Pub Date : 2016-12-01DOI: 10.1142/S2251237316400189
A. Fleury, Xu Li, A. Soldera
New technologies deeply depend on the ability of chemists to synthesize new functional materials. However, this synthetic step requires great efforts. Moreover, it is very likely that the ensuing compound does not fit the expected properties. With the advent of simulation, associated with the increase in computer performance and efficiency of codes, a screening of the best potential candidates to be synthesized becomes available. Accordingly, getting a polymer with a specific permeability, and also understanding the molecular reasons underlying this process, are some of the assets of molecular simulation. Nevertheless, representation of a material from a molecular perspective is not straightforward. A specific protocol must be established. It takes into account the fact that calculations are carried out on very tiny systems. An accurate depiction and perpetual validations confronting simulated results with experimental data make the protocol relevant. The computation of the penetrants’ diffusion coefficient and solubility is then introduced, in order to reveal the simulation of the permeation of a small molecule through an amorphous polymer system. The paper concludes with the most recent studies on the subject.
{"title":"Simulation of Small Molecules Permeation Through Polymer Matrix","authors":"A. Fleury, Xu Li, A. Soldera","doi":"10.1142/S2251237316400189","DOIUrl":"https://doi.org/10.1142/S2251237316400189","url":null,"abstract":"New technologies deeply depend on the ability of chemists to synthesize new functional materials. However, this synthetic step requires great efforts. Moreover, it is very likely that the ensuing compound does not fit the expected properties. With the advent of simulation, associated with the increase in computer performance and efficiency of codes, a screening of the best potential candidates to be synthesized becomes available. Accordingly, getting a polymer with a specific permeability, and also understanding the molecular reasons underlying this process, are some of the assets of molecular simulation. Nevertheless, representation of a material from a molecular perspective is not straightforward. A specific protocol must be established. It takes into account the fact that calculations are carried out on very tiny systems. An accurate depiction and perpetual validations confronting simulated results with experimental data make the protocol relevant. The computation of the penetrants’ diffusion coefficient and solubility is then introduced, in order to reveal the simulation of the permeation of a small molecule through an amorphous polymer system. The paper concludes with the most recent studies on the subject.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":"04 1","pages":"1640018"},"PeriodicalIF":1.5,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251237316400189","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63850240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-01DOI: 10.1142/S2251237316400141
Jiating He, Xu Li
Selective gas adsorption plays an important role in adsorptive separation of gases and scavenging unfavorable or hazardous gases. The use of cost-effective and environmentally friendly materials fo...
气体选择性吸附在气体吸附分离和清除有害气体方面起着重要作用。使用具有成本效益和环保的材料来…
{"title":"Metal–Organic Framework for Selective Gas Scavenging","authors":"Jiating He, Xu Li","doi":"10.1142/S2251237316400141","DOIUrl":"https://doi.org/10.1142/S2251237316400141","url":null,"abstract":"Selective gas adsorption plays an important role in adsorptive separation of gases and scavenging unfavorable or hazardous gases. The use of cost-effective and environmentally friendly materials fo...","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":"04 1","pages":"1640014"},"PeriodicalIF":1.5,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251237316400141","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63850648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-01DOI: 10.1142/S2251237316400153
R. C. C. Yap, Amegadze Paul Seyram Kwablah, Jiating He, Xu Li
Food packaging has been changing from bulky and rigid form in the past to different variation of lights and plastic packagings. Regardless of the changes, the packaging must be able to uphold its original function which is to serve as food containment as well as to protect the food from the external environment. Coupled with the increasing consumer’s awareness on food waste, higher standard of living, technological developments are underway to enhance the shelf-life of packed food as well as methods to provide indications of food packaging environment. There are many different indicators for food spoilage, but two commonly found gases in food packaging are oxygen and carbon dioxide. Oxygen is the main mechanism for food spoilage, while carbon dioxide is often used in modified-atmosphere-packaging. There are also different methods of gas scavenging and/or sensing techniques based on different concepts in the literature. In this review, the focus will be on nano-materials, namely titanium dioxide, silica, zeolites and metal organic frameworks. This review is structured in a manner to highlight how each material can be used in both gas scavenging and/or indicators applications. The last part of the review focuses on the approach and some key considerations when integrating nano-materials into the plastic film.
{"title":"Functions of Nano-Materials in Food Packaging","authors":"R. C. C. Yap, Amegadze Paul Seyram Kwablah, Jiating He, Xu Li","doi":"10.1142/S2251237316400153","DOIUrl":"https://doi.org/10.1142/S2251237316400153","url":null,"abstract":"Food packaging has been changing from bulky and rigid form in the past to different variation of lights and plastic packagings. Regardless of the changes, the packaging must be able to uphold its original function which is to serve as food containment as well as to protect the food from the external environment. Coupled with the increasing consumer’s awareness on food waste, higher standard of living, technological developments are underway to enhance the shelf-life of packed food as well as methods to provide indications of food packaging environment. There are many different indicators for food spoilage, but two commonly found gases in food packaging are oxygen and carbon dioxide. Oxygen is the main mechanism for food spoilage, while carbon dioxide is often used in modified-atmosphere-packaging. There are also different methods of gas scavenging and/or sensing techniques based on different concepts in the literature. In this review, the focus will be on nano-materials, namely titanium dioxide, silica, zeolites and metal organic frameworks. This review is structured in a manner to highlight how each material can be used in both gas scavenging and/or indicators applications. The last part of the review focuses on the approach and some key considerations when integrating nano-materials into the plastic film.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":"04 1","pages":"1640015"},"PeriodicalIF":1.5,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251237316400153","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63850656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-01DOI: 10.1142/S2251237316400177
A. Jalilov, P. Marella, J. Claverie
Zinc phosphate, and zinc molybdate nanoparticles were prepared from inverse microemulsions of inorganic salts stabilized by a mixture of nonionic and ionic surfactants in cyclohexane. The optimal ratios of surfactants to inorganic salts were found experimentally. The resulting nanoparticles were characterized by transmission electron microscopy, scanning electron microscopy, and X-ray diffraction. These nanoparticles were then mixed to epoxy formulations, which were applied to steel coupons. After accelerated aging, the electrochemical characteristics of the corrosion were analyzed by electrochemical impedance spectroscopy. The nanoparticles increase the corrosion resistance of the coating, indicating that the use of zinc phosphate and zinc molybdate nanoparticles offer a promising route for the mitigation of steel corrosion.
{"title":"Anticorrosion Coatings Based on Zinc Phosphate and Zinc Molybdate Nanoparticles","authors":"A. Jalilov, P. Marella, J. Claverie","doi":"10.1142/S2251237316400177","DOIUrl":"https://doi.org/10.1142/S2251237316400177","url":null,"abstract":"Zinc phosphate, and zinc molybdate nanoparticles were prepared from inverse microemulsions of inorganic salts stabilized by a mixture of nonionic and ionic surfactants in cyclohexane. The optimal ratios of surfactants to inorganic salts were found experimentally. The resulting nanoparticles were characterized by transmission electron microscopy, scanning electron microscopy, and X-ray diffraction. These nanoparticles were then mixed to epoxy formulations, which were applied to steel coupons. After accelerated aging, the electrochemical characteristics of the corrosion were analyzed by electrochemical impedance spectroscopy. The nanoparticles increase the corrosion resistance of the coating, indicating that the use of zinc phosphate and zinc molybdate nanoparticles offer a promising route for the mitigation of steel corrosion.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":"04 1","pages":"1640017"},"PeriodicalIF":1.5,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251237316400177","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63850230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-01DOI: 10.1142/S225123731640013X
Santanu Duari, Arkadeb Mukhopadhyay, T. Barman, P. Sahoo
This study presents the deposition and tribological characterization of electroless Ni–P–Cu coatings deposited on AISI 1040 steel specimens. After deposition, coatings are heat treated at 500∘C for...
{"title":"Investigation of Friction and Wear Properties of Electroless Ni-P-Cu Coating Under Dry Condition","authors":"Santanu Duari, Arkadeb Mukhopadhyay, T. Barman, P. Sahoo","doi":"10.1142/S225123731640013X","DOIUrl":"https://doi.org/10.1142/S225123731640013X","url":null,"abstract":"This study presents the deposition and tribological characterization of electroless Ni–P–Cu coatings deposited on AISI 1040 steel specimens. After deposition, coatings are heat treated at 500∘C for...","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":"04 1","pages":"1640013"},"PeriodicalIF":1.5,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S225123731640013X","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63850591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-01DOI: 10.1142/S2251237316400104
Hongfei Liu
Atomic layer deposition (ALD) has long been developed for conformal coating thin films on planar surfaces and complex structured substrates based on its unique sequential process and self-limiting surface chemistry. In general, the coated thin films can be dielectrics, semiconductors, conductors, metals, etc., while the targeted surface can vary from those of particles, wires, to deep pores, through holes, and so on. The ALD coating technique, itself, was developed from gas-phase chemical vapor deposition, but now it has been extended even to liquid phase coating/growth. Because the thickness of ALD growth is controlled in atomic level (∼0.1nm), it has recently been employed for producing two-dimensional (2D) materials, typically semiconducting nanosheets of transition metal dichalcogenides (TMDCs). In this paper, we briefly introduce recent progress in ALD of multifunctional oxides and 2D TMDCs with the focus being placed on suitable ALD precursors and their ALD processes (for both binary compounds and t...
{"title":"Recent Progress in Atomic Layer Deposition of Multifunctional Oxides and Two-Dimensional Transition Metal Dichalcogenides","authors":"Hongfei Liu","doi":"10.1142/S2251237316400104","DOIUrl":"https://doi.org/10.1142/S2251237316400104","url":null,"abstract":"Atomic layer deposition (ALD) has long been developed for conformal coating thin films on planar surfaces and complex structured substrates based on its unique sequential process and self-limiting surface chemistry. In general, the coated thin films can be dielectrics, semiconductors, conductors, metals, etc., while the targeted surface can vary from those of particles, wires, to deep pores, through holes, and so on. The ALD coating technique, itself, was developed from gas-phase chemical vapor deposition, but now it has been extended even to liquid phase coating/growth. Because the thickness of ALD growth is controlled in atomic level (∼0.1nm), it has recently been employed for producing two-dimensional (2D) materials, typically semiconducting nanosheets of transition metal dichalcogenides (TMDCs). In this paper, we briefly introduce recent progress in ALD of multifunctional oxides and 2D TMDCs with the focus being placed on suitable ALD precursors and their ALD processes (for both binary compounds and t...","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":"114 1","pages":"1640010"},"PeriodicalIF":1.5,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251237316400104","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63850509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-11-28DOI: 10.1142/S2251237316500015
I. Abbas
In the present work, in accordance with the generalized theory of thermoelasticity with two thermal relaxation times, the vibration of a thick finite nanobeam resonator has been considered. Both the general thermoelasticity and coupled thermoelasticity (CT) theories with only one relaxation time can be deduced from the present model as special cases. Under clamped conditions for beam, the effect of relaxation times in nanobeam resonator has been investigated. Based on the analytical relationships, the beam deflection, temperature change, frequency shift and thermoelastic damping were investigated and the numerical results were graphically obtained. According to the observed results there is a clear difference between the CT theory, Lord and Shulman’s (LS) theory and Green and Lindsay’s (GL) theory.
本文根据具有两个热松弛时间的广义热弹性理论,研究了厚有限纳米梁谐振腔的振动问题。一般热弹性理论和只有一个松弛时间的耦合热弹性理论都可以作为特例从该模型中推导出来。在束流箝位条件下,研究了弛豫时间对纳米束流谐振腔的影响。基于解析关系,对梁挠度、温度变化、频移和热弹性阻尼进行了研究,并给出了数值结果。观察结果表明,CT理论与Lord and Shulman的(LS)理论和Green and Lindsay的(GL)理论有明显的区别。
{"title":"The Effect of Relaxation Times on Thermoelastic Damping in a Nanobeam Resonator","authors":"I. Abbas","doi":"10.1142/S2251237316500015","DOIUrl":"https://doi.org/10.1142/S2251237316500015","url":null,"abstract":"In the present work, in accordance with the generalized theory of thermoelasticity with two thermal relaxation times, the vibration of a thick finite nanobeam resonator has been considered. Both the general thermoelasticity and coupled thermoelasticity (CT) theories with only one relaxation time can be deduced from the present model as special cases. Under clamped conditions for beam, the effect of relaxation times in nanobeam resonator has been investigated. Based on the analytical relationships, the beam deflection, temperature change, frequency shift and thermoelastic damping were investigated and the numerical results were graphically obtained. According to the observed results there is a clear difference between the CT theory, Lord and Shulman’s (LS) theory and Green and Lindsay’s (GL) theory.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":"04 1","pages":"1650001"},"PeriodicalIF":1.5,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251237316500015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63850266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-11-28DOI: 10.1142/S2251237316500040
M. Bachher, N. Sarkar
An electromagneto-thermoelastic coupled problem for a homogeneous, isotropic, thermally and electrically conducting half-space solid whose surface is subjected to a thermal shock is considered in two-dimensional space. The equations of the theory of generalized electromagneto-thermoelasticity with fractional derivative heat transfer allowing the second sound effects are considered. An initial magnetic field acts parallel to the plane boundary of the half-space. The normal mode analysis and the eigenvalue approach techniques are used to solve the resulting nondimensional coupled field equations for the three theories. Numerical results for the temperature, displacements and thermal stresses distributions are presented graphically and discussed. A comparison is made with the results obtained in the presence and absence of the magnetic field.
{"title":"Two-Dimensional Thermal Shock Problem of Generalized Magneto-Thermoelasticity with a Time-Fractional Heat Conduction Law","authors":"M. Bachher, N. Sarkar","doi":"10.1142/S2251237316500040","DOIUrl":"https://doi.org/10.1142/S2251237316500040","url":null,"abstract":"An electromagneto-thermoelastic coupled problem for a homogeneous, isotropic, thermally and electrically conducting half-space solid whose surface is subjected to a thermal shock is considered in two-dimensional space. The equations of the theory of generalized electromagneto-thermoelasticity with fractional derivative heat transfer allowing the second sound effects are considered. An initial magnetic field acts parallel to the plane boundary of the half-space. The normal mode analysis and the eigenvalue approach techniques are used to solve the resulting nondimensional coupled field equations for the three theories. Numerical results for the temperature, displacements and thermal stresses distributions are presented graphically and discussed. A comparison is made with the results obtained in the presence and absence of the magnetic field.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":"04 1","pages":"1650004"},"PeriodicalIF":1.5,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251237316500040","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63850351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-11-28DOI: 10.1142/S2251237316500039
I. Abbas, K. Aly
In this work, the theory of coupled plasma, thermal and elastic waves were used to investigate the wave propagation on semiconductor material during photo-thermo-elastic process. A thin slim strip (TSS) medium, elastic semiconductor with isotropic and homogeneous thermal and elastic properties have been considered. The plasma, thermal and elastic waves in a TSS photo generated by a focused and intensity modulated laser beam were analyzed. Laplace transform techniques and eigenvalue approach were used to obtain the analytical solutions for carrier density, displacement, temperature, and stress. Numerical computations have been carried out on silicon-like semiconductor material. The results are presented graphically to show the effect of the coupling between the plasma, thermal, and elastic waves.
{"title":"A Study on Photothermal Waves in a Semiconductor Material Photogenerated by a Focused Laser Beam","authors":"I. Abbas, K. Aly","doi":"10.1142/S2251237316500039","DOIUrl":"https://doi.org/10.1142/S2251237316500039","url":null,"abstract":"In this work, the theory of coupled plasma, thermal and elastic waves were used to investigate the wave propagation on semiconductor material during photo-thermo-elastic process. A thin slim strip (TSS) medium, elastic semiconductor with isotropic and homogeneous thermal and elastic properties have been considered. The plasma, thermal and elastic waves in a TSS photo generated by a focused and intensity modulated laser beam were analyzed. Laplace transform techniques and eigenvalue approach were used to obtain the analytical solutions for carrier density, displacement, temperature, and stress. Numerical computations have been carried out on silicon-like semiconductor material. The results are presented graphically to show the effect of the coupling between the plasma, thermal, and elastic waves.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":"04 1","pages":"1650003"},"PeriodicalIF":1.5,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251237316500039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63850334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-11-28DOI: 10.1142/S2251237316300011
Suman Kumar Burnwal, S. Bharadwaj, P. Kistaiah
The cathode is one of the most important components of solid oxide fuel cells (SOFCs). The reduction of oxygen at the cathode (traditional cathodes like LSM, LSGM, etc.) is the slow step in the cell reaction at intermediate temperature (600–800∘C) which is one of the key obstacles to the development of SOFCs. The mixed ionic and electronic conducting cathode (MIEC) like LSCF, BSCF, etc., has recently been proposed as a promising cathode material for SOFC due to the improvement of the kinetic of the cathode reaction. The MIEC materials provide not only the electrons for the reduction of oxygen, but also the ionic conduction required to ensure the transport of the formed oxygen ions and thereby improves the overall electrochemical performance of SOFC system. The characteristics of MIEC cathode materials and its comparison with other traditional cathode materials is studied and presented in the paper.
{"title":"Review on MIEC Cathode Materials for Solid Oxide Fuel Cells","authors":"Suman Kumar Burnwal, S. Bharadwaj, P. Kistaiah","doi":"10.1142/S2251237316300011","DOIUrl":"https://doi.org/10.1142/S2251237316300011","url":null,"abstract":"The cathode is one of the most important components of solid oxide fuel cells (SOFCs). The reduction of oxygen at the cathode (traditional cathodes like LSM, LSGM, etc.) is the slow step in the cell reaction at intermediate temperature (600–800∘C) which is one of the key obstacles to the development of SOFCs. The mixed ionic and electronic conducting cathode (MIEC) like LSCF, BSCF, etc., has recently been proposed as a promising cathode material for SOFC due to the improvement of the kinetic of the cathode reaction. The MIEC materials provide not only the electrons for the reduction of oxygen, but also the ionic conduction required to ensure the transport of the formed oxygen ions and thereby improves the overall electrochemical performance of SOFC system. The characteristics of MIEC cathode materials and its comparison with other traditional cathode materials is studied and presented in the paper.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":"113 1","pages":"1630001"},"PeriodicalIF":1.5,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251237316300011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63850359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}