首页 > 最新文献

Journal of Nanobiotechnology最新文献

英文 中文
Sele-targeted siRNA liposome nanoparticles inhibit pathological scars formation via blocking the cross-talk between monocyte and endothelial cells: a preclinical study based on a novel mice scar model. Sele靶向 siRNA 脂质体纳米颗粒通过阻断单核细胞与内皮细胞之间的交叉对话抑制病理性疤痕的形成:一项基于新型小鼠疤痕模型的临床前研究。
IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-27 DOI: 10.1186/s12951-024-03003-4
Luyu Li, Yong Wang, Jing Meng, Xue Wang, Xiaojin Wu, Yan Wo, Ying Shang, Zhen Zhang

Background: Pathological scars (PS) are one of the most common complications in patients with trauma and burns, leading to functional impairments and aesthetic concerns. Mechanical tension at injury sites is a crucial factor in PS formation. However, the precise mechanisms remain unclear due to the lack of reliable animal models.

Results: We developed a novel mouse model, the Retroflex Scar Model (RSM), which induces PS by applying controlled tension to wounds in vivo. RNA sequencing identified significant transcriptome changes in RSM-induced scars. Elevated expression of E-Selectin (Sele) was observed in endothelial cells from both the RSM model and human PS (Keloid) samples. In vitro studies demonstrated that cyclic mechanical stretching (CMS) increased Sele expression, promoting monocyte adhesion and the release of pro-inflammatory factors. Single-cell sequencing analysis from the GEO database, complemented by Western blotting, immunofluorescence, and co-immunoprecipitation, confirmed the role of Sele-mediated monocyte adhesion in PS formation. Additionally, we developed Sele-targeted siRNA liposome nanoparticles (LNPs) to inhibit monocyte adhesion. Intradermal administration of these LNPs effectively reduced PS formation in both in vivo and in vitro studies.

Conclusions: This study successfully established a reliable mouse model for PS, highlighting the significant roles of mechanical tension and chronic inflammation in PS formation. We identified Sele as a key therapeutic target and developed Sele-targeted siRNA LNPs, which demonstrated potential as a preventive strategy for PS. These findings provide valuable insights into PS pathogenesis and open new avenues for developing effective treatments for pathological scars.

背景:病理性疤痕(PS)是创伤和烧伤患者最常见的并发症之一,会导致功能障碍和美观问题。损伤部位的机械张力是病理性疤痕形成的关键因素。然而,由于缺乏可靠的动物模型,其确切机制仍不清楚:结果:我们开发了一种新型小鼠模型--疤痕反折模型(RSM),该模型通过在体内对伤口施加可控张力来诱导 PS。RNA测序确定了RSM诱导的疤痕中转录组的重大变化。在 RSM 模型和人类 PS(瘢痕疙瘩)样本的内皮细胞中均观察到 E-选择素(Sele)的表达升高。体外研究表明,循环机械拉伸(CMS)会增加 Sele 的表达,促进单核细胞粘附和促炎因子的释放。来自 GEO 数据库的单细胞测序分析,辅以 Western 印迹、免疫荧光和共免疫沉淀,证实了 Sele 介导的单核细胞粘附在 PS 形成中的作用。此外,我们还开发了抑制单核细胞粘附的 Sele 靶向 siRNA 脂质体纳米颗粒(LNPs)。在体内和体外研究中,皮内给药这些 LNPs 可有效减少 PS 的形成:本研究成功地建立了一个可靠的 PS 小鼠模型,强调了机械张力和慢性炎症在 PS 形成中的重要作用。我们发现 Sele 是一个关键的治疗靶点,并开发了 Sele 靶向 siRNA LNPs,证明其具有预防 PS 的潜力。这些发现为 PS 的发病机制提供了宝贵的见解,并为开发病理疤痕的有效治疗方法开辟了新途径。
{"title":"Sele-targeted siRNA liposome nanoparticles inhibit pathological scars formation via blocking the cross-talk between monocyte and endothelial cells: a preclinical study based on a novel mice scar model.","authors":"Luyu Li, Yong Wang, Jing Meng, Xue Wang, Xiaojin Wu, Yan Wo, Ying Shang, Zhen Zhang","doi":"10.1186/s12951-024-03003-4","DOIUrl":"10.1186/s12951-024-03003-4","url":null,"abstract":"<p><strong>Background: </strong>Pathological scars (PS) are one of the most common complications in patients with trauma and burns, leading to functional impairments and aesthetic concerns. Mechanical tension at injury sites is a crucial factor in PS formation. However, the precise mechanisms remain unclear due to the lack of reliable animal models.</p><p><strong>Results: </strong>We developed a novel mouse model, the Retroflex Scar Model (RSM), which induces PS by applying controlled tension to wounds in vivo. RNA sequencing identified significant transcriptome changes in RSM-induced scars. Elevated expression of E-Selectin (Sele) was observed in endothelial cells from both the RSM model and human PS (Keloid) samples. In vitro studies demonstrated that cyclic mechanical stretching (CMS) increased Sele expression, promoting monocyte adhesion and the release of pro-inflammatory factors. Single-cell sequencing analysis from the GEO database, complemented by Western blotting, immunofluorescence, and co-immunoprecipitation, confirmed the role of Sele-mediated monocyte adhesion in PS formation. Additionally, we developed Sele-targeted siRNA liposome nanoparticles (LNPs) to inhibit monocyte adhesion. Intradermal administration of these LNPs effectively reduced PS formation in both in vivo and in vitro studies.</p><p><strong>Conclusions: </strong>This study successfully established a reliable mouse model for PS, highlighting the significant roles of mechanical tension and chronic inflammation in PS formation. We identified Sele as a key therapeutic target and developed Sele-targeted siRNA LNPs, which demonstrated potential as a preventive strategy for PS. These findings provide valuable insights into PS pathogenesis and open new avenues for developing effective treatments for pathological scars.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"733"},"PeriodicalIF":10.6,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600582/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142729698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional nanocomposites utilizing ruthenium (II) complex/manganese (IV) dioxide nanoparticle for synergistic reinforcing radioimmunotherapy. 利用钌(II)络合物/二氧化锰(IV)纳米粒子的多功能纳米复合材料协同强化放射免疫疗法。
IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-27 DOI: 10.1186/s12951-024-03013-2
Jian Peng, Dong-Ling Quan, Guang Yang, Lin-Tao Wei, Zhuan Yang, Zhi-Ying Dong, Yi-Ming Zou, Ying-Ke Hou, Jin-Xiang Chen, Lin Lv, Bin Sun

Radiotherapy (RT) stands as a frontline treatment modality in clinical breast oncology, yet challenges like ROS reduction, high toxicity, non-selectivity, and hypoxia hinder efficacy. Additionally, RT administered at different doses can induce varying degrees of radioimmunotherapy. High doses of radiation (>10 Gy) may result in immune suppression, while moderate doses (4-10 Gy), although capable of mitigating the immune suppression caused by high-dose radiation, are often insufficient in effectively killing tumor cells. Therefore, enhancing the generation of ROS and ameliorating the tumor hypoxic immune-suppressive microenvironment at moderate radiation doses could potentially drive radiation-induced immune responses, offering a fundamental solution to the limitations of RT. In this study, a novel multifunctional nanoplatform, RMLF, integrating a Ru (II) complex into folate-functionalized liposomes with BSA-MnO2 nanoparticles was proposed. Orthogonal experimental optimization enhances radiosensitization via increasing accumulation in cancer cells, elevating ROS, and contributing to a dual enhancement of the cGAS-STING-dependent type I IFN signaling pathway, aimed to overcome the insufficient DAMPs typically seen in the conventional RT at 4 Gy. Such a strategy effectively activated cytotoxic T lymphocytes for infiltration into tumor tissues and promoted the polarization of tumor-associated macrophages from the M2 to M1 phenotype, substantially bolstering immune memory responses. This pioneering approach represents the first use of a ruthenium complex in radioimmunotherapy, activating the cGAS-STING pathway to amplify immune responses, overcome RT resistance, and extend immunotherapeutic potential.

放射治疗(RT)是临床乳腺肿瘤学的前沿治疗方式,然而,ROS 减少、高毒性、非选择性和缺氧等挑战阻碍了其疗效。此外,不同剂量的 RT 会诱发不同程度的放射免疫疗法。高剂量辐射(>10 Gy)可能会导致免疫抑制,而中等剂量(4-10 Gy)虽然能够减轻高剂量辐射造成的免疫抑制,但往往不足以有效杀死肿瘤细胞。因此,在中等辐射剂量下增强 ROS 的生成并改善肿瘤缺氧性免疫抑制微环境,有可能推动辐射诱导的免疫反应,从根本上解决 RT 的局限性。本研究提出了一种新型多功能纳米平台 RMLF,将 Ru (II) 复合物与 BSA-MnO2 纳米颗粒整合到叶酸功能化脂质体中。正交实验优化通过增加在癌细胞中的蓄积、提高 ROS 和促进 cGAS-STING 依赖型 IFN 信号通路的双重增强来提高放射增敏效果,目的是克服在 4 Gy 传统 RT 中通常出现的 DAMP 不足的问题。这种策略能有效激活细胞毒性 T 淋巴细胞向肿瘤组织浸润,并促进肿瘤相关巨噬细胞从 M2 表型向 M1 表型极化,从而大大增强免疫记忆反应。这种开创性的方法代表了钌复合物在放射免疫疗法中的首次应用,它激活了 cGAS-STING 通路,从而增强了免疫反应,克服了 RT 抗药性,并扩大了免疫治疗的潜力。
{"title":"Multifunctional nanocomposites utilizing ruthenium (II) complex/manganese (IV) dioxide nanoparticle for synergistic reinforcing radioimmunotherapy.","authors":"Jian Peng, Dong-Ling Quan, Guang Yang, Lin-Tao Wei, Zhuan Yang, Zhi-Ying Dong, Yi-Ming Zou, Ying-Ke Hou, Jin-Xiang Chen, Lin Lv, Bin Sun","doi":"10.1186/s12951-024-03013-2","DOIUrl":"10.1186/s12951-024-03013-2","url":null,"abstract":"<p><p>Radiotherapy (RT) stands as a frontline treatment modality in clinical breast oncology, yet challenges like ROS reduction, high toxicity, non-selectivity, and hypoxia hinder efficacy. Additionally, RT administered at different doses can induce varying degrees of radioimmunotherapy. High doses of radiation (>10 Gy) may result in immune suppression, while moderate doses (4-10 Gy), although capable of mitigating the immune suppression caused by high-dose radiation, are often insufficient in effectively killing tumor cells. Therefore, enhancing the generation of ROS and ameliorating the tumor hypoxic immune-suppressive microenvironment at moderate radiation doses could potentially drive radiation-induced immune responses, offering a fundamental solution to the limitations of RT. In this study, a novel multifunctional nanoplatform, RMLF, integrating a Ru (II) complex into folate-functionalized liposomes with BSA-MnO<sub>2</sub> nanoparticles was proposed. Orthogonal experimental optimization enhances radiosensitization via increasing accumulation in cancer cells, elevating ROS, and contributing to a dual enhancement of the cGAS-STING-dependent type I IFN signaling pathway, aimed to overcome the insufficient DAMPs typically seen in the conventional RT at 4 Gy. Such a strategy effectively activated cytotoxic T lymphocytes for infiltration into tumor tissues and promoted the polarization of tumor-associated macrophages from the M2 to M1 phenotype, substantially bolstering immune memory responses. This pioneering approach represents the first use of a ruthenium complex in radioimmunotherapy, activating the cGAS-STING pathway to amplify immune responses, overcome RT resistance, and extend immunotherapeutic potential.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"735"},"PeriodicalIF":10.6,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600833/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142729697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting the tumor microenvironment with biomaterials for enhanced immunotherapeutic efficacy. 利用生物材料靶向肿瘤微环境,提高免疫治疗效果。
IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-27 DOI: 10.1186/s12951-024-03005-2
Yekai Feng, Qinglai Tang, Bin Wang, Qian Yang, Yuming Zhang, Lanjie Lei, Shisheng Li

The tumor microenvironment (TME) is a complex system characterized by low oxygen, low pH, high pressure, and numerous growth factors and protein hydrolases that regulate a wide range of biological behaviors in the tumor and have a profound impact on cancer progression. Immunotherapy is an innovative approach to cancer treatment that activates the immune system, resulting in the spontaneous killing of tumor cells. However, the therapeutic efficacy of these clinically approved cancer immunotherapies (e.g., immune checkpoint blocker (ICB) therapies and chimeric antigen receptor (CAR) T-cell therapies) is far from satisfactory due to the presence of immunosuppressive TMEs created in part by tumor hypoxia, acidity, high levels of reactive oxygen species (ROS), and a dense extracellular matrix (ECM). With continuous advances in materials science and drug-delivery technologies, biomaterials hold considerable potential for targeting the TME. This article reviews the advances in biomaterial-based targeting of the TME to advance our current understanding on the role of biomaterials in enhancing tumor immunity. In addition, the strategies for remodeling the TME offer enticing advantages; however, the represent a double-edged sword. In the process of reshaping the TME, the risk of tumor growth, infiltration, and distant metastasis may increase.

肿瘤微环境(TME)是一个复杂的系统,其特点是低氧、低 pH 值、高压以及众多的生长因子和蛋白水解酶,它们调控着肿瘤中的各种生物行为,并对癌症的进展产生深远影响。免疫疗法是一种创新的癌症治疗方法,它能激活免疫系统,从而自发杀死肿瘤细胞。然而,这些临床认可的癌症免疫疗法(如免疫检查点阻断剂(ICB)疗法和嵌合抗原受体(CAR)T 细胞疗法)的疗效却不尽如人意,部分原因在于肿瘤缺氧、酸性、高浓度活性氧(ROS)和致密细胞外基质(ECM)造成的免疫抑制性 TME 的存在。随着材料科学和给药技术的不断进步,生物材料在靶向治疗肿瘤组织方面具有相当大的潜力。本文回顾了基于生物材料靶向 TME 的研究进展,以加深我们对生物材料在增强肿瘤免疫力方面作用的理解。此外,重塑 TME 的策略具有诱人的优势,但也是一把双刃剑。在重塑 TME 的过程中,肿瘤生长、浸润和远处转移的风险可能会增加。
{"title":"Targeting the tumor microenvironment with biomaterials for enhanced immunotherapeutic efficacy.","authors":"Yekai Feng, Qinglai Tang, Bin Wang, Qian Yang, Yuming Zhang, Lanjie Lei, Shisheng Li","doi":"10.1186/s12951-024-03005-2","DOIUrl":"10.1186/s12951-024-03005-2","url":null,"abstract":"<p><p>The tumor microenvironment (TME) is a complex system characterized by low oxygen, low pH, high pressure, and numerous growth factors and protein hydrolases that regulate a wide range of biological behaviors in the tumor and have a profound impact on cancer progression. Immunotherapy is an innovative approach to cancer treatment that activates the immune system, resulting in the spontaneous killing of tumor cells. However, the therapeutic efficacy of these clinically approved cancer immunotherapies (e.g., immune checkpoint blocker (ICB) therapies and chimeric antigen receptor (CAR) T-cell therapies) is far from satisfactory due to the presence of immunosuppressive TMEs created in part by tumor hypoxia, acidity, high levels of reactive oxygen species (ROS), and a dense extracellular matrix (ECM). With continuous advances in materials science and drug-delivery technologies, biomaterials hold considerable potential for targeting the TME. This article reviews the advances in biomaterial-based targeting of the TME to advance our current understanding on the role of biomaterials in enhancing tumor immunity. In addition, the strategies for remodeling the TME offer enticing advantages; however, the represent a double-edged sword. In the process of reshaping the TME, the risk of tumor growth, infiltration, and distant metastasis may increase.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"737"},"PeriodicalIF":10.6,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603847/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142739716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-modal overcoming of physical barriers for improved photodynamic cancer therapy via soft organosilica nanocapsules. 通过软有机硅纳米胶囊克服物理障碍,改善光动力癌症治疗的双模式。
IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-27 DOI: 10.1186/s12951-024-02945-z
Wei Lu, Yang Li, Xiaojun Zhang, Ning Wang, Dong Chen, Yatong Zhao, Guang Li, Xuzhi Shi, Xiaobo Ma, Xiaodan Su, Feng Wang, Chuqiang Shu, Kun Chen

Amidst the burgeoning field of cancer nanomedicine, dense extracellular matrices and anomalous vascular structures in the tumor microenvironment (TME) present substantial physical barriers to effective therapeutic delivery. These physical barriers hinder the optimal bioavailability of nanomedicine. Here, we propose a pioneering dual-modal strategy for overcoming physical barriers via soft organosilica nanocapsules (SMONs). Hyaluronidase-modified flexible spheres work by degrading the extracellular matrix and utilizing their flexible characteristics to enhance penetration into deeper layers. Compared with their stiff counterparts, the SMONs show diminished Young's modulus, then the inherent softness of the SMONs confers distinct advantages, and significantly augmented cellular internalization within 4T1 cells, leading to an amplified in vitro photodynamic therapeutic effect. Furthermore, hyaluronidase-functionalized SMONs (SMONs-HAase) exhibit enhanced tumor penetration in 3D spheroids. Post incorporation of the photosensitizer chlorin e6, when administered intravenously, these soft organosilica nanocapsules amplify the efficacy of photodynamic therapy. In addition, RNA-seq analysis of SMONs-HAase-Ce6 shows it alters gene expression, degrading the extracellular matrix and impairing mitochondrial function. To sum up, this work elucidates the potential of a dual-modal strategy, highlighting the promise of SMONs in overcoming TME physical barriers and optimizing therapeutic outcomes.

在蓬勃发展的癌症纳米医学领域,肿瘤微环境(TME)中致密的细胞外基质和异常的血管结构对有效的治疗递送构成了巨大的物理障碍。这些物理障碍阻碍了纳米药物的最佳生物利用度。在此,我们提出了一种开创性的双模式策略,通过软有机硅纳米胶囊(SMONs)克服物理障碍。透明质酸酶修饰的柔性球体通过降解细胞外基质发挥作用,并利用其柔性特点加强对深层的渗透。与坚硬的同类产品相比,SMONs的杨氏模量较小,因此SMONs固有的柔软性具有明显的优势,能显著提高细胞在4T1细胞内的内化,从而增强体外光动力治疗效果。此外,透明质酸酶功能化的SMONs(SMONs-HAase)在三维球体内显示出更强的肿瘤穿透性。加入光敏剂氯素 e6 后,静脉注射这些软有机硅纳米胶囊可增强光动力疗法的疗效。此外,对SMONs-HAase-Ce6的RNA-seq分析表明,它改变了基因表达,降解了细胞外基质,损害了线粒体功能。总之,这项工作阐明了双模式策略的潜力,凸显了 SMONs 在克服 TME 物理障碍和优化治疗效果方面的前景。
{"title":"Dual-modal overcoming of physical barriers for improved photodynamic cancer therapy via soft organosilica nanocapsules.","authors":"Wei Lu, Yang Li, Xiaojun Zhang, Ning Wang, Dong Chen, Yatong Zhao, Guang Li, Xuzhi Shi, Xiaobo Ma, Xiaodan Su, Feng Wang, Chuqiang Shu, Kun Chen","doi":"10.1186/s12951-024-02945-z","DOIUrl":"10.1186/s12951-024-02945-z","url":null,"abstract":"<p><p>Amidst the burgeoning field of cancer nanomedicine, dense extracellular matrices and anomalous vascular structures in the tumor microenvironment (TME) present substantial physical barriers to effective therapeutic delivery. These physical barriers hinder the optimal bioavailability of nanomedicine. Here, we propose a pioneering dual-modal strategy for overcoming physical barriers via soft organosilica nanocapsules (SMONs). Hyaluronidase-modified flexible spheres work by degrading the extracellular matrix and utilizing their flexible characteristics to enhance penetration into deeper layers. Compared with their stiff counterparts, the SMONs show diminished Young's modulus, then the inherent softness of the SMONs confers distinct advantages, and significantly augmented cellular internalization within 4T1 cells, leading to an amplified in vitro photodynamic therapeutic effect. Furthermore, hyaluronidase-functionalized SMONs (SMONs-HAase) exhibit enhanced tumor penetration in 3D spheroids. Post incorporation of the photosensitizer chlorin e6, when administered intravenously, these soft organosilica nanocapsules amplify the efficacy of photodynamic therapy. In addition, RNA-seq analysis of SMONs-HAase-Ce6 shows it alters gene expression, degrading the extracellular matrix and impairing mitochondrial function. To sum up, this work elucidates the potential of a dual-modal strategy, highlighting the promise of SMONs in overcoming TME physical barriers and optimizing therapeutic outcomes.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"734"},"PeriodicalIF":10.6,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600580/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142729696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dendritic mesoporous silica-delivered siRNAs nano insecticides to prevent Sogatella furcifera by inhibiting metabolic detoxification and reproduction. 以树枝状介孔二氧化硅为载体的 siRNA 纳米杀虫剂通过抑制代谢解毒和繁殖来预防毛囊虫。
IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-27 DOI: 10.1186/s12951-024-02966-8
Changwei Gong, Wei Wang, Yanxin Ma, Xiaoxu Zhan, Anchun Peng, Jian Pu, Jizhi Yang, Xuegui Wang

Background: Migratory insect infestation caused by Sogatella furcifera is a serious threat to rice production. The most effective method available for S. furcifera control is intensive insecticide spraying, which cause widespread resistance. RNA interference (RNAi) insecticides hold enormous potential in managing pest resistance. However, the instability and the poor efficiency of cross-kingdom RNA trafficking are key obstacles for the application in agricultural pest management.

Methods: We present dendritic mesoporous silica nanoparticles (DMSNs)-based nanocarrier for delivering siRNA and nitenpyram to inhibit the metabolic detoxification and development of S. furcifera, thereby preventing its proliferation.

Results: This nano complex (denoted as N@UK-siRNA/DMSNs) significantly enhanced the stability of siRNA (efficacy lasting 21 days) and released cargos in GSH or planthopper bodily fluid with a maximum release rate of 84.99%. Moreover, the released UK-siRNA targeting two transcription factors (Ultraspiracle and Krüppel-homolog 1) downregulated the developmental genes Ultraspiracle (0.09-fold) and Krüppel-homolog 1 (0.284-fold), and downstream detoxification genes ABC SfABCH4 (0.016-fold) and P450 CYP6FJ3 (0.367-fold).

Conclusion: The N@UK-siRNA/DMSNs inhibited pest development and detoxification, significantly enhancing susceptibility to nitenpyram to nanogram level (LC50 is 250-252 ng/mL), resulting in a 5.37-7.13-fold synergistic ratio. This work proposes a comprehensive management strategy for controlling S. furcifera to ensure the green and safe production of rice.

背景:由 Sogatella furcifera 引起的迁飞虫害严重威胁着水稻生产。控制 S. furcifera 的最有效方法是密集喷洒杀虫剂,但这会导致广泛的抗药性。RNA 干扰(RNAi)杀虫剂在控制害虫抗药性方面具有巨大潜力。然而,跨领域 RNA 运输的不稳定性和低效率是将其应用于农业害虫管理的主要障碍:方法:我们提出了基于树枝状介孔二氧化硅纳米颗粒(DMSNs)的纳米载体,用于递送 siRNA 和硝虫酰胺,以抑制糠虾的代谢解毒和发育,从而阻止其增殖:结果:该纳米复合物(N@UK-siRNA/DMSNs)显著提高了 siRNA 的稳定性(药效可持续 21 天),并能在 GSH 或鳞翅目昆虫体液中释放载体,最大释放率达 84.99%。此外,释放的UK-siRNA靶向两个转录因子(Ultraspiracle和Krüppel-homolog 1),下调了发育基因Ultraspiracle(0.09倍)和Krüppel-homolog 1(0.284倍),以及下游解毒基因ABC SfABCH4(0.016倍)和P450 CYP6FJ3(0.367倍):结论:N@UK-siRNA/DMSNs可抑制害虫的生长发育和解毒,显著提高害虫对硝虫嗪的敏感性至纳米级水平(LC50为250-252 ng/mL),产生5.37-7.13倍的增效比。本研究提出了一种防治稻飞虱的综合治理策略,以确保水稻的绿色安全生产。
{"title":"Dendritic mesoporous silica-delivered siRNAs nano insecticides to prevent Sogatella furcifera by inhibiting metabolic detoxification and reproduction.","authors":"Changwei Gong, Wei Wang, Yanxin Ma, Xiaoxu Zhan, Anchun Peng, Jian Pu, Jizhi Yang, Xuegui Wang","doi":"10.1186/s12951-024-02966-8","DOIUrl":"10.1186/s12951-024-02966-8","url":null,"abstract":"<p><strong>Background: </strong>Migratory insect infestation caused by Sogatella furcifera is a serious threat to rice production. The most effective method available for S. furcifera control is intensive insecticide spraying, which cause widespread resistance. RNA interference (RNAi) insecticides hold enormous potential in managing pest resistance. However, the instability and the poor efficiency of cross-kingdom RNA trafficking are key obstacles for the application in agricultural pest management.</p><p><strong>Methods: </strong>We present dendritic mesoporous silica nanoparticles (DMSNs)-based nanocarrier for delivering siRNA and nitenpyram to inhibit the metabolic detoxification and development of S. furcifera, thereby preventing its proliferation.</p><p><strong>Results: </strong>This nano complex (denoted as N@UK-siRNA/DMSNs) significantly enhanced the stability of siRNA (efficacy lasting 21 days) and released cargos in GSH or planthopper bodily fluid with a maximum release rate of 84.99%. Moreover, the released UK-siRNA targeting two transcription factors (Ultraspiracle and Krüppel-homolog 1) downregulated the developmental genes Ultraspiracle (0.09-fold) and Krüppel-homolog 1 (0.284-fold), and downstream detoxification genes ABC SfABCH4 (0.016-fold) and P450 CYP6FJ3 (0.367-fold).</p><p><strong>Conclusion: </strong>The N@UK-siRNA/DMSNs inhibited pest development and detoxification, significantly enhancing susceptibility to nitenpyram to nanogram level (LC<sub>50</sub> is 250-252 ng/mL), resulting in a 5.37-7.13-fold synergistic ratio. This work proposes a comprehensive management strategy for controlling S. furcifera to ensure the green and safe production of rice.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"736"},"PeriodicalIF":10.6,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600678/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142739646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time-series metabolomic analysis revealed altered metabolism of cynomolgus monkeys after injecting exosomes. 时间序列代谢组学分析表明,注射外泌体后,猴的新陈代谢发生了改变。
IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-26 DOI: 10.1186/s12951-024-02976-6
Xinmei Hu, Cancan Wang, Yu Xiao, Peng Jiang, Dongxing Huang, Liang-Cheng Li, Zhongquan Qi

Background: Recent years, exosomes have been increasing used to treat diseases, but there is little research on how exosomes affect the metabolism of the body after entering. Therefore, in this study, we discussed the changes of metabolic spectrum and determined the differentially expressed metabolites in the serum of cynomolgus monkeys after injecting exosomes. Six cynomolgus monkeys were divided into control group and exosomes group. After intravenous injection of exosomes, the peripheral blood serum of cynomolgus monkeys was collected at baseline, day 1, day 7 and day 14 respectively. An ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry-based non-targeted metabolomics platform was used to detect the metabolites. The metabolic spectra of two groups of cynomolgus monkeys were identified and compared, and the time series changes of metabolites in exosomes were described.

Results: The results showed that there was significant difference in metabolic spectrum between the two groups. 45, 114, 49, 39 differentially expressed metabolites were identified in baseline, day 1, day 7, and day 14, respectively. 6-hydroxydopamine, a metabolite related to the regulation of nerve function, was also found. Tryptophan metabolism, choline metabolism in cancer, porphyrin and chlorophyll metabolism were involved in day 1. Sphingolipid metabolism and histidine metabolism were involved in day 7. Three pathways, including choline metabolism, sphingolipid metabolism and biotin metabolism in cancer were involved in day 14. Through time series analysis, it was found that the level of propionylcarnitine and biliverdin increased on day 1 after inoculation with exosomes, while the level of hippuric acid decreased. These changes of immune-related metabolites suggested that exosomes might participate in the immunoregulation reaction after entering the body of cynomolgus monkeys.

Conclusions: In our current study, we found that exosomes injected intravenously affect the changes of metabolites and metabolic pathways in cynomolgus monkeys. Intravenous injection of exosomes may affect the metabolite 6-hydroxydopamine, sphingolipid metabolic pathway, and choline metabolic in cancer pathway, which is of some significance for the treatment of Parkinson's disease. In addition, exosomes may also affect the immune-related metabolites in vivo, such as propionylcarnitine, biliverdin, hippuric acid metabolites, as well as tryptophan metabolism pathway, sphingolipid metabolism pathway involved in immune regulation, which is of great significance for the future study of immune-regulatory mechanisms of exosomes.

背景:近年来,外泌体被越来越多地用于治疗疾病,但关于外泌体进入人体后如何影响机体代谢的研究却很少。因此,本研究探讨了外泌体注射后代谢谱的变化,并测定了绒猴血清中差异表达的代谢物。6只猴分为对照组和外泌体组。静脉注射外泌体后,分别于基线、第1天、第7天和第14天采集猴外周血血清。采用基于超高效液相色谱-四极杆飞行时间质谱的非靶向代谢组学平台检测代谢物。对两组猴的代谢谱进行了鉴定和比较,并描述了外泌体中代谢物的时间序列变化:结果表明,两组猴的代谢谱存在显著差异。在基线、第1天、第7天和第14天,分别发现了45、114、49和39种差异表达的代谢物。此外,还发现了与神经功能调节有关的代谢物 6-羟基多巴胺。第 1 天涉及色氨酸代谢、癌症中的胆碱代谢、卟啉和叶绿素代谢。第 7 天涉及鞘脂代谢和组氨酸代谢。第 14 天涉及三个途径,包括胆碱代谢、鞘脂代谢和癌症生物素代谢。通过时间序列分析发现,接种外泌体后的第 1 天,丙酰肉碱和胆绿素的水平上升,而海马酸的水平下降。这些免疫相关代谢物的变化表明,外泌体进入猴体内后可能参与了免疫调节反应:在本研究中,我们发现静脉注射外泌体会影响猴体内代谢物和代谢途径的变化。静脉注射外泌体可能会影响代谢物6-羟基多巴胺、鞘脂代谢途径和癌症途径中的胆碱代谢,这对帕金森病的治疗有一定意义。此外,外泌体还可能影响体内与免疫相关的代谢物,如丙酰肉碱、胆红素、海马酸代谢物,以及参与免疫调节的色氨酸代谢途径、鞘脂代谢途径等,这对外泌体未来的免疫调节机制研究具有重要意义。
{"title":"Time-series metabolomic analysis revealed altered metabolism of cynomolgus monkeys after injecting exosomes.","authors":"Xinmei Hu, Cancan Wang, Yu Xiao, Peng Jiang, Dongxing Huang, Liang-Cheng Li, Zhongquan Qi","doi":"10.1186/s12951-024-02976-6","DOIUrl":"10.1186/s12951-024-02976-6","url":null,"abstract":"<p><strong>Background: </strong>Recent years, exosomes have been increasing used to treat diseases, but there is little research on how exosomes affect the metabolism of the body after entering. Therefore, in this study, we discussed the changes of metabolic spectrum and determined the differentially expressed metabolites in the serum of cynomolgus monkeys after injecting exosomes. Six cynomolgus monkeys were divided into control group and exosomes group. After intravenous injection of exosomes, the peripheral blood serum of cynomolgus monkeys was collected at baseline, day 1, day 7 and day 14 respectively. An ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry-based non-targeted metabolomics platform was used to detect the metabolites. The metabolic spectra of two groups of cynomolgus monkeys were identified and compared, and the time series changes of metabolites in exosomes were described.</p><p><strong>Results: </strong>The results showed that there was significant difference in metabolic spectrum between the two groups. 45, 114, 49, 39 differentially expressed metabolites were identified in baseline, day 1, day 7, and day 14, respectively. 6-hydroxydopamine, a metabolite related to the regulation of nerve function, was also found. Tryptophan metabolism, choline metabolism in cancer, porphyrin and chlorophyll metabolism were involved in day 1. Sphingolipid metabolism and histidine metabolism were involved in day 7. Three pathways, including choline metabolism, sphingolipid metabolism and biotin metabolism in cancer were involved in day 14. Through time series analysis, it was found that the level of propionylcarnitine and biliverdin increased on day 1 after inoculation with exosomes, while the level of hippuric acid decreased. These changes of immune-related metabolites suggested that exosomes might participate in the immunoregulation reaction after entering the body of cynomolgus monkeys.</p><p><strong>Conclusions: </strong>In our current study, we found that exosomes injected intravenously affect the changes of metabolites and metabolic pathways in cynomolgus monkeys. Intravenous injection of exosomes may affect the metabolite 6-hydroxydopamine, sphingolipid metabolic pathway, and choline metabolic in cancer pathway, which is of some significance for the treatment of Parkinson's disease. In addition, exosomes may also affect the immune-related metabolites in vivo, such as propionylcarnitine, biliverdin, hippuric acid metabolites, as well as tryptophan metabolism pathway, sphingolipid metabolism pathway involved in immune regulation, which is of great significance for the future study of immune-regulatory mechanisms of exosomes.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"732"},"PeriodicalIF":10.6,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590309/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polydopamine(PDA)-coated diselenide-bridged mesoporous silica-based nanoplatform for neuroprotection by reducing oxidative stress and targeting neuroinflammation in intracerebral hemorrhage. 基于介孔二氧化硅的聚多巴胺(PDA)涂层二硒桥接纳米平台,通过降低氧化应激和靶向神经炎症保护脑出血患者的神经。
IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-23 DOI: 10.1186/s12951-024-03023-0
Fangfang Zhou, Yongju He, Meiru Zhang, Xiyu Gong, Xiaoxuan Liu, Ranran Tu, Binbin Yang

Oxidative stress (OS) and neuroinflammation are critical pathological processes in secondary brain injury (SBI) after intracerebral hemorrhage(ICH), and their intimate interactions initiate and aggravate brain damage. Thus, targeting oxidative stress and neuroinflammation could be a promising therapeutic strategy for ICH treatment. Here, we report a high-performance platform using polydopamine (PDA)-coated diselenide bridged mesoporous silica nanoparticle (PDA-DSeMSN) as a smart ROS scavenger and ROS-responsive drug delivery system. Caffeic acid phenethyl ester (CAPE) was blocked in the pore of DSeMSN by covering the pore with PDA as a gatekeeper. PDA-DSeMSN @CAPE maintained high stability and underwent reactive oxygen species (ROS)-responsive degradation and drug release. The intelligent nanomaterial effectively eliminated ROS, promoted M1 to M2 microglial conversion and suppressed neuroinflammation in vitro and in vivo. Importantly, intravenous administration of PDA-DSeMSN@CAPE specifically accumulated in perihematomal sites and demonstrated robust neuroprotection in an ICH mouse model with high biological safety. Taking together, the synergistic effect of ROS-responsive drug delivery ability and ROS scavenging ability of PDA-DSeMSN makes it a powerful drug delivery platform and provided new considerations into the therapeutic action to improve ICH-induce brain injury.

氧化应激(OS)和神经炎症是脑内出血(ICH)后继发性脑损伤(SBI)的关键病理过程,它们之间的密切相互作用引发并加重了脑损伤。因此,针对氧化应激和神经炎症可能是治疗 ICH 的一种有前景的治疗策略。在此,我们报告了一种使用聚多巴胺(PDA)包覆二硒化物桥接介孔二氧化硅纳米粒子(PDA-DSeMSN)作为智能 ROS 清除剂和 ROS 响应药物递送系统的高性能平台。用 PDA 作为守门员覆盖 DSeMSN 的孔隙,阻止咖啡酸苯乙酯(CAPE)进入孔隙。PDA-DSeMSN @CAPE保持了很高的稳定性,并发生了活性氧(ROS)反应性降解和药物释放。这种智能纳米材料能有效消除 ROS,促进 M1 到 M2 小胶质细胞的转化,并在体外和体内抑制神经炎症。重要的是,在 ICH 小鼠模型中,静脉注射 PDA-DSeMSN@CAPE 可特异性地在血肿周围积聚,并显示出强大的神经保护作用,而且具有很高的生物安全性。综上所述,PDA-DSeMSN的ROS反应给药能力和ROS清除能力的协同作用使其成为一种强大的给药平台,并为改善ICH引起的脑损伤的治疗作用提供了新的思路。
{"title":"Polydopamine(PDA)-coated diselenide-bridged mesoporous silica-based nanoplatform for neuroprotection by reducing oxidative stress and targeting neuroinflammation in intracerebral hemorrhage.","authors":"Fangfang Zhou, Yongju He, Meiru Zhang, Xiyu Gong, Xiaoxuan Liu, Ranran Tu, Binbin Yang","doi":"10.1186/s12951-024-03023-0","DOIUrl":"10.1186/s12951-024-03023-0","url":null,"abstract":"<p><p>Oxidative stress (OS) and neuroinflammation are critical pathological processes in secondary brain injury (SBI) after intracerebral hemorrhage(ICH), and their intimate interactions initiate and aggravate brain damage. Thus, targeting oxidative stress and neuroinflammation could be a promising therapeutic strategy for ICH treatment. Here, we report a high-performance platform using polydopamine (PDA)-coated diselenide bridged mesoporous silica nanoparticle (PDA-DSeMSN) as a smart ROS scavenger and ROS-responsive drug delivery system. Caffeic acid phenethyl ester (CAPE) was blocked in the pore of DSeMSN by covering the pore with PDA as a gatekeeper. PDA-DSeMSN @CAPE maintained high stability and underwent reactive oxygen species (ROS)-responsive degradation and drug release. The intelligent nanomaterial effectively eliminated ROS, promoted M1 to M2 microglial conversion and suppressed neuroinflammation in vitro and in vivo. Importantly, intravenous administration of PDA-DSeMSN@CAPE specifically accumulated in perihematomal sites and demonstrated robust neuroprotection in an ICH mouse model with high biological safety. Taking together, the synergistic effect of ROS-responsive drug delivery ability and ROS scavenging ability of PDA-DSeMSN makes it a powerful drug delivery platform and provided new considerations into the therapeutic action to improve ICH-induce brain injury.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"731"},"PeriodicalIF":10.6,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585243/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ROS-responsive nanoparticles for bioimaging and treating acute lung injury by releasing dexamethasone and improving alveolar macrophage homeostasis. 释放地塞米松和改善肺泡巨噬细胞稳态的 ROS 响应纳米粒子用于生物成像和治疗急性肺损伤。
IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-22 DOI: 10.1186/s12951-024-03015-0
Wenna Fan, Yongyao Tang, Yamin Liu, Ya Ran, Guangrui Pan, Xin Song, Li Mai, Xue Jiang, Dan Chen, Fangzhou Song, Haiyu Li

Background: Acute lung injury (ALI) triggers the activation of pulmonary macrophages, which in turn produce excessive amounts of reactive oxygen species (ROS).

Results: We synthesized ROS-responsive red light-emitting carbon dots (RCMNs) that target lung macrophages, possess bioimaging capabilities, and efficiently eliminate intracellular ROS, thereby demonstrating anti-inflammatory effects for treating acute lung injury (ALI). In an LPS-induced ALI mouse model, RCMNs showed bioimaging and therapeutic potential, reducing lung damage and inflammation by targeting ROS-damaged tissue. RCMNs also improved alveolar macrophage activity, decreased inflammatory cytokines (TNF-α and IL-6), and enhanced survival in endotoxic shock, indicating their therapeutic potential for ALI. RNA-seq analysis revealed that RCMNs modulate signaling pathways related to calcium, TNF, and Toll-like receptors, highlighting their role in regulating inflammation and immune responses. Mechanistically, RCMNs alleviate inflammation in ALI by enhancing mitochondrial function in lung macrophages, as evidenced by improved mitochondrial morphology and membrane potential.

Conclusions: This protective effect is mediated through the regulation of intracellular Ca2+ levels and mitochondrial respiratory chain complexes, suggesting RCMNs as a therapeutic strategy for mitochondrial dysfunction in ALI.

背景:急性肺损伤(ALI急性肺损伤(ALI)会引发肺巨噬细胞的活化,进而产生过量的活性氧(ROS):我们合成了针对肺巨噬细胞的 ROS 响应型红色发光碳点(RCMNs),它具有生物成像功能,能有效消除细胞内的 ROS,从而显示出治疗急性肺损伤(ALI)的抗炎作用。在 LPS 诱导的 ALI 小鼠模型中,RCMNs 显示出生物成像和治疗潜力,通过靶向 ROS 损伤组织减少肺损伤和炎症。RCMNs 还改善了肺泡巨噬细胞的活性,降低了炎性细胞因子(TNF-α 和 IL-6),并提高了内毒素休克患者的存活率,这表明它们具有治疗 ALI 的潜力。RNA-seq分析表明,RCMNs能调节与钙、TNF和Toll样受体相关的信号通路,突出了它们在调节炎症和免疫反应中的作用。从机理上讲,RCMNs 通过增强肺巨噬细胞的线粒体功能来缓解 ALI 中的炎症,线粒体形态和膜电位的改善证明了这一点:这种保护作用是通过调节细胞内 Ca2+ 水平和线粒体呼吸链复合物介导的,这表明 RCMNs 是 ALI 线粒体功能障碍的一种治疗策略。
{"title":"ROS-responsive nanoparticles for bioimaging and treating acute lung injury by releasing dexamethasone and improving alveolar macrophage homeostasis.","authors":"Wenna Fan, Yongyao Tang, Yamin Liu, Ya Ran, Guangrui Pan, Xin Song, Li Mai, Xue Jiang, Dan Chen, Fangzhou Song, Haiyu Li","doi":"10.1186/s12951-024-03015-0","DOIUrl":"10.1186/s12951-024-03015-0","url":null,"abstract":"<p><strong>Background: </strong>Acute lung injury (ALI) triggers the activation of pulmonary macrophages, which in turn produce excessive amounts of reactive oxygen species (ROS).</p><p><strong>Results: </strong>We synthesized ROS-responsive red light-emitting carbon dots (RCMNs) that target lung macrophages, possess bioimaging capabilities, and efficiently eliminate intracellular ROS, thereby demonstrating anti-inflammatory effects for treating acute lung injury (ALI). In an LPS-induced ALI mouse model, RCMNs showed bioimaging and therapeutic potential, reducing lung damage and inflammation by targeting ROS-damaged tissue. RCMNs also improved alveolar macrophage activity, decreased inflammatory cytokines (TNF-α and IL-6), and enhanced survival in endotoxic shock, indicating their therapeutic potential for ALI. RNA-seq analysis revealed that RCMNs modulate signaling pathways related to calcium, TNF, and Toll-like receptors, highlighting their role in regulating inflammation and immune responses. Mechanistically, RCMNs alleviate inflammation in ALI by enhancing mitochondrial function in lung macrophages, as evidenced by improved mitochondrial morphology and membrane potential.</p><p><strong>Conclusions: </strong>This protective effect is mediated through the regulation of intracellular Ca<sup>2+</sup> levels and mitochondrial respiratory chain complexes, suggesting RCMNs as a therapeutic strategy for mitochondrial dysfunction in ALI.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"729"},"PeriodicalIF":10.6,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585220/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probiotics alleviate chronic ethanol exposure-induced anxiety-like behavior and hippocampal neuroinflammation in male mice through gut microbiota-derived extracellular vesicles. 益生菌通过源自肠道微生物群的细胞外囊泡缓解慢性乙醇暴露诱导的雄性小鼠焦虑样行为和海马神经炎症。
IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-22 DOI: 10.1186/s12951-024-03017-y
Jiaxin Pei, Chaoxu Zhang, Qian Zhang, Hao Yu, Huiya Yuan, Yufu Guo, Hui Shen, Hao Liu, Changliang Wang, Fanyue Meng, Chenyang Yu, Jinming Tie, Xiaohuan Chen, Xu Wu, Guohua Zhang, Xiaolong Wang

Background: Probiotics can colonize both the human and animal bodies and consist of active microorganisms that are beneficial to health. The use of probiotics has been shown to alleviate certain neurological diseases and disturbances in gut microbiota resulting from chronic ethanol exposure. Research indicates that probiotics can influence the nervous system via the microbial-gut-brain axis, wherein extracellular vesicles secreted by the gut microbiota play a significant role in this process.

Results: In this study, we first established a 30-day ethanol exposure and probiotic gavage mouse model, both of which influenced behavior and the composition of gut microbiota. We then extracted gut microbiota-derived extracellular vesicles from the feces of these model mice and injected them into new mice via the tail vein to assess the role of each set of extracellular vesicles. The results indicated that the extracellular vesicles derived from the intestinal microbiota in the ethanol group induced anxiety-like behavior and hippocampal neuroinflammation in the recipient mice. In contrast, the extracellular vesicles secreted by the gut microbiota from the probiotic group mitigated the anxiety-like behavior and neuroinflammation induced by ethanol-influenced extracellular vesicles.

Conclusions: Our study demonstrates that extracellular vesicles secreted by the gut microbiota can influence the nervous system via the microbial-gut-brain axis. Furthermore, we found that the extracellular vesicles secreted by the gut microbiota from the probiotic group exert a beneficial therapeutic effect on anxiety and hippocampal neuroinflammation.

背景:益生菌可在人体和动物体内定植,由有益于健康的活性微生物组成。研究表明,使用益生菌可以缓解某些神经系统疾病以及因长期接触乙醇而导致的肠道微生物群紊乱。研究表明,益生菌可通过微生物-肠道-大脑轴影响神经系统,其中肠道微生物群分泌的细胞外囊泡在这一过程中发挥着重要作用:在这项研究中,我们首先建立了一个为期 30 天的乙醇暴露和益生菌灌胃小鼠模型,这两种方法都会影响小鼠的行为和肠道微生物群的组成。然后,我们从这些模型小鼠的粪便中提取了源自肠道微生物群的细胞外囊泡,并通过尾静脉将它们注射到新的小鼠体内,以评估每组细胞外囊泡的作用。结果表明,乙醇组小鼠从肠道微生物群中提取的细胞外囊泡会诱发受体小鼠的焦虑样行为和海马神经炎症。与此相反,益生菌组的肠道微生物群分泌的细胞外囊泡减轻了受乙醇影响的细胞外囊泡诱导的焦虑样行为和神经炎症:我们的研究表明,肠道微生物群分泌的细胞外囊泡可通过微生物-肠道-大脑轴影响神经系统。此外,我们还发现益生菌组的肠道微生物群分泌的细胞外囊泡对焦虑和海马神经炎症具有有益的治疗作用。
{"title":"Probiotics alleviate chronic ethanol exposure-induced anxiety-like behavior and hippocampal neuroinflammation in male mice through gut microbiota-derived extracellular vesicles.","authors":"Jiaxin Pei, Chaoxu Zhang, Qian Zhang, Hao Yu, Huiya Yuan, Yufu Guo, Hui Shen, Hao Liu, Changliang Wang, Fanyue Meng, Chenyang Yu, Jinming Tie, Xiaohuan Chen, Xu Wu, Guohua Zhang, Xiaolong Wang","doi":"10.1186/s12951-024-03017-y","DOIUrl":"10.1186/s12951-024-03017-y","url":null,"abstract":"<p><strong>Background: </strong>Probiotics can colonize both the human and animal bodies and consist of active microorganisms that are beneficial to health. The use of probiotics has been shown to alleviate certain neurological diseases and disturbances in gut microbiota resulting from chronic ethanol exposure. Research indicates that probiotics can influence the nervous system via the microbial-gut-brain axis, wherein extracellular vesicles secreted by the gut microbiota play a significant role in this process.</p><p><strong>Results: </strong>In this study, we first established a 30-day ethanol exposure and probiotic gavage mouse model, both of which influenced behavior and the composition of gut microbiota. We then extracted gut microbiota-derived extracellular vesicles from the feces of these model mice and injected them into new mice via the tail vein to assess the role of each set of extracellular vesicles. The results indicated that the extracellular vesicles derived from the intestinal microbiota in the ethanol group induced anxiety-like behavior and hippocampal neuroinflammation in the recipient mice. In contrast, the extracellular vesicles secreted by the gut microbiota from the probiotic group mitigated the anxiety-like behavior and neuroinflammation induced by ethanol-influenced extracellular vesicles.</p><p><strong>Conclusions: </strong>Our study demonstrates that extracellular vesicles secreted by the gut microbiota can influence the nervous system via the microbial-gut-brain axis. Furthermore, we found that the extracellular vesicles secreted by the gut microbiota from the probiotic group exert a beneficial therapeutic effect on anxiety and hippocampal neuroinflammation.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"730"},"PeriodicalIF":10.6,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585232/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radionuclide-labelled nanoparticles for cancer combination therapy: a review. 用于癌症综合治疗的放射性核素标记纳米粒子:综述。
IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-22 DOI: 10.1186/s12951-024-03020-3
Na Sun, Tao Wang, Song Zhang

Radionuclide therapy (RT) is widely used to advanced local cancers. However, its therapeutic efficacy is limited to the radiation resistance of cancer cells. Combination therapy aims to circumvent tumor resistance, and the combination of RT with photothermal therapy (PTT), photodynamic therapy (PDT), chemotherapy (CMT), and immunotherapy has shown promising treatment outcomes. Nanotechnology holds promise in advancing combination therapy by integrating multiple therapies on a nanostructure platform. This is due to the increased surface area, passive/active targeting capabilities, high payload capacity, and enriched surface of nanomedicines, offering significant advantages in treatment sensitivity and specificity. In the first part of this review, we categorize radionuclide therapy. The second part summarizes the latest developments in combination therapies, specifically focusing on the integration of RT with PTT, PDT, CMT and immunotherapy. The last part provides an overview of the challenges and potential opportunities related to radionuclide-labelled nanoparticles for cancer combination therapy.

放射性核素疗法(RT)被广泛用于晚期局部癌症的治疗。然而,其疗效受限于癌细胞的辐射抗性。联合疗法旨在规避肿瘤抗药性,RT 与光热疗法(PTT)、光动力疗法(PDT)、化疗(CMT)和免疫疗法的联合治疗已显示出良好的治疗效果。纳米技术通过在纳米结构平台上整合多种疗法,有望推动联合疗法的发展。这是因为纳米药物具有更大的表面积、被动/主动靶向能力、高载荷容量和富集表面,在治疗灵敏度和特异性方面具有显著优势。在本综述的第一部分,我们对放射性核素疗法进行了分类。第二部分总结了联合疗法的最新进展,特别关注 RT 与 PTT、PDT、CMT 和免疫疗法的整合。最后一部分概述了放射性核素标记纳米粒子用于癌症联合疗法所面临的挑战和潜在机遇。
{"title":"Radionuclide-labelled nanoparticles for cancer combination therapy: a review.","authors":"Na Sun, Tao Wang, Song Zhang","doi":"10.1186/s12951-024-03020-3","DOIUrl":"10.1186/s12951-024-03020-3","url":null,"abstract":"<p><p>Radionuclide therapy (RT) is widely used to advanced local cancers. However, its therapeutic efficacy is limited to the radiation resistance of cancer cells. Combination therapy aims to circumvent tumor resistance, and the combination of RT with photothermal therapy (PTT), photodynamic therapy (PDT), chemotherapy (CMT), and immunotherapy has shown promising treatment outcomes. Nanotechnology holds promise in advancing combination therapy by integrating multiple therapies on a nanostructure platform. This is due to the increased surface area, passive/active targeting capabilities, high payload capacity, and enriched surface of nanomedicines, offering significant advantages in treatment sensitivity and specificity. In the first part of this review, we categorize radionuclide therapy. The second part summarizes the latest developments in combination therapies, specifically focusing on the integration of RT with PTT, PDT, CMT and immunotherapy. The last part provides an overview of the challenges and potential opportunities related to radionuclide-labelled nanoparticles for cancer combination therapy.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"728"},"PeriodicalIF":10.6,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585169/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Nanobiotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1