Pub Date : 2023-09-01DOI: 10.1080/08982104.2022.2162540
Amruta Prabhakar Padakanti, Sachin Dattaram Pawar, Pramod Kumar, Naveen Chella
The emerging drug resistance to the approved first-line drug therapy leads to clinical failure in cancer. Drug repurposing studies lead to the identification of many old drugs to be used for cancer treatment. Combining the repurposed drugs (niclosamide) with first-line therapy agents like erlotinib HCl showed improved efficacy by inhibiting erlotinib HCl acquired resistance. But there is a need to develop a sensitive, accurate, and excellent analytical method and drug delivery system for successfully delivering drug combinations. In the current study, an HPLC method was developed and validated for the simultaneous estimation of niclosamide and erlotinib HCl. The retention time of niclosamide and erlotinib hydrochloride was 6.48 and 7.65 min at 333 nm. The developed method was rapid and sensitive to separating the two drugs with reasonable accuracy, precision, robustness, and ruggedness. A Plackett-Burman (PBD) screening design was used to identify the critical parameters affecting liposomal formulation development using particle size, size distribution, zeta potential, and entrapment efficiency as the response. Lipid concentration, drug concentration, hydration temperature, and media volume were critical parameters affecting the particle size, polydispersity index (PDI), ZP, and %EE of the liposomes. The optimized NCM-ERL liposomes showed the particle size (126.05 ± 2.1), PDI (0.498 ± 0.1), ZP (-16.2 ± 0.3), and %EE of NCM and ERL (50.04 ± 2.8 and 05.42 ± 1.3). In vitro release studies indicated the controlled release of the drugs loaded liposomes (87.06 ± 9.93% and 42.33 ± 0.89% in 24 h).
{"title":"Development and validation of HPLC method for simultaneous estimation of erlotinib and niclosamide from liposomes optimized by screening design.","authors":"Amruta Prabhakar Padakanti, Sachin Dattaram Pawar, Pramod Kumar, Naveen Chella","doi":"10.1080/08982104.2022.2162540","DOIUrl":"https://doi.org/10.1080/08982104.2022.2162540","url":null,"abstract":"<p><p>The emerging drug resistance to the approved first-line drug therapy leads to clinical failure in cancer. Drug repurposing studies lead to the identification of many old drugs to be used for cancer treatment. Combining the repurposed drugs (niclosamide) with first-line therapy agents like erlotinib HCl showed improved efficacy by inhibiting erlotinib HCl acquired resistance. But there is a need to develop a sensitive, accurate, and excellent analytical method and drug delivery system for successfully delivering drug combinations. In the current study, an HPLC method was developed and validated for the simultaneous estimation of niclosamide and erlotinib HCl. The retention time of niclosamide and erlotinib hydrochloride was 6.48 and 7.65 min at 333 nm. The developed method was rapid and sensitive to separating the two drugs with reasonable accuracy, precision, robustness, and ruggedness. A Plackett-Burman (PBD) screening design was used to identify the critical parameters affecting liposomal formulation development using particle size, size distribution, zeta potential, and entrapment efficiency as the response. Lipid concentration, drug concentration, hydration temperature, and media volume were critical parameters affecting the particle size, polydispersity index (PDI), ZP, and %EE of the liposomes. The optimized NCM-ERL liposomes showed the particle size (126.05 ± 2.1), PDI (0.498 ± 0.1), ZP (-16.2 ± 0.3), and %EE of NCM and ERL (50.04 ± 2.8 and 05.42 ± 1.3). <i>In vitro</i> release studies indicated the controlled release of the drugs loaded liposomes (87.06 ± 9.93% and 42.33 ± 0.89% in 24 h).</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":"33 3","pages":"268-282"},"PeriodicalIF":4.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9870191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1080/08982104.2023.2172582
Debjyoti Roy, Gangaram H S Udugiri, Sudhir H Ranganath
Measurement of osmolarity is critical for optimizing bioprocesses including antibody production and detecting pathologies. Thus, rapid, sensitive, and in situ sensing of osmolarity is desirable. This study aims to develop and assess the suitability of calcein- and sulforhodamine-loaded nanoliposomes for ratiometric sensing of osmolarity by fluorescence spectroscopy and evaluate the range of detection. The detection is based on concentration-dependent self-quenching of calcein fluorescence (sensor dye at 6-15 mM) and concentration-independent fluorescence of sulforhodamine (reference dye) due to osmotic shrinkage of the nanoliposomes when exposed to hyperosmotic solutions. Using mathematical modeling, 6 mM calcein loading was found to be optimal to sense osmolarity between 300 and 3000 mOsM. Calcein (6 mM)- and sulforhodamine (2 mM)-loaded nanoliposomes were produced by thin-film hydration and serial extrusion. The nanoliposomes were unilamellar, spherical (108 ± 9 nm), and uniform in size (polydispersity index [PDI] 0.12 ± 0.04). Their shrinkage induced by exposure to hyperosmotic solutions led to rapid self-quenching of calcein fluorescence (FGreen), but no effect on sulforhodamine fluorescence (FRed) was observed. FGreen/FRed decreased linearly with increasing osmolarity, obeying Boyle van't Hoff's relationship, thus proving that the nanoliposomes are osmosensitive. A calibration curve was generated to compute osmolarity based on FGreen/FRed measurements. As a proof-of-concept, dynamic changes in osmolarity in a yeast-based fermentation process was demonstrated. Thus, the nanoliposomes have great potential as sensors to rapidly and sensitively measure wide-ranging osmolarities.
{"title":"Evaluation of suitability and detection range of fluorescent dye-loaded nanoliposomes for sensitive and rapid sensing of wide ranging osmolarities.","authors":"Debjyoti Roy, Gangaram H S Udugiri, Sudhir H Ranganath","doi":"10.1080/08982104.2023.2172582","DOIUrl":"https://doi.org/10.1080/08982104.2023.2172582","url":null,"abstract":"<p><p>Measurement of osmolarity is critical for optimizing bioprocesses including antibody production and detecting pathologies. Thus, rapid, sensitive, and <i>in situ</i> sensing of osmolarity is desirable. This study aims to develop and assess the suitability of calcein- and sulforhodamine-loaded nanoliposomes for ratiometric sensing of osmolarity by fluorescence spectroscopy and evaluate the range of detection. The detection is based on concentration-dependent self-quenching of calcein fluorescence (sensor dye at 6-15 mM) and concentration-independent fluorescence of sulforhodamine (reference dye) due to osmotic shrinkage of the nanoliposomes when exposed to hyperosmotic solutions. Using mathematical modeling, 6 mM calcein loading was found to be optimal to sense osmolarity between 300 and 3000 mOsM. Calcein (6 mM)- and sulforhodamine (2 mM)-loaded nanoliposomes were produced by thin-film hydration and serial extrusion. The nanoliposomes were unilamellar, spherical (108 ± 9 nm), and uniform in size (polydispersity index [PDI] 0.12 ± 0.04). Their shrinkage induced by exposure to hyperosmotic solutions led to rapid self-quenching of calcein fluorescence (F<sub>Green</sub>), but no effect on sulforhodamine fluorescence (F<sub>Red</sub>) was observed. F<sub>Green</sub>/F<sub>Red</sub> decreased linearly with increasing osmolarity, obeying Boyle van't Hoff's relationship, thus proving that the nanoliposomes are osmosensitive. A calibration curve was generated to compute osmolarity based on F<sub>Green</sub>/F<sub>Red</sub> measurements. As a proof-of-concept, dynamic changes in osmolarity in a yeast-based fermentation process was demonstrated. Thus, the nanoliposomes have great potential as sensors to rapidly and sensitively measure wide-ranging osmolarities.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":"33 3","pages":"300-313"},"PeriodicalIF":4.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9882465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1080/08982104.2022.2153139
Lucia Ruxandra Tefas, Ioana Toma, Alina Sesarman, Manuela Banciu, Ancuta Jurj, Ioana Berindan-Neagoe, Lucia Rus, Rares Stiufiuc, Ioan Tomuta
Colorectal cancer remains one of the major causes of morbidity and mortality in both developed and emerging countries. Cancer stem cells (CSCs) are a subpopulation of cells within the tumor mass harboring stem cell characteristics, considered responsible for tumor initiation, growth, relapse, and treatment failure. Lately, it has become clear that both CSCs and non-CSCs have to be eliminated for the successful eradication of cancer. Drug delivery systems have been extensively employed to enhance drug efficacy. In this study, salinomycin (SAL), a selective anti-CSC drug, and gemcitabine (GEM), a conventional anticancer drug, were co-loaded in liposomes and tested for optimal therapeutic efficacy. We employed the Design of Experiments approach to develop and optimize a liposomal delivery system for GEM and SAL. The antiproliferative effect of the liposomes was evaluated in SW-620 human colorectal cancer cells. The GEM and SAL-loaded liposomes exhibited adequate size, polydispersity, zeta potential, and drug content. The in vitro release study showed a sustained release of GEM and SAL from the liposomes over 72 h. Moreover, no sign of liposome aggregation was seen over 1 month and in a biological medium (FBS). The in vitro cytotoxic effects of the co-loaded liposomes were superior to that of single GEM either in free or liposomal form. The combination therapy using GEM and SAL co-loaded in liposomes could be a promising strategy for tackling colorectal cancer.
{"title":"Co-delivery of gemcitabine and salinomycin in PEGylated liposomes for enhanced anticancer efficacy against colorectal cancer.","authors":"Lucia Ruxandra Tefas, Ioana Toma, Alina Sesarman, Manuela Banciu, Ancuta Jurj, Ioana Berindan-Neagoe, Lucia Rus, Rares Stiufiuc, Ioan Tomuta","doi":"10.1080/08982104.2022.2153139","DOIUrl":"https://doi.org/10.1080/08982104.2022.2153139","url":null,"abstract":"<p><p>Colorectal cancer remains one of the major causes of morbidity and mortality in both developed and emerging countries. Cancer stem cells (CSCs) are a subpopulation of cells within the tumor mass harboring stem cell characteristics, considered responsible for tumor initiation, growth, relapse, and treatment failure. Lately, it has become clear that both CSCs and non-CSCs have to be eliminated for the successful eradication of cancer. Drug delivery systems have been extensively employed to enhance drug efficacy. In this study, salinomycin (SAL), a selective anti-CSC drug, and gemcitabine (GEM), a conventional anticancer drug, were co-loaded in liposomes and tested for optimal therapeutic efficacy. We employed the Design of Experiments approach to develop and optimize a liposomal delivery system for GEM and SAL. The antiproliferative effect of the liposomes was evaluated in SW-620 human colorectal cancer cells. The GEM and SAL-loaded liposomes exhibited adequate size, polydispersity, zeta potential, and drug content. The <i>in vitro</i> release study showed a sustained release of GEM and SAL from the liposomes over 72 h. Moreover, no sign of liposome aggregation was seen over 1 month and in a biological medium (FBS). The <i>in vitro</i> cytotoxic effects of the co-loaded liposomes were superior to that of single GEM either in free or liposomal form. The combination therapy using GEM and SAL co-loaded in liposomes could be a promising strategy for tackling colorectal cancer.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":"33 3","pages":"234-250"},"PeriodicalIF":4.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9876410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1080/08982104.2023.2177309
Antoine Bernasqué, Muriel Cario, Stéphanie Krisa, Sophie Lecomte, Chrystel Faure
Hydrocortisone (HyC), a hydrophobic pharmaceutical active, was encapsulated in multi-lamellar liposomes (MLLs) composed of P100, a mixture of phospholipids, and Tween®80. Three different HyC-loaded formulations were designed to target the stratum corneum, the living epidermis and the hypodermis. The impact of encapsulation on their size, elasticity and zeta potential, the three key factors controlling MLLs skin penetration, was studied. Raman mapping of phospholipids and HyC allowed the localisation of both components inside an artificial skin, Strat-M®, demonstrating the efficiency of the targeting. Percutaneous permeation profiles through excised human skin were performed over 48 h, supporting results on artificial skin. Their modelling revealed that HyC encapsulated in MLLs, designed to target the stratum corneum and living epidermis, exhibited a non-Fickian diffusion process. In contrast, a Fickian diffusion was found for HyC administered in solution, in a pharmaceutical cream and in transdermal MLLs. These results allowed us to propose a mechanism of interaction between HyC-containing MLLs and the skin.
{"title":"Transport of hydrocortisone in targeted layers of the skin by multi-lamellar liposomes.","authors":"Antoine Bernasqué, Muriel Cario, Stéphanie Krisa, Sophie Lecomte, Chrystel Faure","doi":"10.1080/08982104.2023.2177309","DOIUrl":"https://doi.org/10.1080/08982104.2023.2177309","url":null,"abstract":"<p><p>Hydrocortisone (HyC), a hydrophobic pharmaceutical active, was encapsulated in multi-lamellar liposomes (MLLs) composed of P100, a mixture of phospholipids, and Tween®80. Three different HyC-loaded formulations were designed to target the <i>stratum corneum</i>, the living epidermis and the hypodermis. The impact of encapsulation on their size, elasticity and zeta potential, the three key factors controlling MLLs skin penetration, was studied. Raman mapping of phospholipids and HyC allowed the localisation of both components inside an artificial skin, Strat-M®, demonstrating the efficiency of the targeting. Percutaneous permeation profiles through excised human skin were performed over 48 h, supporting results on artificial skin. Their modelling revealed that HyC encapsulated in MLLs, designed to target the <i>stratum corneum</i> and living epidermis, exhibited a non-Fickian diffusion process. In contrast, a Fickian diffusion was found for HyC administered in solution, in a pharmaceutical cream and in transdermal MLLs. These results allowed us to propose a mechanism of interaction between HyC-containing MLLs and the skin.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":"33 3","pages":"314-327"},"PeriodicalIF":4.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10238443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1080/08982104.2023.2170408
Katerina Xekouki, Nefeli Lagopati, Costas Demetzos, Maria Gazouli, Natassa Pippa
Nanovaccines have shown to be effective, and this is the reason they are preferred than conventional vaccines. The scope of this review is to describe the role, mechanisms, and advantages of nano vaccines based on lipids, and present the most important types, their physicochemical characteristics, as well as their challenges. The most important categories of lipid nano-vaccines are liposomal nano vaccines and (virus-lipid nanoparticles (NPs)/virosomes. Examples of vaccine formulations from each category are presented and analyzed below, focusing on their structure and physicochemical characteristics. In all cases, a nanoscale platform is used, enriched with adjuvants, antigens, and other helping agents to trigger immune response process and achieve cell targeting, and eventually immunity against the desired disease. The exact mechanism of action of each vaccine is not always completely known or understood. Physicochemical characteristics, such as particle size, morphology/shape, and zeta potential are also mentioned as they seem to affect the properties and mechanism of action of the vaccine formulation.
{"title":"A mini review for lipid-based nanovaccines: from their design to their applications.","authors":"Katerina Xekouki, Nefeli Lagopati, Costas Demetzos, Maria Gazouli, Natassa Pippa","doi":"10.1080/08982104.2023.2170408","DOIUrl":"https://doi.org/10.1080/08982104.2023.2170408","url":null,"abstract":"<p><p>Nanovaccines have shown to be effective, and this is the reason they are preferred than conventional vaccines. The scope of this review is to describe the role, mechanisms, and advantages of nano vaccines based on lipids, and present the most important types, their physicochemical characteristics, as well as their challenges. The most important categories of lipid nano-vaccines are liposomal nano vaccines and (virus-lipid nanoparticles (NPs)/virosomes. Examples of vaccine formulations from each category are presented and analyzed below, focusing on their structure and physicochemical characteristics. In all cases, a nanoscale platform is used, enriched with adjuvants, antigens, and other helping agents to trigger immune response process and achieve cell targeting, and eventually immunity against the desired disease. The exact mechanism of action of each vaccine is not always completely known or understood. Physicochemical characteristics, such as particle size, morphology/shape, and zeta potential are also mentioned as they seem to affect the properties and mechanism of action of the vaccine formulation.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":"33 3","pages":"214-233"},"PeriodicalIF":4.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9882484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, cantharidin(CTD), a bioactive terpenoid in traditional Chinese medicine cantharidin, was selected as a model component to construct novel nano liposome delivery systems for hepatocellular carcinoma therapy. Previous studies have shown that although cantharidin has definite curative effects on primary liver cancer, it is associated with numerous toxic and side effects. Therefore, based on the glycyrrhetinic acid (GA) binding site and the asialoglycoprotein receptor (ASGPR) on the hepatocyte membrane, the surface of CTD liposomes was modified with stearyl alcohol galactoside (SA-Gal) or/and the newly synthesized 3-succinic-30-stearyl deoxyglycyrrhetinic acid (11-DGA-Suc) ligands, and the physicochemical properties, pharmacokinetics, in vivo and in vitro anti-liver tumor activity and its mechanism of modified liposomes were investigated. Compared to CTD-lip, SA-Gal-CTD-lip, and 11-DGA-Suc + SA-Gal-CTD-lip, 11-DGA-Suc-CTD-lip showed stronger cytotoxicity and increased inhibition of HepG2 cell migration had the highest apoptosis rate. The cell cycle results indicated that HepG2 cells was arrested mainly at G0/G1phase and G2/M phase. The results of in vivo pharmacokinetic experiments revealed that the distribution of modified liposomes in the liver was significantly increased compared with that of unmodified liposome. In vivo tumor inhibition experiment showed that 11-DGA-Suc-CTD-lip had excellent tumor inhibition, and the tumor inhibition rates was 80.96%. The 11-DGA-Suc-CTD-lip group also displayed the strongest proliferation inhibition with the lowest proliferation index of 7% in PCNA assay and the highest apoptotic index of 49% in TUNEL assay. Taken together, our findings provide a promising solution for improving the targeting of nano liposomes and further demonstrates the encouraging potential of poor solubility and high toxicity drugs applicable to tumor therapy.
本研究选择中药斑蝥素中具有生物活性的萜类化合物斑蝥素(cantharidin, CTD)作为模型成分,构建新型纳米脂质体给药系统用于肝癌治疗。既往研究表明,斑蝥素对原发性肝癌虽有明确疗效,但其毒副作用较多。因此,以肝细胞膜上的甘草酸(GA)结合位点和asialal糖蛋白受体(ASGPR)为基础,采用硬脂醇半乳糖苷(SA-Gal)或/和新合成的3-丁二酸-30-硬脂酰脱氧甘草酸(11-DGA-Suc)配体对CTD脂质体表面进行修饰,研究修饰脂质体的理化性质、药代动力学、体内外抗肝肿瘤活性及其机制。与CTD-lip、SA-Gal-CTD-lip和11-DGA-Suc + SA-Gal-CTD-lip相比,11-DGA-Suc-CTD-lip具有更强的细胞毒性,对HepG2细胞迁移的抑制作用增强,凋亡率最高。细胞周期结果显示,HepG2细胞主要停留在G0/ g1期和G2/M期。体内药代动力学实验结果显示,与未修饰脂质体相比,修饰脂质体在肝脏中的分布明显增加。体内肿瘤抑制实验表明,11- dga - su - ctd -lip具有良好的肿瘤抑制作用,肿瘤抑制率为80.96%。11- dga - su - ctd -lip组也表现出最强的增殖抑制作用,PCNA实验中增殖指数最低,为7%,TUNEL实验中凋亡指数最高,为49%。综上所述,我们的研究结果为提高纳米脂质体的靶向性提供了一个有希望的解决方案,并进一步证明了低溶解度和高毒性药物在肿瘤治疗中的应用潜力。
{"title":"Use of different ligand modification liposomes to evaluate the anti-liver tumor activity of cantharidin.","authors":"Manshu Zou, Yilin Xu, Peng Lin, Lili Zhou, Xinhua Xia","doi":"10.1080/08982104.2022.2163254","DOIUrl":"https://doi.org/10.1080/08982104.2022.2163254","url":null,"abstract":"<p><p>In this study, cantharidin(CTD), a bioactive terpenoid in traditional Chinese medicine cantharidin, was selected as a model component to construct novel nano liposome delivery systems for hepatocellular carcinoma therapy. Previous studies have shown that although cantharidin has definite curative effects on primary liver cancer, it is associated with numerous toxic and side effects. Therefore, based on the glycyrrhetinic acid (GA) binding site and the asialoglycoprotein receptor (ASGPR) on the hepatocyte membrane, the surface of CTD liposomes was modified with stearyl alcohol galactoside (SA-Gal) or/and the newly synthesized 3-succinic-30-stearyl deoxyglycyrrhetinic acid (11-DGA-Suc) ligands, and the physicochemical properties, pharmacokinetics, <i>in vivo</i> and <i>in vitro</i> anti-liver tumor activity and its mechanism of modified liposomes were investigated. Compared to CTD-lip, SA-Gal-CTD-lip, and 11-DGA-Suc + SA-Gal-CTD-lip, 11-DGA-Suc-CTD-lip showed stronger cytotoxicity and increased inhibition of HepG2 cell migration had the highest apoptosis rate. The cell cycle results indicated that HepG2 cells was arrested mainly at G0/G1phase and G2/M phase. The results of <i>in vivo</i> pharmacokinetic experiments revealed that the distribution of modified liposomes in the liver was significantly increased compared with that of unmodified liposome. <i>In vivo</i> tumor inhibition experiment showed that 11-DGA-Suc-CTD-lip had excellent tumor inhibition, and the tumor inhibition rates was 80.96%. The 11-DGA-Suc-CTD-lip group also displayed the strongest proliferation inhibition with the lowest proliferation index of 7% in PCNA assay and the highest apoptotic index of 49% in TUNEL assay. Taken together, our findings provide a promising solution for improving the targeting of nano liposomes and further demonstrates the encouraging potential of poor solubility and high toxicity drugs applicable to tumor therapy.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":"33 3","pages":"283-299"},"PeriodicalIF":4.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9879567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Radiotherapy is an effective therapy in tumour treatment. However, the characteristics of the tumour microenvironment, including hypoxia, low pH, and interstitial fluid pressure bring about radioresistance. To improve the anti-tumour effect of radiotherapy, it has been demonstrated that antiangiogenic therapy can be employed to repair the structural and functional defects of tumour angiogenic vessels, thereby preventing radioresistance or poor therapeutic drug delivery. In this study, we prepared triptolide (TP)-loaded Asn-Gly-Arg (NGR) peptide conjugated mPEG2000-DSPE-targeted liposomes (NGR-PEG-TP-LPs) to induce tumour blood vessel normalisation, to the end of increasing the sensitivity of tumour cells to radiotherapy. Further, to quantify the tumour vessel normalisation window, the structure and functionality of tumour blood vessels post NGR-PEG-TP-LPs treatment were evaluated. Thereafter, the anti-tumour effect of radiotherapy following these treatments was evaluated using HCT116 xenograft-bearing mouse models based on the tumour vessel normalisation period window. The results obtained showed that NGR-PEG-TP-LPs could modulate tumour vascular normalisation to increase the oxygen content of the tumour microenvironment and enhance the efficacy of radiotherapy. Further, liver and kidney toxicity tests indicated that NGR-PEG-TP-LPs are safe for application in cancer treatment.
{"title":"Modulating tumour vascular normalisation using triptolide-loaded NGR-functionalized liposomes for enhanced cancer radiotherapy.","authors":"Ying-Ying Xu, Yan-Hong Chen, Jie Jin, Yuan Yuan, Jin-Meng Li, Xin-Jun Cai, Ruo-Ying Zhang","doi":"10.1080/08982104.2022.2161095","DOIUrl":"https://doi.org/10.1080/08982104.2022.2161095","url":null,"abstract":"<p><p>Radiotherapy is an effective therapy in tumour treatment. However, the characteristics of the tumour microenvironment, including hypoxia, low pH, and interstitial fluid pressure bring about radioresistance. To improve the anti-tumour effect of radiotherapy, it has been demonstrated that antiangiogenic therapy can be employed to repair the structural and functional defects of tumour angiogenic vessels, thereby preventing radioresistance or poor therapeutic drug delivery. In this study, we prepared triptolide (TP)-loaded Asn-Gly-Arg (NGR) peptide conjugated mPEG2000-DSPE-targeted liposomes (NGR-PEG-TP-LPs) to induce tumour blood vessel normalisation, to the end of increasing the sensitivity of tumour cells to radiotherapy. Further, to quantify the tumour vessel normalisation window, the structure and functionality of tumour blood vessels post NGR-PEG-TP-LPs treatment were evaluated. Thereafter, the anti-tumour effect of radiotherapy following these treatments was evaluated using HCT116 xenograft-bearing mouse models based on the tumour vessel normalisation period window. The results obtained showed that NGR-PEG-TP-LPs could modulate tumour vascular normalisation to increase the oxygen content of the tumour microenvironment and enhance the efficacy of radiotherapy. Further, liver and kidney toxicity tests indicated that NGR-PEG-TP-LPs are safe for application in cancer treatment.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":"33 3","pages":"251-257"},"PeriodicalIF":4.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10255704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1080/08982104.2022.2153138
Yu-Jia Wang, Ling Tang, Xu-Hong Lu, Ji-Tao Liu, Yuan-Yuan Wang, Hong-Xia Geng, Xue-Tao Li, Quan An
Treatment of epithelial ovarian cancer (EOC) is a challenge because it still leads to unsatisfactory clinical prognosis. This is due to the toxicity and poor targeting of chemotherapeutic agents, as well as metastasis of the tumor. In this study, we designed a targeted liposome with nanostructures to overcome these problems. In the liposomes, epirubicin and curcumin were encapsulated to achieve their synergistic antitumor efficacy, while Epi-1 was modified on the liposomal surface to target epithelial cell adhesion molecule (EpCAM). Epi-1, a macrocyclic peptide, exhibits active targeting for enhanced cellular uptake and potent cytotoxicity against tumor cells. The encapsulation of epirubicin and curcumin synergistically inhibited the formation of neovascularization and vasculogenic mimicry (VM) channels, thereby suppressing tumor metastasis on SKOV3 cells. The dual drug loaded Epi-1-liposomes also induced apoptosis and downregulated metastasis-related proteins for effective antitumor in vitro. In vivo studies showed that dual drug loaded Epi-1-liposomes prolonged circulation time in the blood and increased the selective accumulation of drug at the tumor site. H&E staining and immunohistochemistry with Ki-67 also showed that targeted liposomes elevated antitumor activity. Also, targeted liposomes downregulated angiogenesis-related proteins to inhibit angiogenesis and thus tumor metastasis. In conclusion, the production of dual drug loaded Epi-1-liposomes is an effective strategy for the treatment of EOC.
{"title":"Efficacy of epi-1 modified epirubicin and curcumin encapsulated liposomes targeting-EpCAM in the inhibition of epithelial ovarian cancer cells.","authors":"Yu-Jia Wang, Ling Tang, Xu-Hong Lu, Ji-Tao Liu, Yuan-Yuan Wang, Hong-Xia Geng, Xue-Tao Li, Quan An","doi":"10.1080/08982104.2022.2153138","DOIUrl":"https://doi.org/10.1080/08982104.2022.2153138","url":null,"abstract":"<p><p>Treatment of epithelial ovarian cancer (EOC) is a challenge because it still leads to unsatisfactory clinical prognosis. This is due to the toxicity and poor targeting of chemotherapeutic agents, as well as metastasis of the tumor. In this study, we designed a targeted liposome with nanostructures to overcome these problems. In the liposomes, epirubicin and curcumin were encapsulated to achieve their synergistic antitumor efficacy, while Epi-1 was modified on the liposomal surface to target epithelial cell adhesion molecule (EpCAM). Epi-1, a macrocyclic peptide, exhibits active targeting for enhanced cellular uptake and potent cytotoxicity against tumor cells. The encapsulation of epirubicin and curcumin synergistically inhibited the formation of neovascularization and vasculogenic mimicry (VM) channels, thereby suppressing tumor metastasis on SKOV3 cells. The dual drug loaded Epi-1-liposomes also induced apoptosis and downregulated metastasis-related proteins for effective antitumor in vitro. In vivo studies showed that dual drug loaded Epi-1-liposomes prolonged circulation time in the blood and increased the selective accumulation of drug at the tumor site. H&E staining and immunohistochemistry with Ki-67 also showed that targeted liposomes elevated antitumor activity. Also, targeted liposomes downregulated angiogenesis-related proteins to inhibit angiogenesis and thus tumor metastasis. In conclusion, the production of dual drug loaded Epi-1-liposomes is an effective strategy for the treatment of EOC.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":"33 2","pages":"197-213"},"PeriodicalIF":4.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9620083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1080/08982104.2022.2106240
Huang Ding, Ke Wang, Lin-Qin He, Xiao-Yu Yang, Hai-Hong Huang, Wen-Long Liu, Chen Xiao, Ze-Xuan Du, Lian- Yu, Wei Zhang
Objective: To investigate the preparation of novel nanoliposomes (Borneol Angelica Polysaccharide Liposomes, BAPL) for anti-cerebral ischaemia and verify its curative effects and mechanism.
Methods: By applying a uniform experiment design to investigate the fitting combination of BAPL. Encapsulation Efficiency Evaluation of BAPL Preparation; Particle Size and Surface Potential Evaluation of BAPL Biological activity; Cerebral ischaemia models of rats Evaluation of BAPL curative effects and mechanism.
Results: (1) The fitting combination of lecithin, Cholesterol, AP mass and the borneol mass was 60 mg, 60 mg, 45 mg and 5 mg. the highest encapsulation efficiency was 80.4%, the particle size was 179.1 nm, and the surface zeta potential was -17.2 mV. It conforms to the nano-material standards. (2) The results of animal experiments show that: In the BAPL group, the infarct volume of TTC staining was significantly decreased, and the expression levels of NF-κBp65, TLR-4, IL-8, IL-6, IL-1β in brain tissue were significantly decreased, while the expression levels of ZO-1, ZO-2, IL-10 were significantly increased after cerebral ischaemia-reperfusion.
Conclusion: BAPL is a novel nano and effective material for anti-cerebral ischaemia.
{"title":"A novel nano material for anti-cerebral ischaemia: preparation and application of borneol angelica polysaccharide liposomes.","authors":"Huang Ding, Ke Wang, Lin-Qin He, Xiao-Yu Yang, Hai-Hong Huang, Wen-Long Liu, Chen Xiao, Ze-Xuan Du, Lian- Yu, Wei Zhang","doi":"10.1080/08982104.2022.2106240","DOIUrl":"https://doi.org/10.1080/08982104.2022.2106240","url":null,"abstract":"<p><strong>Objective: </strong>To investigate the preparation of novel nanoliposomes (Borneol Angelica Polysaccharide Liposomes, BAPL) for anti-cerebral ischaemia and verify its curative effects and mechanism.</p><p><strong>Methods: </strong>By applying a uniform experiment design to investigate the fitting combination of BAPL. Encapsulation Efficiency Evaluation of BAPL Preparation; Particle Size and Surface Potential Evaluation of BAPL Biological activity; Cerebral ischaemia models of rats Evaluation of BAPL curative effects and mechanism.</p><p><strong>Results: </strong>(1) The fitting combination of lecithin, Cholesterol, AP mass and the borneol mass was 60 mg, 60 mg, 45 mg and 5 mg. the highest encapsulation efficiency was 80.4%, the particle size was 179.1 nm, and the surface zeta potential was -17.2 mV. It conforms to the nano-material standards. (2) The results of animal experiments show that: In the BAPL group, the infarct volume of TTC staining was significantly decreased, and the expression levels of NF-κBp65, TLR-4, IL-8, IL-6, IL-1β in brain tissue were significantly decreased, while the expression levels of ZO-1, ZO-2, IL-10 were significantly increased after cerebral ischaemia-reperfusion.</p><p><strong>Conclusion: </strong>BAPL is a novel nano and effective material for anti-cerebral ischaemia.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":"33 2","pages":"144-153"},"PeriodicalIF":4.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9984125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liposomes have gained much attention in drug delivery since the entry of liposomal Doxorubicin (Doxil®) into the market. Liposomes can entrap lipophilic, hydrophilic as well as amphiphilic drug molecules due to their distinctive structural features. Yet the clinical translation of liposomes is limited due to the reproducibility issues owing to a lack of information related to the impact of process parameters and formulation variables on designed liposomes. Recently, preparation techniques like membrane extrusion and microfluidics have been reported to produce liposomes in a reproducible manner. The present research study selected an amphiphilic drug Temozolomide (TMZ). It has a short half-life in the plasma due to its pH-dependent stability. Various critical and non-critical parameters affecting the critical quality attributes were identified and studied using risk-based assessment. The effect of various material attributes and process parameters on the critical quality attributes of the temozolomide-loaded liposomes prepared by microfluidics and membrane extrusion techniques were investigated in detail. Liposomes in the size range of 100-150 nm were targeted. Both techniques were optimized with a minimum number of critical process parameters. The obtained information will be beneficial to formulation scientists for designing liposomes for an amphiphilic drug on a large scale.
{"title":"Exploring microfluidics and membrane extrusion for the formulation of temozolomide-loaded liposomes: investigating the effect of formulation and process variables.","authors":"Tejashree Waghule, Ranendra Narayan Saha, Gautam Singhvi","doi":"10.1080/08982104.2022.2139844","DOIUrl":"https://doi.org/10.1080/08982104.2022.2139844","url":null,"abstract":"<p><p>Liposomes have gained much attention in drug delivery since the entry of liposomal Doxorubicin (Doxil<sup>®</sup>) into the market. Liposomes can entrap lipophilic, hydrophilic as well as amphiphilic drug molecules due to their distinctive structural features. Yet the clinical translation of liposomes is limited due to the reproducibility issues owing to a lack of information related to the impact of process parameters and formulation variables on designed liposomes. Recently, preparation techniques like membrane extrusion and microfluidics have been reported to produce liposomes in a reproducible manner. The present research study selected an amphiphilic drug Temozolomide (TMZ). It has a short half-life in the plasma due to its pH-dependent stability. Various critical and non-critical parameters affecting the critical quality attributes were identified and studied using risk-based assessment. The effect of various material attributes and process parameters on the critical quality attributes of the temozolomide-loaded liposomes prepared by microfluidics and membrane extrusion techniques were investigated in detail. Liposomes in the size range of 100-150 nm were targeted. Both techniques were optimized with a minimum number of critical process parameters. The obtained information will be beneficial to formulation scientists for designing liposomes for an amphiphilic drug on a large scale.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":"33 2","pages":"170-182"},"PeriodicalIF":4.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10001268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}