征了先前开发的基于转录因子(ExuR)的半乳糖酸盐生物传感器,用于其其他同源配体葡萄糖醛酸盐。虽然我们在控制和理想的实验环境下看到了生物传感器对葡萄糖醛酸盐的理想响应,但当我们探索传感器在不同MIOX同源物中的应用时,这些结果开始偏离良好的系统。通过修改电路结构和培养条件,我们能够减少这种变化,并使用这些更优化的条件来应用生物传感器分离两个密切相关的MIOX同源物。一句话总结:在这项工作中,研究了转录因子生物传感器筛选肌醇加氧酶变体库的潜力,同时寻求减轻生产途径对生物传感器的影响。
{"title":"Biosensor development for single-cell detection of glucuronate.","authors":"Jennifer Kaczmarek Nash,&nbsp;Kristala L J Prather","doi":"10.1093/jimb/kuad013","DOIUrl":"https://doi.org/10.1093/jimb/kuad013","url":null,"abstract":"<p><p>Recent work in biosensors has shown promise to enable high throughput searches through large genetic libraries. However, just as physiological limitations and lack of in-depth mechanistic knowledge can prevent us from achieving high titers in microbial systems; similar roadblocks can appear in the application of biosensors. Here, we characterized a previously developed transcription-factor (ExuR) based galacturonate biosensor for its other cognate ligand, glucuronate. Though we saw an ideal response to glucuronate from the biosensor in controlled and ideal experimental circumstances, these results began to deviate from a well-behaved system when we explored the application of the sensor to different MIOX homologs. Through modifications to circuit architecture and culture conditions, we were able to decrease this variation and use these more optimal conditions to apply the biosensor for the separation of two closely related MIOX homologs.</p><p><strong>One-sentence summary: </strong>In this work, a transcription-factor biosensor was investigated for its potential to screen a library of myo -inositol oxygenase variants while seeking to mitigate the impact the production pathway appeared to have on the biosensor.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e7/ab/kuad013.PMC10294642.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9766055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small molecule inducers of actinobacteria natural product biosynthesis. 放线菌天然产物生物合成的小分子诱导剂。
IF 3.4 4区 生物学 Q1 Medicine Pub Date : 2023-02-17 DOI: 10.1093/jimb/kuad019
Amir Y Alwali, Elizabeth I Parkinson

Actinobacteria are a large and diverse group of bacteria that are known to produce a wide range of secondary metabolites, many of which have important biological activities, including antibiotics, anti-cancer agents, and immunosuppressants. The biosynthesis of these compounds is often highly regulated with many natural products (NPs) being produced at very low levels in laboratory settings. Environmental factors, such as small molecule elicitors, can induce the production of secondary metabolites. Specifically, they can increase titers of known NPs as well as enabling discovery of novel NPs typically produced at undetectable levels. These elicitors can be NPs, including antibiotics or hormones, or synthetic compounds. In recent years, there has been a growing interest in the use of small molecule elicitors to induce the production of secondary metabolites from actinobacteria, especially for the discovery of NPs from "silent" biosynthetic gene clusters. This review aims to highlight classes of molecules that induce secondary metabolite production in actinobacteria and to describe the potential mechanisms of induction.

One-sentence summary: This review describes chemical elicitors of actinobacteria natural products described to date and the proposed mechanisms of induction.

放线菌是一个庞大而多样的细菌群,已知会产生广泛的次级代谢产物,其中许多具有重要的生物活性,包括抗生素、抗癌剂和免疫抑制剂。这些化合物的生物合成通常受到高度调节,许多天然产物(NP)在实验室环境中以非常低的水平产生。环境因素,如小分子激发子,可以诱导次级代谢产物的产生。具体而言,它们可以提高已知NP的滴度,并能够发现通常以检测不到的水平产生的新型NP。这些激发子可以是NP,包括抗生素或激素,或合成化合物。近年来,人们对使用小分子激发子诱导放线菌产生次级代谢产物越来越感兴趣,尤其是从“沉默”的生物合成基因簇中发现NP。这篇综述旨在强调在放线菌中诱导次级代谢产物产生的分子类别,并描述诱导的潜在机制。一句话总结:这篇综述描述了迄今为止所描述的放线菌天然产物的化学诱导子以及所提出的诱导机制。
{"title":"Small molecule inducers of actinobacteria natural product biosynthesis.","authors":"Amir Y Alwali, Elizabeth I Parkinson","doi":"10.1093/jimb/kuad019","DOIUrl":"10.1093/jimb/kuad019","url":null,"abstract":"<p><p>Actinobacteria are a large and diverse group of bacteria that are known to produce a wide range of secondary metabolites, many of which have important biological activities, including antibiotics, anti-cancer agents, and immunosuppressants. The biosynthesis of these compounds is often highly regulated with many natural products (NPs) being produced at very low levels in laboratory settings. Environmental factors, such as small molecule elicitors, can induce the production of secondary metabolites. Specifically, they can increase titers of known NPs as well as enabling discovery of novel NPs typically produced at undetectable levels. These elicitors can be NPs, including antibiotics or hormones, or synthetic compounds. In recent years, there has been a growing interest in the use of small molecule elicitors to induce the production of secondary metabolites from actinobacteria, especially for the discovery of NPs from \"silent\" biosynthetic gene clusters. This review aims to highlight classes of molecules that induce secondary metabolite production in actinobacteria and to describe the potential mechanisms of induction.</p><p><strong>One-sentence summary: </strong>This review describes chemical elicitors of actinobacteria natural products described to date and the proposed mechanisms of induction.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f2/7e/kuad019.PMC10549211.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10004993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diversity and taxonomic distribution of bacterial biosynthetic gene clusters predicted to produce compounds with therapeutically relevant bioactivities. 细菌生物合成基因簇的多样性和分类分布预测产生具有治疗相关生物活性的化合物。
IF 3.4 4区 生物学 Q1 Medicine Pub Date : 2023-02-17 DOI: 10.1093/jimb/kuad024
Max L Beck, Siyeon Song, Isra E Shuster, Aarzu Miharia, Allison S Walker

Bacteria have long been a source of natural products with diverse bioactivities that have been developed into therapeutics to treat human disease. Historically, researchers have focused on a few taxa of bacteria, mainly Streptomyces and other actinomycetes. This strategy was initially highly successful and resulted in the golden era of antibiotic discovery. The golden era ended when the most common antibiotics from Streptomyces had been discovered. Rediscovery of known compounds has plagued natural product discovery ever since. Recently, there has been increasing interest in identifying other taxa that produce bioactive natural products. Several bioinformatics studies have identified promising taxa with high biosynthetic capacity. However, these studies do not address the question of whether any of the products produced by these taxa are likely to have activities that will make them useful as human therapeutics. We address this gap by applying a recently developed machine learning tool that predicts natural product activity from biosynthetic gene cluster (BGC) sequences to determine which taxa are likely to produce compounds that are not only novel but also bioactive. This machine learning tool is trained on a dataset of BGC-natural product activity pairs and relies on counts of different protein domains and resistance genes in the BGC to make its predictions. We find that rare and understudied actinomycetes are the most promising sources for novel active compounds. There are also several taxa outside of actinomycetes that are likely to produce novel active compounds. We also find that most strains of Streptomyces likely produce both characterized and uncharacterized bioactive natural products. The results of this study provide guidelines to increase the efficiency of future bioprospecting efforts.

One-sentence summary: This paper combines several bioinformatics workflows to identify which genera of bacteria are most likely to produce novel natural products with useful bioactivities such as antibacterial, antitumor, or antifungal activity.

长期以来,细菌一直是具有多种生物活性的天然产物的来源,这些产物已被开发成治疗人类疾病的疗法。历史上,研究人员一直关注少数细菌分类群,主要是链霉菌和其他放线菌。这一策略最初非常成功,并开创了抗生素发现的黄金时代。当链霉菌中最常见的抗生素被发现时,黄金时代结束了。从那以后,已知化合物的重新发现一直困扰着天然产物的发现。最近,人们对鉴定产生生物活性天然产物的其他分类群越来越感兴趣。一些生物信息学研究已经确定了具有高生物合成能力的有前景的分类群。然而,这些研究并没有解决这些分类群产生的任何产品是否可能具有使其作为人类治疗药物有用的活性的问题。我们通过应用最近开发的机器学习工具来解决这一差距,该工具预测生物合成基因簇(BGC)序列的天然产物活性,以确定哪些分类群可能产生不仅新颖而且具有生物活性的化合物。该机器学习工具在BGC天然产物活性对的数据集上进行训练,并依赖于BGC中不同蛋白质结构域和抗性基因的计数来进行预测。我们发现,稀有和研究不足的放线菌是最有前途的新活性化合物来源。放线菌之外还有几个分类群可能产生新的活性化合物。我们还发现,大多数链霉菌菌株可能产生具有特征和未特征的生物活性天然产物。这项研究的结果为提高未来生物勘探工作的效率提供了指导。一句话总结:本文结合了几个生物信息学工作流程,以确定哪些属的细菌最有可能产生具有有用生物活性的新型天然产物,如抗菌、抗肿瘤或抗真菌活性。
{"title":"Diversity and taxonomic distribution of bacterial biosynthetic gene clusters predicted to produce compounds with therapeutically relevant bioactivities.","authors":"Max L Beck, Siyeon Song, Isra E Shuster, Aarzu Miharia, Allison S Walker","doi":"10.1093/jimb/kuad024","DOIUrl":"10.1093/jimb/kuad024","url":null,"abstract":"<p><p>Bacteria have long been a source of natural products with diverse bioactivities that have been developed into therapeutics to treat human disease. Historically, researchers have focused on a few taxa of bacteria, mainly Streptomyces and other actinomycetes. This strategy was initially highly successful and resulted in the golden era of antibiotic discovery. The golden era ended when the most common antibiotics from Streptomyces had been discovered. Rediscovery of known compounds has plagued natural product discovery ever since. Recently, there has been increasing interest in identifying other taxa that produce bioactive natural products. Several bioinformatics studies have identified promising taxa with high biosynthetic capacity. However, these studies do not address the question of whether any of the products produced by these taxa are likely to have activities that will make them useful as human therapeutics. We address this gap by applying a recently developed machine learning tool that predicts natural product activity from biosynthetic gene cluster (BGC) sequences to determine which taxa are likely to produce compounds that are not only novel but also bioactive. This machine learning tool is trained on a dataset of BGC-natural product activity pairs and relies on counts of different protein domains and resistance genes in the BGC to make its predictions. We find that rare and understudied actinomycetes are the most promising sources for novel active compounds. There are also several taxa outside of actinomycetes that are likely to produce novel active compounds. We also find that most strains of Streptomyces likely produce both characterized and uncharacterized bioactive natural products. The results of this study provide guidelines to increase the efficiency of future bioprospecting efforts.</p><p><strong>One-sentence summary: </strong>This paper combines several bioinformatics workflows to identify which genera of bacteria are most likely to produce novel natural products with useful bioactivities such as antibacterial, antitumor, or antifungal activity.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548851/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10126598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of the off-flavor from Pichia pastoris GS115 during the overexpression of an α-l-rhamnosidase. 在α-L-鼠李糖苷酶过度表达过程中毕赤酵母GS115的风味特征。
IF 3.4 4区 生物学 Q1 Medicine Pub Date : 2023-02-17 DOI: 10.1093/jimb/kuad035
YuXuan Yao, ShengLan Zheng, ShiLin Chi, Feng Chen, Ning Cai, ZhenZhen Cai, Zhipeng Li, Hui Ni

The off-flavor of Pichia pastoris strains is a negative characteristic of proteins overexpressed with this yeast. In the present study, P. pastoris GS115 overexpressing an α-l-rhamnosidase was taken as the example to characterize the off-flavor via sensory evaluation, gas chromatography-mass spectrometer, gas chromatography-olfaction, and omission test. The result showed that the off-flavor was due to the strong sweaty note, and moderate metallic and plastic notes. Four volatile compounds, that is, tetramethylpyrazine, 2,4-di-tert-butylphenol, isovaleric acid, and 2-methylbutyric acid, were identified to be major contributors to the sweaty note. Dodecanol and 2-acetylbutyrolactone were identified to be contributors to the metallic and plastic notes, respectively. It is the first study on the off-flavor of P. pastoris strains, helping understand metabolites with off-flavor of this yeast. Interestingly, it is the first study illustrating 2-acetylbutyrolactone and dodecanol with plastic and metallic notes, providing new information about the aromatic contributors of biological products.

Importance: The methylotrophic yeast Pichia pastoris is an important host for the industrial expression of functional proteins. In our previous studies, P. pastoris strains have been sniffed with a strong off-flavor during the overexpression of various functional proteins, limiting the application of these proteins. Although many yeast strains have been reported with off-flavor, no attention has been paid to characterize the off-flavor in P. pastoris so far. Considering that P. pastoris has advantages over other established expression systems of functional proteins, it is of interest to identify the compounds with off-flavor synthesized in the overexpression of functional proteins with P. pastoris strains. In this study, the off-flavor synthesized from P. pastoris GS115 was characterized during the overexpression of an α-l-rhamnosidase, which helps understand the aromatic metabolites with off-flavor of P. pastoris strains. In addition, 2-acetylbutyrolactone and dodecanol were newly revealed with plastic and metallic notes, enriching the aromatic contributors of biological products. Thus, this study is important for understanding the metabolites with off-flavor of P. pastoris strains and other organisms, providing important knowledge to improve the flavor of products yielding with P. pastoris strains and other organisms.

One-sentence summary: Characterize the sensory and chemical profile of the off-flavor produced by one strain of P. pastoris in vitro.

毕赤酵母菌株的异味是这种酵母过表达的蛋白质的负面特征。在本研究中,以过表达α-L-鼠李糖苷酶的巴斯德毕赤酵母GS115为例,通过感官评价、气相色谱-质谱仪(GC-MS)、气相色谱仪-嗅觉(GC-O)和省略试验对其风味进行了表征。结果表明,异味主要表现为强烈的汗味、适中的金属味和塑料味。四种挥发性化合物,即四甲基吡嗪、2,4-二叔丁基苯酚、异戊酸和2-甲基丁酸,被确定为出汗的主要原因。十二烷醇和2-乙酰丁内酯分别被确定为金属和塑料音符的贡献者。这是首次对巴斯德毕赤酵母菌株的异味进行研究,有助于了解该酵母的异味代谢产物。有趣的是,这是第一项显示2-乙酰丁内酯和十二烷醇带有塑料和金属音符的研究,提供了有关生物产品芳香成分的新信息。
{"title":"Characterization of the off-flavor from Pichia pastoris GS115 during the overexpression of an α-l-rhamnosidase.","authors":"YuXuan Yao, ShengLan Zheng, ShiLin Chi, Feng Chen, Ning Cai, ZhenZhen Cai, Zhipeng Li, Hui Ni","doi":"10.1093/jimb/kuad035","DOIUrl":"10.1093/jimb/kuad035","url":null,"abstract":"<p><p>The off-flavor of Pichia pastoris strains is a negative characteristic of proteins overexpressed with this yeast. In the present study, P. pastoris GS115 overexpressing an α-l-rhamnosidase was taken as the example to characterize the off-flavor via sensory evaluation, gas chromatography-mass spectrometer, gas chromatography-olfaction, and omission test. The result showed that the off-flavor was due to the strong sweaty note, and moderate metallic and plastic notes. Four volatile compounds, that is, tetramethylpyrazine, 2,4-di-tert-butylphenol, isovaleric acid, and 2-methylbutyric acid, were identified to be major contributors to the sweaty note. Dodecanol and 2-acetylbutyrolactone were identified to be contributors to the metallic and plastic notes, respectively. It is the first study on the off-flavor of P. pastoris strains, helping understand metabolites with off-flavor of this yeast. Interestingly, it is the first study illustrating 2-acetylbutyrolactone and dodecanol with plastic and metallic notes, providing new information about the aromatic contributors of biological products.</p><p><strong>Importance: </strong>The methylotrophic yeast Pichia pastoris is an important host for the industrial expression of functional proteins. In our previous studies, P. pastoris strains have been sniffed with a strong off-flavor during the overexpression of various functional proteins, limiting the application of these proteins. Although many yeast strains have been reported with off-flavor, no attention has been paid to characterize the off-flavor in P. pastoris so far. Considering that P. pastoris has advantages over other established expression systems of functional proteins, it is of interest to identify the compounds with off-flavor synthesized in the overexpression of functional proteins with P. pastoris strains. In this study, the off-flavor synthesized from P. pastoris GS115 was characterized during the overexpression of an α-l-rhamnosidase, which helps understand the aromatic metabolites with off-flavor of P. pastoris strains. In addition, 2-acetylbutyrolactone and dodecanol were newly revealed with plastic and metallic notes, enriching the aromatic contributors of biological products. Thus, this study is important for understanding the metabolites with off-flavor of P. pastoris strains and other organisms, providing important knowledge to improve the flavor of products yielding with P. pastoris strains and other organisms.</p><p><strong>One-sentence summary: </strong>Characterize the sensory and chemical profile of the off-flavor produced by one strain of P. pastoris in vitro.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696632/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71521675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the production of a heterologous Trametes laccase (LacA) by replacement of the major cellulase CBH1 in Trichoderma reesei. 通过替换灵芝中的主要纤维素酶 CBH1,提高异源灵芝漆酶(LacA)的产量。
IF 3.2 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-02-17 DOI: 10.1093/jimb/kuad002
Jiaxin Zhang, Yu Hong, Kehang Li, Yu Sun, Cheng Yao, Jianya Ling, Yaohua Zhong

The laccases from white-rot fungi exhibit high redox potential in treating phenolic compounds. However, their application in commercial purposes has been limited because of the relatively low productivity of the native hosts. Here, the laccase A-encoding gene lacA of Trametes sp. AH28-2 was overexpressed under the control of the strong promoter of cbh1 (Pcbh1), the gene encoding the endogenous cellobiohydrolase 1 (CBH1), in the industrial workhorse fungus Trichoderma reesei. Firstly, the lacA expression cassette was randomly integrated into the T. reesei chromosome by genetic transformation. The lacA gene was successfully transcribed, but the laccase couldn't be detected in the liquid fermentation condition. Meanwhile, it was found that the endoplasmic reticulum-associated degradation (ERAD) was strongly activated, indicating that the expression of LacA probably triggered intense endoplasmic reticulum (ER) stress. Subsequently, the lacA expression cassette was added with the downstream region of cbh1 (Tcbh1) to construct the new expression cassette lacA::Δcbh1, which could replace the cbh1 locus in the genome via homologous recombination. After genetic transformation, the lacA gene was integrated into the cbh1 locus and transcribed. And the unfolded protein response (UPR) and ERAD were only slightly induced, for which the loss of endogenous cellulase CBH1 released the pressure of secretion. Finally, the maximum laccase activity of 168.3 U/l was obtained in the fermentation broth. These results demonstrated that the reduction of secretion pressure by deletion of endogenous protein-encoding genes would be an efficient strategy for the secretion of heterologous target proteins in industrial fungi.

One-sentence summary: The reduction of the secretion pressure by deletion of the endogenous cbh1 gene can contribute to heterologous expression of the laccase (LacA) from Trametes sp. AH28-2 in Trichoderma reesei.

白腐真菌的裂解酶在处理酚类化合物时具有很高的氧化还原潜力。然而,由于原生宿主的生产力相对较低,它们在商业上的应用受到了限制。在这里,在编码内源纤维生物水解酶 1(CBH1)的基因 cbh1(Pcbh1)的强启动子控制下,工业主力真菌雷氏毛霉 AH28-2 的漆酶 A 编码基因 lacA 被过表达。首先,通过基因转化将 lacA 表达盒随机整合到毛霉染色体中。lacA 基因转录成功,但在液体发酵条件下无法检测到漆酶。同时,研究发现内质网相关降解(ERAD)被强烈激活,这表明 LacA 的表达可能引发了强烈的内质网(ER)应激。随后,将 lacA 表达盒与 cbh1 的下游区域(Tcbh1)加在一起,构建了新的表达盒 lacA::Δcbh1,该表达盒可通过同源重组取代基因组中的 cbh1 基因座。基因转化后,lacA 基因整合到 cbh1 基因座并转录。而未折叠蛋白反应(UPR)和ERAD仅被轻微诱导,内源纤维素酶CBH1的缺失释放了分泌压力。最后,在发酵液中获得了 168.3 U/l 的最大漆酶活性。这些结果表明,通过删除内源蛋白编码基因来降低分泌压力将是工业真菌分泌异源目标蛋白的有效策略。
{"title":"Enhancing the production of a heterologous Trametes laccase (LacA) by replacement of the major cellulase CBH1 in Trichoderma reesei.","authors":"Jiaxin Zhang, Yu Hong, Kehang Li, Yu Sun, Cheng Yao, Jianya Ling, Yaohua Zhong","doi":"10.1093/jimb/kuad002","DOIUrl":"10.1093/jimb/kuad002","url":null,"abstract":"<p><p>The laccases from white-rot fungi exhibit high redox potential in treating phenolic compounds. However, their application in commercial purposes has been limited because of the relatively low productivity of the native hosts. Here, the laccase A-encoding gene lacA of Trametes sp. AH28-2 was overexpressed under the control of the strong promoter of cbh1 (Pcbh1), the gene encoding the endogenous cellobiohydrolase 1 (CBH1), in the industrial workhorse fungus Trichoderma reesei. Firstly, the lacA expression cassette was randomly integrated into the T. reesei chromosome by genetic transformation. The lacA gene was successfully transcribed, but the laccase couldn't be detected in the liquid fermentation condition. Meanwhile, it was found that the endoplasmic reticulum-associated degradation (ERAD) was strongly activated, indicating that the expression of LacA probably triggered intense endoplasmic reticulum (ER) stress. Subsequently, the lacA expression cassette was added with the downstream region of cbh1 (Tcbh1) to construct the new expression cassette lacA::Δcbh1, which could replace the cbh1 locus in the genome via homologous recombination. After genetic transformation, the lacA gene was integrated into the cbh1 locus and transcribed. And the unfolded protein response (UPR) and ERAD were only slightly induced, for which the loss of endogenous cellulase CBH1 released the pressure of secretion. Finally, the maximum laccase activity of 168.3 U/l was obtained in the fermentation broth. These results demonstrated that the reduction of secretion pressure by deletion of endogenous protein-encoding genes would be an efficient strategy for the secretion of heterologous target proteins in industrial fungi.</p><p><strong>One-sentence summary: </strong>The reduction of the secretion pressure by deletion of the endogenous cbh1 gene can contribute to heterologous expression of the laccase (LacA) from Trametes sp. AH28-2 in Trichoderma reesei.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d4/e5/kuad002.PMC10124127.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9716403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRISPRi screen for enhancing heterologous α-amylase yield in Bacillus subtilis. CRISPRi筛选提高枯草芽孢杆菌异源α-淀粉酶产量的研究。
IF 3.2 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-02-17 DOI: 10.1093/jimb/kuac028
Adrian Sven Geissler, Annaleigh Ohrt Fehler, Line Dahl Poulsen, Enrique González-Tortuero, Thomas Beuchert Kallehauge, Ferhat Alkan, Christian Anthon, Stefan Ernst Seemann, Michael Dolberg Rasmussen, Anne Breüner, Carsten Hjort, Jeppe Vinther, Jan Gorodkin

Yield improvements in cell factories can potentially be obtained by fine-tuning the regulatory mechanisms for gene candidates. In pursuit of such candidates, we performed RNA-sequencing of two α-amylase producing Bacillus strains and predict hundreds of putative novel non-coding transcribed regions. Surprisingly, we found among hundreds of non-coding and structured RNA candidates that non-coding genomic regions are proportionally undergoing the highest changes in expression during fermentation. Since these classes of RNA are also understudied, we targeted the corresponding genomic regions with CRIPSRi knockdown to test for any potential impact on the yield. From differentially expression analysis, we selected 53 non-coding candidates. Although CRISPRi knockdowns target both the sense and the antisense strand, the CRISPRi experiment cannot link causes for yield changes to the sense or antisense disruption. Nevertheless, we observed on several instances with strong changes in enzyme yield. The knockdown targeting the genomic region for a putative antisense RNA of the 3' UTR of the skfA-skfH operon led to a 21% increase in yield. In contrast, the knockdown targeting the genomic regions of putative antisense RNAs of the cytochrome c oxidase subunit 1 (ctaD), the sigma factor sigH, and the uncharacterized gene yhfT decreased yields by 31 to 43%.

通过微调候选基因的调节机制,可以潜在地提高细胞工厂的产量。为了寻找这样的候选者,我们对两种产生α-淀粉酶的芽孢杆菌菌株进行了RNA测序,并预测了数百个假定的新的非编码转录区。令人惊讶的是,我们在数百种非编码和结构化RNA候选中发现,非编码基因组区域在发酵过程中的表达变化最大。由于这些类别的RNA也研究不足,我们以CRIPSRi敲低的相应基因组区域为目标,以测试对产量的任何潜在影响。从差异表达分析中,我们选择了53个非编码候选者。尽管CRISPRi敲除靶向有义和反义链,但CRISPRi实验不能将产量变化的原因与有义或反义破坏联系起来。然而,我们在几个例子中观察到了酶产量的强烈变化。针对skfA-skfH操纵子的3'UTR的假定反义RNA的基因组区域的敲除导致产量增加21%。相反,靶向细胞色素c氧化酶亚基1(ctaD)、西格玛因子sigH和未表征基因yhfT的推定反义RNA的基因组区域的敲除使产量降低了31%至43%。
{"title":"CRISPRi screen for enhancing heterologous α-amylase yield in Bacillus subtilis.","authors":"Adrian Sven Geissler, Annaleigh Ohrt Fehler, Line Dahl Poulsen, Enrique González-Tortuero, Thomas Beuchert Kallehauge, Ferhat Alkan, Christian Anthon, Stefan Ernst Seemann, Michael Dolberg Rasmussen, Anne Breüner, Carsten Hjort, Jeppe Vinther, Jan Gorodkin","doi":"10.1093/jimb/kuac028","DOIUrl":"10.1093/jimb/kuac028","url":null,"abstract":"<p><p>Yield improvements in cell factories can potentially be obtained by fine-tuning the regulatory mechanisms for gene candidates. In pursuit of such candidates, we performed RNA-sequencing of two α-amylase producing Bacillus strains and predict hundreds of putative novel non-coding transcribed regions. Surprisingly, we found among hundreds of non-coding and structured RNA candidates that non-coding genomic regions are proportionally undergoing the highest changes in expression during fermentation. Since these classes of RNA are also understudied, we targeted the corresponding genomic regions with CRIPSRi knockdown to test for any potential impact on the yield. From differentially expression analysis, we selected 53 non-coding candidates. Although CRISPRi knockdowns target both the sense and the antisense strand, the CRISPRi experiment cannot link causes for yield changes to the sense or antisense disruption. Nevertheless, we observed on several instances with strong changes in enzyme yield. The knockdown targeting the genomic region for a putative antisense RNA of the 3' UTR of the skfA-skfH operon led to a 21% increase in yield. In contrast, the knockdown targeting the genomic regions of putative antisense RNAs of the cytochrome c oxidase subunit 1 (ctaD), the sigma factor sigH, and the uncharacterized gene yhfT decreased yields by 31 to 43%.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10528673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress in adaptive laboratory evolution of industrial microorganisms. 工业微生物实验室适应性进化的最新进展。
IF 3.2 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-02-17 DOI: 10.1093/jimb/kuac023
Guanglu Wang, Qian Li, Zhan Zhang, Xianzhong Yin, Bingyang Wang, Xuepeng Yang

Adaptive laboratory evolution (ALE) is a technique for the selection of strains with better phenotypes by long-term culture under a specific selection pressure or growth environment. Because ALE does not require detailed knowledge of a variety of complex and interactive metabolic networks, and only needs to simulate natural environmental conditions in the laboratory to design a selection pressure, it has the advantages of broad adaptability, strong practicability, and more convenient transformation of strains. In addition, ALE provides a powerful method for studying the evolutionary forces that change the phenotype, performance, and stability of strains, resulting in more productive industrial strains with beneficial mutations. In recent years, ALE has been widely used in the activation of specific microbial metabolic pathways and phenotypic optimization, the efficient utilization of specific substrates, the optimization of tolerance to toxic substance, and the biosynthesis of target products, which is more conducive to the production of industrial strains with excellent phenotypic characteristics. In this paper, typical examples of ALE applications in the development of industrial strains and the research progress of this technology are reviewed, followed by a discussion of its development prospects.

适应性实验室进化(ALE)是一种在特定选择压力或生长环境下,通过长期培养来选择具有更好表型的菌株的技术。由于实验室适应性进化不需要详细了解各种复杂和相互作用的代谢网络,只需要在实验室模拟自然环境条件来设计选择压力,因此具有适应性广、实用性强、菌株转化更方便等优点。此外,ALE 还为研究改变菌株表型、性能和稳定性的进化力量提供了一种强有力的方法,从而培育出更多具有有益突变的高产工业菌株。近年来,ALE 已广泛应用于特定微生物代谢途径的激活和表型优化、特定底物的高效利用、对有毒物质耐受性的优化以及目标产物的生物合成等方面,更有利于生产出具有优良表型特征的工业菌株。本文综述了 ALE 在工业菌株开发中的典型应用实例以及该技术的研究进展,并对其发展前景进行了探讨。
{"title":"Recent progress in adaptive laboratory evolution of industrial microorganisms.","authors":"Guanglu Wang, Qian Li, Zhan Zhang, Xianzhong Yin, Bingyang Wang, Xuepeng Yang","doi":"10.1093/jimb/kuac023","DOIUrl":"10.1093/jimb/kuac023","url":null,"abstract":"<p><p>Adaptive laboratory evolution (ALE) is a technique for the selection of strains with better phenotypes by long-term culture under a specific selection pressure or growth environment. Because ALE does not require detailed knowledge of a variety of complex and interactive metabolic networks, and only needs to simulate natural environmental conditions in the laboratory to design a selection pressure, it has the advantages of broad adaptability, strong practicability, and more convenient transformation of strains. In addition, ALE provides a powerful method for studying the evolutionary forces that change the phenotype, performance, and stability of strains, resulting in more productive industrial strains with beneficial mutations. In recent years, ALE has been widely used in the activation of specific microbial metabolic pathways and phenotypic optimization, the efficient utilization of specific substrates, the optimization of tolerance to toxic substance, and the biosynthesis of target products, which is more conducive to the production of industrial strains with excellent phenotypic characteristics. In this paper, typical examples of ALE applications in the development of industrial strains and the research progress of this technology are reviewed, followed by a discussion of its development prospects.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/73/9d/kuac023.PMC9936214.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10805985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic aspects of IPTG (isopropylthio-β-galactoside) transport across the cytoplasmic membrane of Escherichia coli-a rate limiting step in the induction of recombinant protein expression. IPTG(异丙基硫代-β-半乳糖苷)通过大肠杆菌质膜转运的机制方面——诱导重组蛋白表达的限速步骤。
IF 3.4 4区 生物学 Q1 Medicine Pub Date : 2023-02-17 DOI: 10.1093/jimb/kuad034
Rodrigo G Simas, Adalberto Pessoa Junior, Paul F Long

Coupling transcription of a cloned gene to the lac operon with induction by isopropylthio-β-galactoside (IPTG) has been a favoured approach for recombinant protein expression using Escherichia coli as a heterologous host for more than six decades. Despite a wealth of experimental data gleaned over this period, a quantitative relationship between extracellular IPTG concentration and consequent levels of recombinant protein expression remains surprisingly elusive across a broad spectrum of experimental conditions. This is because gene expression under lac operon regulation is tightly correlated with intracellular IPTG concentration due to allosteric regulation of the lac repressor protein (lacY). An in-silico mathematical model established that uptake of IPTG across the cytoplasmic membrane of E. coli by simple diffusion was negligible. Conversely, lacY mediated active transport was a rapid process, taking only some seconds for internal and external IPTG concentrations to equalize. Optimizing kcat and KM parameters by targeted mutation of the galactoside binding site in lacY could be a future strategy to improve the performance of recombinant protein expression. For example, if kcat were reduced whilst KM was increased, active transport of IPTG across the cytoplasmic membrane would be reduced, thereby lessening the metabolic burden on the cell and expediating accumulation of recombinant protein. The computational model described herein is made freely available and is amenable to optimize recombinant protein expression in other heterologous hosts.

One-sentence summary: A computational model made freely available to optimize recombinant protein expression in Escherichia coli other heterologous hosts.

60多年来,利用大肠杆菌作为异源宿主,通过异丙基硫代-β-半乳糖苷(IPTG)诱导将克隆基因转录到lac操纵子一直是重组蛋白表达的一种有利方法。尽管在这段时间内收集了大量的实验数据,但在广泛的实验条件下,细胞外IPTG浓度与重组蛋白表达水平之间的定量关系仍然令人惊讶地难以捉摸。这是因为由于lac阻遏蛋白(lacY)的变构调节,lac操纵子调节下的基因表达与细胞内IPTG浓度密切相关。一个计算机数学模型建立了IPTG通过简单扩散穿过大肠杆菌质膜的摄取可以忽略不计。相反,lacY介导的活性转运是一个快速的过程,内部和外部IPTG浓度只需要几秒钟就可以平衡。通过靶向突变lacY中的半乳糖苷结合位点来优化kcat和KM参数可能是提高重组蛋白表达性能的未来策略。例如,如果kcat减少而KM增加,则IPTG通过质膜的活性转运将减少,从而减轻细胞的代谢负担并排出重组蛋白的积累。本文所述的计算模型是免费提供的,并且适于优化重组蛋白在其他异源宿主中的表达。
{"title":"Mechanistic aspects of IPTG (isopropylthio-β-galactoside) transport across the cytoplasmic membrane of Escherichia coli-a rate limiting step in the induction of recombinant protein expression.","authors":"Rodrigo G Simas, Adalberto Pessoa Junior, Paul F Long","doi":"10.1093/jimb/kuad034","DOIUrl":"10.1093/jimb/kuad034","url":null,"abstract":"<p><p>Coupling transcription of a cloned gene to the lac operon with induction by isopropylthio-β-galactoside (IPTG) has been a favoured approach for recombinant protein expression using Escherichia coli as a heterologous host for more than six decades. Despite a wealth of experimental data gleaned over this period, a quantitative relationship between extracellular IPTG concentration and consequent levels of recombinant protein expression remains surprisingly elusive across a broad spectrum of experimental conditions. This is because gene expression under lac operon regulation is tightly correlated with intracellular IPTG concentration due to allosteric regulation of the lac repressor protein (lacY). An in-silico mathematical model established that uptake of IPTG across the cytoplasmic membrane of E. coli by simple diffusion was negligible. Conversely, lacY mediated active transport was a rapid process, taking only some seconds for internal and external IPTG concentrations to equalize. Optimizing kcat and KM parameters by targeted mutation of the galactoside binding site in lacY could be a future strategy to improve the performance of recombinant protein expression. For example, if kcat were reduced whilst KM was increased, active transport of IPTG across the cytoplasmic membrane would be reduced, thereby lessening the metabolic burden on the cell and expediating accumulation of recombinant protein. The computational model described herein is made freely available and is amenable to optimize recombinant protein expression in other heterologous hosts.</p><p><strong>One-sentence summary: </strong>A computational model made freely available to optimize recombinant protein expression in Escherichia coli other heterologous hosts.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10639102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41235973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The growth and metabolome of Saccharomyces uvarum in wine fermentations are strongly influenced by the route of nitrogen assimilation. 葡萄酒发酵过程中酿酒酵母的生长和代谢受到氮同化途径的强烈影响。
IF 3.4 4区 生物学 Q1 Medicine Pub Date : 2023-02-13 DOI: 10.1093/jimb/kuac025
Angela Coral-Medina, John P Morrissey, Carole Camarasa

Nitrogen is a critical nutrient in beverage fermentations, influencing fermentation performance and formation of compounds that affect organoleptic properties of the product. Traditionally, most commercial wine fermentations rely on Saccharomyces cerevisiae but the potential of alternative yeasts is increasingly recognised because of the possibility to deliver innovative products and process improvements. In this regard, Saccharomyces uvarum is an attractive non-traditional yeast that, while quite closely related to S. cerevisiae, displays a different fermentative and aromatic profile. Although S. uvarum is used in cider-making and in some winemaking, better knowledge of its physiology and metabolism is required if its full potential is to be realised. To address this gap, we performed a comparative analysis of the response of S. uvarum and S. cerevisiae to 13 different sources of nitrogen, assessing key parameters such as growth, fermentation performance, the production of central carbon metabolites and aroma volatile compounds. We observed that the two species differ in the production of acetate, succinate, medium-chain fatty acids, phenylethanol, phenylethyl acetate, and fusel/branched acids in ways that reflect different distribution of fluxes in the metabolic network. The integrated analysis revealed different patterns of yeast performance and activity linked to whether growth was on amino acids metabolised via the Ehrlich pathway or on amino acids and compounds assimilated through the central nitrogen core. This study highlights differences between the two yeasts and the importance that nitrogen metabolism can play in modulating the sensory profile of wine when using S. uvarum as the fermentative yeast.

氮在饮料发酵过程中是一种重要的营养物质,影响发酵性能和影响产品感官特性的化合物的形成。传统上,大多数商业葡萄酒发酵依赖于酿酒酵母菌,但由于有可能提供创新产品和改进工艺,替代酵母的潜力日益得到认可。在这方面,uvarum Saccharomyces uvarum是一种有吸引力的非传统酵母,虽然与酿酒酵母密切相关,但却表现出不同的发酵和芳香特征。虽然葡萄球菌用于苹果酒和一些葡萄酒酿造,但如果要充分发挥其潜力,则需要更好地了解其生理和代谢。为了解决这一差距,我们对uvarum和酿酒酵母对13种不同氮源的响应进行了比较分析,评估了关键参数,如生长、发酵性能、中心碳代谢物和香气挥发性化合物的产生。我们观察到,这两个物种在醋酸盐、琥珀酸盐、中链脂肪酸、苯乙醇、乙酸苯乙酯和杂醇酸/支链酸的生产方面存在差异,这反映了代谢网络中通量的不同分布。综合分析显示,酵母性能和活性的不同模式与生长是通过埃利希途径代谢的氨基酸还是通过中央氮核吸收的氨基酸和化合物有关。本研究强调了两种酵母之间的差异,以及当使用uvarum作为发酵酵母时,氮代谢在调节葡萄酒感官特征方面的重要性。
{"title":"The growth and metabolome of Saccharomyces uvarum in wine fermentations are strongly influenced by the route of nitrogen assimilation.","authors":"Angela Coral-Medina,&nbsp;John P Morrissey,&nbsp;Carole Camarasa","doi":"10.1093/jimb/kuac025","DOIUrl":"https://doi.org/10.1093/jimb/kuac025","url":null,"abstract":"<p><p>Nitrogen is a critical nutrient in beverage fermentations, influencing fermentation performance and formation of compounds that affect organoleptic properties of the product. Traditionally, most commercial wine fermentations rely on Saccharomyces cerevisiae but the potential of alternative yeasts is increasingly recognised because of the possibility to deliver innovative products and process improvements. In this regard, Saccharomyces uvarum is an attractive non-traditional yeast that, while quite closely related to S. cerevisiae, displays a different fermentative and aromatic profile. Although S. uvarum is used in cider-making and in some winemaking, better knowledge of its physiology and metabolism is required if its full potential is to be realised. To address this gap, we performed a comparative analysis of the response of S. uvarum and S. cerevisiae to 13 different sources of nitrogen, assessing key parameters such as growth, fermentation performance, the production of central carbon metabolites and aroma volatile compounds. We observed that the two species differ in the production of acetate, succinate, medium-chain fatty acids, phenylethanol, phenylethyl acetate, and fusel/branched acids in ways that reflect different distribution of fluxes in the metabolic network. The integrated analysis revealed different patterns of yeast performance and activity linked to whether growth was on amino acids metabolised via the Ehrlich pathway or on amino acids and compounds assimilated through the central nitrogen core. This study highlights differences between the two yeasts and the importance that nitrogen metabolism can play in modulating the sensory profile of wine when using S. uvarum as the fermentative yeast.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b8/a5/kuac025.PMC9923386.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10705195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Improvement of rimocidin production in Streptomyces rimosus M527 by reporter-guided mutation selection. 利用报告基因引导突变选择提高链霉菌M527的环莫西丁产量。
IF 3.4 4区 生物学 Q1 Medicine Pub Date : 2023-02-13 DOI: 10.1093/jimb/kuac030
Yujie Jiang, Jinyao Zhang, Xinyi Huang, Zheng Ma, Yongyong Zhang, Andreas Bechthold, Xiaoping Yu

In this study, we employed a reporter-guided mutation selection (RGMS) strategy to improve the rimocidin production of Streptomyces rimosus M527, which is based on a single-reporter plasmid pAN and atmospheric and room temperature plasma (ARTP). In plasmid pAN, PrimA, a native promoter of the loading module of rimocidin biosynthesis (RimA) was chosen as a target, and the kanamycin resistance gene (neo) under the control of PrimA was chosen as the reporter gene. The integrative plasmid pAN was introduced into the chromosome of S. rimosus M527 by conjugation to yield the initial strain S. rimosus M527-pAN. Subsequently, mutants of M527-pAN were generated by ARTP. 79 mutants were obtained in total, of which 67 mutants showed a higher level of kanamycin resistance (Kanr) than that of the initial strain M527-pAN. The majority of mutants exhibited a slight increase in rimocidin production compared with M527-pAN. Notably, 3 mutants, M527-pAN-S34, S38, and S52, which exhibited highest kanamycin resistance among all Kanr mutants, showed 34%, 52%, and 45% increase in rimocidin production compared with M527-pAN, respectively. Quantitative RT-PCR analysis revealed that the transcriptional levels of neo and rim genes were increased in mutants M527-pAN-S34, S38, and S52 compared with M527-pAN. These results confirmed that the RGMS approach was successful in improving the rimocidin production in S. rimosus M527.

在这项研究中,我们采用报告基因引导突变选择(RGMS)策略,以单报告基因质粒pAN和常温等离子体(ARTP)为基础,提高了链霉菌(Streptomyces mosus M527的环莫西丁产量。在质粒pAN中,选择环霉素生物合成装载模块(RimA)的天然启动子PrimA作为靶基因,选择PrimA控制的卡那霉素耐药基因(neo)作为报告基因。将整合质粒pAN通过偶联法导入到沙棘菌M527的染色体上,得到了初始菌株沙棘菌M527-pAN。随后,通过ARTP产生M527-pAN突变体。共获得79个突变体,其中67个突变体的卡那霉素耐药水平高于初始菌株M527-pAN。与M527-pAN相比,大多数突变体的环霉素产量略有增加。值得注意的是,3个突变体M527-pAN- s34、S38和S52在所有Kanr突变体中表现出最高的卡那霉素抗性,与M527-pAN相比,它们的卡那霉素产量分别增加了34%、52%和45%。定量RT-PCR分析显示,与M527-pAN相比,突变体M527-pAN中neo和rim基因的转录水平增加,s34、S38和S52基因的转录水平增加。这些结果证实了RGMS方法能够有效地提高沙棘M527的环霉素产量。
{"title":"Improvement of rimocidin production in Streptomyces rimosus M527 by reporter-guided mutation selection.","authors":"Yujie Jiang,&nbsp;Jinyao Zhang,&nbsp;Xinyi Huang,&nbsp;Zheng Ma,&nbsp;Yongyong Zhang,&nbsp;Andreas Bechthold,&nbsp;Xiaoping Yu","doi":"10.1093/jimb/kuac030","DOIUrl":"https://doi.org/10.1093/jimb/kuac030","url":null,"abstract":"<p><p>In this study, we employed a reporter-guided mutation selection (RGMS) strategy to improve the rimocidin production of Streptomyces rimosus M527, which is based on a single-reporter plasmid pAN and atmospheric and room temperature plasma (ARTP). In plasmid pAN, PrimA, a native promoter of the loading module of rimocidin biosynthesis (RimA) was chosen as a target, and the kanamycin resistance gene (neo) under the control of PrimA was chosen as the reporter gene. The integrative plasmid pAN was introduced into the chromosome of S. rimosus M527 by conjugation to yield the initial strain S. rimosus M527-pAN. Subsequently, mutants of M527-pAN were generated by ARTP. 79 mutants were obtained in total, of which 67 mutants showed a higher level of kanamycin resistance (Kanr) than that of the initial strain M527-pAN. The majority of mutants exhibited a slight increase in rimocidin production compared with M527-pAN. Notably, 3 mutants, M527-pAN-S34, S38, and S52, which exhibited highest kanamycin resistance among all Kanr mutants, showed 34%, 52%, and 45% increase in rimocidin production compared with M527-pAN, respectively. Quantitative RT-PCR analysis revealed that the transcriptional levels of neo and rim genes were increased in mutants M527-pAN-S34, S38, and S52 compared with M527-pAN. These results confirmed that the RGMS approach was successful in improving the rimocidin production in S. rimosus M527.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6a/37/kuac030.PMC9923380.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10758984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Journal of Industrial Microbiology & Biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1