Physiological calcification of soft tissues is a common occurrence in aging and various acquired and inherited disorders. ABCC6 sequence variations cause the calcification phenotype of pseudoxanthoma elasticum (PXE) as well as some cases of generalized arterial calcification of infancy, which is otherwise caused by defective ENPP1. ABCC6 is primarily expressed in the liver, which has given the impression that the liver is central to the pathophysiology of PXE/generalized arterial calcification of infancy. The emergence of inflammation as a contributor to the calcification in PXE suggested that peripheral tissues play a larger role than expected. In this study, we investigated whether bone marrow–derived ABCC6 contributes to the calcification in PXE. In Abcc6‒/‒ mice, we observed prevalent mineralization in several lymph nodes and surrounding connective tissues and an extensive network of lymphatic vessels within vibrissae, a calcified tissue in Abcc6‒/‒ mice. Furthermore, we found evidence of lymphangiogenesis in patients with PXE and mouse skin, suggesting an inflammatory process. Finally, restoring wild-type bone marrow in Abcc6‒/‒ mice produced a significant reduction of calcification, suggesting that the liver alone is not sufficient to fully inhibit mineralization. With evidence that ABCC6 is expressed in lymphocytes, we suggest that the adaptative immune system and inflammation largely contribute to the calcification in PXE/generalized arterial calcification of infancy.
Epidermal hyperinnervation is a critical feature of pruritus during skin inflammation. However, the mechanisms underlying epidermal hyperinnervation are unclear. This study investigates the role of the transcription factor EGR1 in epidermal innervation by utilizing wild-type (Egr1+/+) and Egr1-null (Egr1‒/‒) mice topically applied Dermatophagoides farinae extract from dust mite. Our findings revealed that Egr1‒/‒ mice exhibited reduced scratching behaviors and decreased density of epidermal innervation compared with Egr1+/+ mice. Furthermore, we identified artemin, a neurotrophic factor, as an EGR1 target responsible for Dermatophagoides farinae extract–induced hyperinnervation. It has been demonstrated that Dermatophagoides farinae extract stimulates toll-like receptors in keratinocytes. To elucidate the cellular mechanism, we stimulated keratinocytes with Pam3CSK4, a toll-like receptor 1/2 ligand. Pam3CSK4 triggered a toll-like receptor 1/2–mediated signaling cascade involving IRAK4, IκB kinase, MAPKs, ELK1, EGR1, and artemin, leading to increased neurite outgrowth and neuronal migration. In addition, increased expression of EGR1 and artemin was observed in the skin tissues of patients with atopic dermatitis. These findings highlight the significance of the EGR1–artemin axis in keratinocytes, promoting the process of epidermal innervation and suggesting it as a potential therapeutic target for alleviating itch and pain associated with house dust mite–induced skin inflammation.