Pub Date : 2023-02-09DOI: 10.1080/15980316.2023.2174195
M. Naqi, S. Jang, Y. Cho, Ji Min Park, Joo on Oh, Hyun Yeol Rho, Hyunsook Kim, Sunkook Kim
Semiconductors processed at low temperature for complementary metal–oxide semiconductors (CMOS) devices are receiving considerable attention in the field of integrated electronic applications. In this work, we demonstrated a CMOS inverter constructed by n-type ZnON and p-type Te TFTs where all the processes have been done at low temperature. The electrical measurements of proposed TFTs exhibit high mobility (> 100 and > 3 cm2/Vs in case of ZnON and Te TFTs, respectively) and a stable on/off current ratio. The resulted CMOS inverter exhibits a high voltage swing and a high voltage gain of 15.89. Since all the synthesis and fabrication processes are performed at low temperatures with easy processing techniques, the results may open new opportunities in the field of integrated electronics field.
{"title":"Low temperature processed, highly stable CMOS inverter by integrating Zn-ON and tellurium thin-film transistors","authors":"M. Naqi, S. Jang, Y. Cho, Ji Min Park, Joo on Oh, Hyun Yeol Rho, Hyunsook Kim, Sunkook Kim","doi":"10.1080/15980316.2023.2174195","DOIUrl":"https://doi.org/10.1080/15980316.2023.2174195","url":null,"abstract":"Semiconductors processed at low temperature for complementary metal–oxide semiconductors (CMOS) devices are receiving considerable attention in the field of integrated electronic applications. In this work, we demonstrated a CMOS inverter constructed by n-type ZnON and p-type Te TFTs where all the processes have been done at low temperature. The electrical measurements of proposed TFTs exhibit high mobility (> 100 and > 3 cm2/Vs in case of ZnON and Te TFTs, respectively) and a stable on/off current ratio. The resulted CMOS inverter exhibits a high voltage swing and a high voltage gain of 15.89. Since all the synthesis and fabrication processes are performed at low temperatures with easy processing techniques, the results may open new opportunities in the field of integrated electronics field.","PeriodicalId":16257,"journal":{"name":"Journal of Information Display","volume":"24 1","pages":"199 - 204"},"PeriodicalIF":3.7,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48233514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-02DOI: 10.1080/15980316.2023.2171145
Seok Woo Lee, Xiangyang Fan, D. Whang, J. Jang, Hyosung Choi, D. Chang, B. Lee
Optoelectronic devices with organic semiconductors, such as organic light-emitting diodes (OLEDs), have received much attention because they offer ease of processing and device flexibility. However, practical application of these devices is still hindered by relatively poor device performance and lack of cost-effective fabrication process, which represent properties largely determined by the molecular dipole moments of the organic molecules. In this study, we designed and prepared novel quinoxaline-phosphine oxide small molecules (QPSMs) as the electron transport layer (ETL) for the solution-processable OLEDs by tuning the end functional group of the aromatic QPSMs. A key design criterion was controlling the dipole moments of QPSMs, which confers (1) convenient deposition on the emission layer without further annealing through solubility in isopropanol and (2) improved electron injection/transport behavior through effective band level matching of the devices. In particular, the optimized OLEDs with (4-(2,3-bis(4-methoxyphenyl)quinoxalin-5-yl)phenyl)diphenylphosphine oxide (MQxTPPO1) exhibit external quantum efficiency (EQE) of 6.12%. Our results demonstrate the potential application of QPSMs as next-generation ETLs in organic semiconductors.
{"title":"Controlling the interfacial dipole via functionalization of quinoxaline-based small molecules for electron transport layer in organic light emitting diodes","authors":"Seok Woo Lee, Xiangyang Fan, D. Whang, J. Jang, Hyosung Choi, D. Chang, B. Lee","doi":"10.1080/15980316.2023.2171145","DOIUrl":"https://doi.org/10.1080/15980316.2023.2171145","url":null,"abstract":"Optoelectronic devices with organic semiconductors, such as organic light-emitting diodes (OLEDs), have received much attention because they offer ease of processing and device flexibility. However, practical application of these devices is still hindered by relatively poor device performance and lack of cost-effective fabrication process, which represent properties largely determined by the molecular dipole moments of the organic molecules. In this study, we designed and prepared novel quinoxaline-phosphine oxide small molecules (QPSMs) as the electron transport layer (ETL) for the solution-processable OLEDs by tuning the end functional group of the aromatic QPSMs. A key design criterion was controlling the dipole moments of QPSMs, which confers (1) convenient deposition on the emission layer without further annealing through solubility in isopropanol and (2) improved electron injection/transport behavior through effective band level matching of the devices. In particular, the optimized OLEDs with (4-(2,3-bis(4-methoxyphenyl)quinoxalin-5-yl)phenyl)diphenylphosphine oxide (MQxTPPO1) exhibit external quantum efficiency (EQE) of 6.12%. Our results demonstrate the potential application of QPSMs as next-generation ETLs in organic semiconductors.","PeriodicalId":16257,"journal":{"name":"Journal of Information Display","volume":"24 1","pages":"189 - 198"},"PeriodicalIF":3.7,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46779926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-30DOI: 10.1080/15980316.2023.2169378
Chang-Hoon Jeon, Ji Woong Park, Byung-Wook Kang, Suhyuk Jang, Kyung Joon Kwon, Soon‐Kwang Hong, Yong‐Min Ha, Jin Jang
We report the heat diffusion on flexible active-matrix organic light-emitting diode (AMOLED) displays. Two-dimensional heat diffusion is used for the heat conduction and convection analysis, generated on the surface of a flexible AMOLED display. The heat diffusion parameters and the time constant are studied in terms of the driving conditions of a 6-inch flexible AMOLED display. The temperature distribution on the screen is obtained by applying heat diffusion using the finite difference method (FDM) with an FPGA driving board. We can predict temperature more precisely by calculating temperature changes according to the images. The proposed method improves the accuracy of predicting the temperature. The average and standard deviation of the temperature error (TER) are ∼0.5°C and ∼0.5°C for the proposed method, respectively. For the conventional method, the values are ∼4.5°C and ∼0.7°C, respectively, neglecting the increase in temperature based on the images. This method can be used in compensation technology for OLEDs and thin film transistors (TFTs) that require accurate temperature distribution on the screen.
{"title":"Analysis of heat diffusion considering driving images on 6-inch flexible AMOLED display","authors":"Chang-Hoon Jeon, Ji Woong Park, Byung-Wook Kang, Suhyuk Jang, Kyung Joon Kwon, Soon‐Kwang Hong, Yong‐Min Ha, Jin Jang","doi":"10.1080/15980316.2023.2169378","DOIUrl":"https://doi.org/10.1080/15980316.2023.2169378","url":null,"abstract":"We report the heat diffusion on flexible active-matrix organic light-emitting diode (AMOLED) displays. Two-dimensional heat diffusion is used for the heat conduction and convection analysis, generated on the surface of a flexible AMOLED display. The heat diffusion parameters and the time constant are studied in terms of the driving conditions of a 6-inch flexible AMOLED display. The temperature distribution on the screen is obtained by applying heat diffusion using the finite difference method (FDM) with an FPGA driving board. We can predict temperature more precisely by calculating temperature changes according to the images. The proposed method improves the accuracy of predicting the temperature. The average and standard deviation of the temperature error (TER) are ∼0.5°C and ∼0.5°C for the proposed method, respectively. For the conventional method, the values are ∼4.5°C and ∼0.7°C, respectively, neglecting the increase in temperature based on the images. This method can be used in compensation technology for OLEDs and thin film transistors (TFTs) that require accurate temperature distribution on the screen.","PeriodicalId":16257,"journal":{"name":"Journal of Information Display","volume":"24 1","pages":"169 - 175"},"PeriodicalIF":3.7,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48315086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-30DOI: 10.1080/15980316.2023.2170486
Sueon Lee, Min Jae Kim, Sang Ho Lee, Seung Hye Jeong, J. Kwon, J. Jeong
ABSTRACT High-performance electrochromic devices (ECDs) were fabricated by introducing indium tin oxide/silver/indium tin oxide (IAI) multilayers as a transparent conducting oxide (TCO) electrode in conjunction with microstructural tailoring of tungsten trioxide (WO3) as an electrochromic (EC) layer. A 15-nm-thick Ag film with a preferential orientation of (111) and smooth morphology resulted in a high optical transmittance of 90.9% and sheet resistance 16.7 Ω/sq, making it a suitable TCO. In addition, the open network WO3 film used as an EC layer was deposited by carefully controlling the chamber pressure during the sputtering process. A high chamber pressure (2.0 Pa) resulted in a WO3 film with the lowest mass density (5.72 g/cm3) and a rough morphology. Half-cell ECDs consisting of a TCO bottom electrode (BE)/WO3 stack immersed in LiClO4 electrolyte were fabricated to verify the impact of using the IAI multi-layer stack and tailored WO3 film as a TCO and EC layer, respectively. Significant enhancement in terms of coloration efficiency was achieved for the ECDs by adopting the IAI TCO and open network WO3 EC layer compared to counterpart devices with an ITO TCO or dense WO3 EC film. This can be explained by the facile carrier extraction (injection) and transport of Li ions.
{"title":"Boosting coloration efficiency in an electrochromic device using an ITO/Ag/ITO multilayered electrode and porous WO3 chromic layer","authors":"Sueon Lee, Min Jae Kim, Sang Ho Lee, Seung Hye Jeong, J. Kwon, J. Jeong","doi":"10.1080/15980316.2023.2170486","DOIUrl":"https://doi.org/10.1080/15980316.2023.2170486","url":null,"abstract":"ABSTRACT High-performance electrochromic devices (ECDs) were fabricated by introducing indium tin oxide/silver/indium tin oxide (IAI) multilayers as a transparent conducting oxide (TCO) electrode in conjunction with microstructural tailoring of tungsten trioxide (WO3) as an electrochromic (EC) layer. A 15-nm-thick Ag film with a preferential orientation of (111) and smooth morphology resulted in a high optical transmittance of 90.9% and sheet resistance 16.7 Ω/sq, making it a suitable TCO. In addition, the open network WO3 film used as an EC layer was deposited by carefully controlling the chamber pressure during the sputtering process. A high chamber pressure (2.0 Pa) resulted in a WO3 film with the lowest mass density (5.72 g/cm3) and a rough morphology. Half-cell ECDs consisting of a TCO bottom electrode (BE)/WO3 stack immersed in LiClO4 electrolyte were fabricated to verify the impact of using the IAI multi-layer stack and tailored WO3 film as a TCO and EC layer, respectively. Significant enhancement in terms of coloration efficiency was achieved for the ECDs by adopting the IAI TCO and open network WO3 EC layer compared to counterpart devices with an ITO TCO or dense WO3 EC film. This can be explained by the facile carrier extraction (injection) and transport of Li ions.","PeriodicalId":16257,"journal":{"name":"Journal of Information Display","volume":"24 1","pages":"177 - 188"},"PeriodicalIF":3.7,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43569001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-07DOI: 10.1080/15980316.2022.2163313
J. Choi, Chan Woo Park, B. Na, Jong-Heon Yang, J. Na, JaeEun Pi, Hee‐Ok Kim, Chi-Sun Hwang, Seunghyup Yoo
Highly-stable molybdenum/aluminum (Mo/Al) bilayered electrodes have been demonstrated as promising candidates for use in stretchable electronics. The serpentine-shaped Mo/Al bilayer electrode is shown to be operable with up to 220% elongation and no significant change in resistance. In Al-only electrodes, Al penetrates into the polyimide (PI) because of its high chemical reactivity with PI. This issue can be overcome by inserting Mo underneath the Al layer, blocking the reaction between Al and PI and enabling the formation of robust and highly conductive stretchable electrodes. With the proposed bilayer electrodes, stretchable thin-film transistor arrays that can be operated even when elongated up to 220% are realized. The fabricated devices exhibit very stable device performance under highly stretched conditions.
{"title":"Highly stable Mo/Al bilayer electrode for stretchable electronics","authors":"J. Choi, Chan Woo Park, B. Na, Jong-Heon Yang, J. Na, JaeEun Pi, Hee‐Ok Kim, Chi-Sun Hwang, Seunghyup Yoo","doi":"10.1080/15980316.2022.2163313","DOIUrl":"https://doi.org/10.1080/15980316.2022.2163313","url":null,"abstract":"Highly-stable molybdenum/aluminum (Mo/Al) bilayered electrodes have been demonstrated as promising candidates for use in stretchable electronics. The serpentine-shaped Mo/Al bilayer electrode is shown to be operable with up to 220% elongation and no significant change in resistance. In Al-only electrodes, Al penetrates into the polyimide (PI) because of its high chemical reactivity with PI. This issue can be overcome by inserting Mo underneath the Al layer, blocking the reaction between Al and PI and enabling the formation of robust and highly conductive stretchable electrodes. With the proposed bilayer electrodes, stretchable thin-film transistor arrays that can be operated even when elongated up to 220% are realized. The fabricated devices exhibit very stable device performance under highly stretched conditions.","PeriodicalId":16257,"journal":{"name":"Journal of Information Display","volume":"24 1","pages":"137 - 145"},"PeriodicalIF":3.7,"publicationDate":"2023-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49035149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-02DOI: 10.1080/15980316.2022.2154861
Miaomiao Xu, H. Hua
A high dynamic range head mounted display (HDR-HMD) using a dual-layer per-pixel modulation method was recently demonstrated where both the display and modulation layers spatially overlap with an equal pixel resolution and are well-aligned to each other such that per-pixel dynamic range modulation becomes feasible. Besides the per-pixel modulation method, two other modulation methods can also be implemented via a dual-layer construction: the extended layer separation method where the display and modulation layers are largely separated in space, and the coarse backlight method where the display and modulation layers have largely different pixel resolutions such that the modulation layer may be treated as a locally-controllable backlight to the display layer. In this paper, we develop a generalize model to simulate the image formation process of dual-layer HDR displays and to evaluate the image performance of these different configurations and modulation methods. Maximum displayable spatial frequencies under different configurations are characterized. Experimental results using resolution targets support the model.
{"title":"Performance evaluation of dual-layer architectures for high dynamic range head mounted displays","authors":"Miaomiao Xu, H. Hua","doi":"10.1080/15980316.2022.2154861","DOIUrl":"https://doi.org/10.1080/15980316.2022.2154861","url":null,"abstract":"A high dynamic range head mounted display (HDR-HMD) using a dual-layer per-pixel modulation method was recently demonstrated where both the display and modulation layers spatially overlap with an equal pixel resolution and are well-aligned to each other such that per-pixel dynamic range modulation becomes feasible. Besides the per-pixel modulation method, two other modulation methods can also be implemented via a dual-layer construction: the extended layer separation method where the display and modulation layers are largely separated in space, and the coarse backlight method where the display and modulation layers have largely different pixel resolutions such that the modulation layer may be treated as a locally-controllable backlight to the display layer. In this paper, we develop a generalize model to simulate the image formation process of dual-layer HDR displays and to evaluate the image performance of these different configurations and modulation methods. Maximum displayable spatial frequencies under different configurations are characterized. Experimental results using resolution targets support the model.","PeriodicalId":16257,"journal":{"name":"Journal of Information Display","volume":"24 1","pages":"31 - 46"},"PeriodicalIF":3.7,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49561351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-12DOI: 10.1080/15980316.2022.2154863
Yongsang Yoo, B. Choi
To suppress errors in a touch readout circuit due to display noise, differential sensing using fully differential amplifiers is widely used. However, conventional differential sensing methods require additional circuits or increase circuit complexity, thus increasing power consumption and circuit area or requiring additional dummy RX line on the touch panel. In this study, we propose a compact touch readout circuit composed of a single-ended amplifier while keeping the display noise suppression of differential sensing so as to minimize power consumption and circuit area increase and avoid the need for additional dummy RX line. The proposed touch readout circuit for is fabricated in circuit area of 0.4 mm2 with 0.35 µm 3.3 V CMOS process and measured for 10.1-inch touch panel on top of a TFT-LCD panel. With the proposed touch readout circuit, the signal-to-noise ratio (SNR) is improved by up to 13.1 dB compared to the conventional touch readout circuit using single-ended amplifiers.
为了抑制由显示噪声引起的触摸读出电路误差,采用全差分放大器的差分传感被广泛应用。然而,传统的差分传感方法需要额外的电路或增加电路复杂性,从而增加功耗和电路面积或需要在触摸屏上额外的虚拟RX线。在本研究中,我们提出了一种由单端放大器组成的紧凑型触摸读出电路,同时保持差分传感的显示噪声抑制,以减少功耗和电路面积的增加,避免额外的虚拟RX线的需要。该触控读出电路采用0.35µm 3.3 V CMOS工艺,电路面积为0.4 mm2,并在TFT-LCD面板顶部的10.1英寸触控面板上进行了测量。与使用单端放大器的传统触摸读出电路相比,所提出的触摸读出电路的信噪比(SNR)提高了13.1 dB。
{"title":"Single-ended amplifier-based touch readout circuit with immunity to display noise","authors":"Yongsang Yoo, B. Choi","doi":"10.1080/15980316.2022.2154863","DOIUrl":"https://doi.org/10.1080/15980316.2022.2154863","url":null,"abstract":"To suppress errors in a touch readout circuit due to display noise, differential sensing using fully differential amplifiers is widely used. However, conventional differential sensing methods require additional circuits or increase circuit complexity, thus increasing power consumption and circuit area or requiring additional dummy RX line on the touch panel. In this study, we propose a compact touch readout circuit composed of a single-ended amplifier while keeping the display noise suppression of differential sensing so as to minimize power consumption and circuit area increase and avoid the need for additional dummy RX line. The proposed touch readout circuit for is fabricated in circuit area of 0.4 mm2 with 0.35 µm 3.3 V CMOS process and measured for 10.1-inch touch panel on top of a TFT-LCD panel. With the proposed touch readout circuit, the signal-to-noise ratio (SNR) is improved by up to 13.1 dB compared to the conventional touch readout circuit using single-ended amplifiers.","PeriodicalId":16257,"journal":{"name":"Journal of Information Display","volume":"24 1","pages":"127 - 135"},"PeriodicalIF":3.7,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46327902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-30DOI: 10.1080/15980316.2022.2151522
Su-Hwan Choi, Hye-mi Kim, Jinsin Park
By comparing Ni and ITO electrodes of SnO TFT, we find a facile method to control p-type SnO TFT performance. A Ni-electrode TFT has a high field-effect mobility of 3.3 cm2/Vs and a low on/off current ratio of 3.6 × 101. Compared to Ni, ITO-electrode TFT has low field-effect mobility of 1.4 cm2/Vs and a high on/off current ratio of 1.1 × 103. Using various analysis methods, we suggested why the electrical properties of SnO TFT differed depending on the electrode materials. First, a redox reaction occurs at the interface of SnO and Ni during the post-annealing process. Second, Ni has an ohmic-like contact formation with SnO, which lowers the Schottky barrier height of carriers. ITO ILs are adopted to Ni electrode to reduce the off-current by hindering the redox reaction. The off-current of TFTs is effectively reduced with ITO ILs as thickness increases. An ITO IL that is 10-nm thick yields the optimum electrical properties: field-effect mobility of 2.5 cm2/Vs, Ion/Ioff of 1.7 × 103 and Vth shift under NBS of −1.4 V.
{"title":"Facile control of p-type SnO TFT performance with restraining redox reaction by ITO interlayers","authors":"Su-Hwan Choi, Hye-mi Kim, Jinsin Park","doi":"10.1080/15980316.2022.2151522","DOIUrl":"https://doi.org/10.1080/15980316.2022.2151522","url":null,"abstract":"By comparing Ni and ITO electrodes of SnO TFT, we find a facile method to control p-type SnO TFT performance. A Ni-electrode TFT has a high field-effect mobility of 3.3 cm2/Vs and a low on/off current ratio of 3.6 × 101. Compared to Ni, ITO-electrode TFT has low field-effect mobility of 1.4 cm2/Vs and a high on/off current ratio of 1.1 × 103. Using various analysis methods, we suggested why the electrical properties of SnO TFT differed depending on the electrode materials. First, a redox reaction occurs at the interface of SnO and Ni during the post-annealing process. Second, Ni has an ohmic-like contact formation with SnO, which lowers the Schottky barrier height of carriers. ITO ILs are adopted to Ni electrode to reduce the off-current by hindering the redox reaction. The off-current of TFTs is effectively reduced with ITO ILs as thickness increases. An ITO IL that is 10-nm thick yields the optimum electrical properties: field-effect mobility of 2.5 cm2/Vs, Ion/Ioff of 1.7 × 103 and Vth shift under NBS of −1.4 V.","PeriodicalId":16257,"journal":{"name":"Journal of Information Display","volume":"24 1","pages":"119 - 125"},"PeriodicalIF":3.7,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45563714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-15DOI: 10.1080/15980316.2022.2145377
Benjamin Liang, AN Liang, Irán R. Román, Tomer Weiss, Budmonde Duinkharjav, J. Bello, Qi Sun
Perception and reconstruction of our 3D physical environment is an essential task with broad applications for Augmented Reality (AR) displays. For example, reconstructed geometries are commonly leveraged for displaying 3D objects at accurate positions. While camera-captured images are a frequently used data source for realistically reconstructing 3D physical surroundings, they are limited to line-of-sight environments, requiring time-consuming and repetitive data-capture techniques to capture a full 3D picture. For instance, current AR devices require users to scan through a whole room to obtain its geometric sizes. This optical process is tedious and inapplicable when the space is occluded or inaccessible. Audio waves propagate through space by bouncing from different surfaces, but are not 'occluded' by a single object such as a wall, unlike light. In this research, we aim to ask the question ‘can one hear the size of a room?’. To answer that, we propose an approach for inferring room geometries only from a single sound, which we define as an audio wave sequence played from a single loud speaker, leveraging deep learning for decoding implicitly-carried spatial information from a single speaker-and-microphone system. Through a series of experiments and studies, our work demonstrates our method's effectiveness at inferring a 3D environment's spatial layout. Our work introduces a robust building block in multi-modal layout reconstruction.
{"title":"Reconstructing room scales with a single sound for augmented reality displays","authors":"Benjamin Liang, AN Liang, Irán R. Román, Tomer Weiss, Budmonde Duinkharjav, J. Bello, Qi Sun","doi":"10.1080/15980316.2022.2145377","DOIUrl":"https://doi.org/10.1080/15980316.2022.2145377","url":null,"abstract":"Perception and reconstruction of our 3D physical environment is an essential task with broad applications for Augmented Reality (AR) displays. For example, reconstructed geometries are commonly leveraged for displaying 3D objects at accurate positions. While camera-captured images are a frequently used data source for realistically reconstructing 3D physical surroundings, they are limited to line-of-sight environments, requiring time-consuming and repetitive data-capture techniques to capture a full 3D picture. For instance, current AR devices require users to scan through a whole room to obtain its geometric sizes. This optical process is tedious and inapplicable when the space is occluded or inaccessible. Audio waves propagate through space by bouncing from different surfaces, but are not 'occluded' by a single object such as a wall, unlike light. In this research, we aim to ask the question ‘can one hear the size of a room?’. To answer that, we propose an approach for inferring room geometries only from a single sound, which we define as an audio wave sequence played from a single loud speaker, leveraging deep learning for decoding implicitly-carried spatial information from a single speaker-and-microphone system. Through a series of experiments and studies, our work demonstrates our method's effectiveness at inferring a 3D environment's spatial layout. Our work introduces a robust building block in multi-modal layout reconstruction.","PeriodicalId":16257,"journal":{"name":"Journal of Information Display","volume":"24 1","pages":"1 - 12"},"PeriodicalIF":3.7,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45405487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-07DOI: 10.1080/15980316.2022.2141362
Noh-Hwal Park, Eun-Sol Shin, G. Ryu, Jimin Kwon, Dongseob Ji, Hyunjin Park, Yunkon Kim, Yong‐Young Noh
Single wall carbon nanotubes (SWNT) have been a significant research topic as active layers for thin film transistors (TFTs) due to their high charge carrier mobility beyond that of crystalline silicon. In this study, we report an effective approach to achieve a very high field-effect mobility and on/off ratio for solution processed semiconducting SWNT TFTs, by selective doping through contact with a thin ferric chloride (FeCl3) dopant layer. The semiconducting layer is formed by a double spin coating of the highly purified (>99%) high pressure carbon mono oxide (HiPCO) SWNT sorted by wrapping of poly (3-dodecylthiophene-2,5-diyl) (P3DDT). In order to achieve effective hole injection from the top Au source electrode without increasing the off-state drain current, less purified (98-99%) SWNTs produced by the plasma discharge process sorted by wrapping of poly (9,9-di-n-dodecylfluorene) (PFDD) are formed on the top of HiPCO film. Significantly improved TFT performance is achieved by the insertion of a few nanometers of a FeCl3 dopant layer at the semiconductor-contact interface. A significant high hole field-effect of 48.35 ± 3.11 cm2V−1s−1 (bare: 6.18 ± 0.87 cm2V−1s−1) with a reasonable on/off current ratio of 105, and low off current of ∼80 pA, are obtained by controlling the concentration of FeCl3 dopant (thickness = 1.5 nm) at the contact. Mobility is improved further at 2.5 nm thickness of the FeCl3 dopant layer resulting in a hole mobility of 177 ± 13.2 cm2 V−1s−1, an on/off ratio of 7.4 × 103, and off state current of 1.2 × 10−9 A.
{"title":"High performance carbon nanotubes thin film transistors by selective ferric chloride doping","authors":"Noh-Hwal Park, Eun-Sol Shin, G. Ryu, Jimin Kwon, Dongseob Ji, Hyunjin Park, Yunkon Kim, Yong‐Young Noh","doi":"10.1080/15980316.2022.2141362","DOIUrl":"https://doi.org/10.1080/15980316.2022.2141362","url":null,"abstract":"Single wall carbon nanotubes (SWNT) have been a significant research topic as active layers for thin film transistors (TFTs) due to their high charge carrier mobility beyond that of crystalline silicon. In this study, we report an effective approach to achieve a very high field-effect mobility and on/off ratio for solution processed semiconducting SWNT TFTs, by selective doping through contact with a thin ferric chloride (FeCl3) dopant layer. The semiconducting layer is formed by a double spin coating of the highly purified (>99%) high pressure carbon mono oxide (HiPCO) SWNT sorted by wrapping of poly (3-dodecylthiophene-2,5-diyl) (P3DDT). In order to achieve effective hole injection from the top Au source electrode without increasing the off-state drain current, less purified (98-99%) SWNTs produced by the plasma discharge process sorted by wrapping of poly (9,9-di-n-dodecylfluorene) (PFDD) are formed on the top of HiPCO film. Significantly improved TFT performance is achieved by the insertion of a few nanometers of a FeCl3 dopant layer at the semiconductor-contact interface. A significant high hole field-effect of 48.35 ± 3.11 cm2V−1s−1 (bare: 6.18 ± 0.87 cm2V−1s−1) with a reasonable on/off current ratio of 105, and low off current of ∼80 pA, are obtained by controlling the concentration of FeCl3 dopant (thickness = 1.5 nm) at the contact. Mobility is improved further at 2.5 nm thickness of the FeCl3 dopant layer resulting in a hole mobility of 177 ± 13.2 cm2 V−1s−1, an on/off ratio of 7.4 × 103, and off state current of 1.2 × 10−9 A.","PeriodicalId":16257,"journal":{"name":"Journal of Information Display","volume":"24 1","pages":"109 - 118"},"PeriodicalIF":3.7,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45175988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}