Pub Date : 2022-04-25DOI: 10.1142/s2301385022410035
Miguel Fernández-Cortizas, David Pérez-Saura, P. Santamaría, Javier Rodríguez-Vázquez, Martin Molina, P. Campoy
In recent years, autonomous drone races have become increasingly popular in the aerial robotics research community, due to the challenges in perception, localization, navigation, and control at high speeds, pushing forward the state of the art every year. However, autonomous racing drones are still far from reaching human pilot performance and a lot of research has to be done to accomplish that. In this work, a complete architecture system and an evaluation method for autonomous drone racing research, based on the open source framework Aerostack 4.0, are proposed. In order to evaluate the performance of the whole system and of each algorithm used separately, this framework is validated not only with simulated flights, but also through real flights in an indoor drone race circuit by using different configurations.
{"title":"Framework and Evaluation Methodology for Autonomous Drone Racing","authors":"Miguel Fernández-Cortizas, David Pérez-Saura, P. Santamaría, Javier Rodríguez-Vázquez, Martin Molina, P. Campoy","doi":"10.1142/s2301385022410035","DOIUrl":"https://doi.org/10.1142/s2301385022410035","url":null,"abstract":"In recent years, autonomous drone races have become increasingly popular in the aerial robotics research community, due to the challenges in perception, localization, navigation, and control at high speeds, pushing forward the state of the art every year. However, autonomous racing drones are still far from reaching human pilot performance and a lot of research has to be done to accomplish that. In this work, a complete architecture system and an evaluation method for autonomous drone racing research, based on the open source framework Aerostack 4.0, are proposed. In order to evaluate the performance of the whole system and of each algorithm used separately, this framework is validated not only with simulated flights, but also through real flights in an indoor drone race circuit by using different configurations.","PeriodicalId":164619,"journal":{"name":"Unmanned Syst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125670697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-25DOI: 10.1142/s2301385022410023
Aarón López Luna, H. Rodríguez-Cortés, Israel Cruz-Vega, J. Martínez-Carranza
{"title":"An Immersion and Invariance Controller for Aerial Manipulation","authors":"Aarón López Luna, H. Rodríguez-Cortés, Israel Cruz-Vega, J. Martínez-Carranza","doi":"10.1142/s2301385022410023","DOIUrl":"https://doi.org/10.1142/s2301385022410023","url":null,"abstract":"","PeriodicalId":164619,"journal":{"name":"Unmanned Syst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122378583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-25DOI: 10.1142/s230138502350005x
A. Kovács, I. Vajk
{"title":"Optimization-based Model Predictive Tube Control for Autonomous Ground Vehicles with Minimal Tuning Parameters","authors":"A. Kovács, I. Vajk","doi":"10.1142/s230138502350005x","DOIUrl":"https://doi.org/10.1142/s230138502350005x","url":null,"abstract":"","PeriodicalId":164619,"journal":{"name":"Unmanned Syst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127934842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-18DOI: 10.1142/s2301385023500012
M. Mohammadzaheri, Arman Khaleghifar, M. Ghodsi, P. Soltani, Sami AlSulti
Nonlinear control laws often need to be implemented with digital hardware. Use of digital control systems leads to communication/processing delays which are widely neglected in control of mechanical systems. This paper proposes a discrete approach to feedback linearization that considers these commonly overlooked delays in design. The proposed approach is shown to both improve the performance and remove the need for continuous derivative terms. In feedback linearization control systems, designed in the continuous domain, derivative terms are required to speed up the control response of mechanical systems, but disadvantageously cause high sensitivity to noise. The proposed approach was used to design a feedback linearization control system for a common turning maneuver of an unmanned helicopter in yaw. At this maneuver, the helicopter centroid motion and pitch rotational speed are almost zero. Governing differential equations of the helicopter at this maneuver are nonlinear and coupled. A feedback linearization law was proposed to curb nonlinearity and, a discrete control system, considering the inevitable delay due to the use of digital control systems, was adopted to complete the control law. This innovative approach resulted in less sensitivity to noises and performance boost. Practical limits in terms of control input, rotor speed, sampling frequency and noises of the gyroscope, the tachometer and the acceleration sensor were taken into account in this research. The results show that the proposed control system leads to fast and smooth yaw turns even at a high pitch angle (close to vertical) or in the case of being hit by external objects.
{"title":"A Discrete Approach to Feedback Linearization, Yaw Control of An Unmanned Helicopter","authors":"M. Mohammadzaheri, Arman Khaleghifar, M. Ghodsi, P. Soltani, Sami AlSulti","doi":"10.1142/s2301385023500012","DOIUrl":"https://doi.org/10.1142/s2301385023500012","url":null,"abstract":"Nonlinear control laws often need to be implemented with digital hardware. Use of digital control systems leads to communication/processing delays which are widely neglected in control of mechanical systems. This paper proposes a discrete approach to feedback linearization that considers these commonly overlooked delays in design. The proposed approach is shown to both improve the performance and remove the need for continuous derivative terms. In feedback linearization control systems, designed in the continuous domain, derivative terms are required to speed up the control response of mechanical systems, but disadvantageously cause high sensitivity to noise. The proposed approach was used to design a feedback linearization control system for a common turning maneuver of an unmanned helicopter in yaw. At this maneuver, the helicopter centroid motion and pitch rotational speed are almost zero. Governing differential equations of the helicopter at this maneuver are nonlinear and coupled. A feedback linearization law was proposed to curb nonlinearity and, a discrete control system, considering the inevitable delay due to the use of digital control systems, was adopted to complete the control law. This innovative approach resulted in less sensitivity to noises and performance boost. Practical limits in terms of control input, rotor speed, sampling frequency and noises of the gyroscope, the tachometer and the acceleration sensor were taken into account in this research. The results show that the proposed control system leads to fast and smooth yaw turns even at a high pitch angle (close to vertical) or in the case of being hit by external objects.","PeriodicalId":164619,"journal":{"name":"Unmanned Syst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134413800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-12DOI: 10.1142/s2301385023310015
Jiahao Shen, Biao Wang, Ben M. Chen, Ruiyu Bu, Bao Jin
{"title":"Review on Wind Resistance for Quadrotor UAVs: Modeling and Controller Design","authors":"Jiahao Shen, Biao Wang, Ben M. Chen, Ruiyu Bu, Bao Jin","doi":"10.1142/s2301385023310015","DOIUrl":"https://doi.org/10.1142/s2301385023310015","url":null,"abstract":"","PeriodicalId":164619,"journal":{"name":"Unmanned Syst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129936110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-12DOI: 10.1142/s2301385022410011
J. Martínez-Carranza, L. Rojas-Perez
{"title":"Warehouse Inspection with an Autonomous Micro Air Vehicle","authors":"J. Martínez-Carranza, L. Rojas-Perez","doi":"10.1142/s2301385022410011","DOIUrl":"https://doi.org/10.1142/s2301385022410011","url":null,"abstract":"","PeriodicalId":164619,"journal":{"name":"Unmanned Syst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133082518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-12DOI: 10.1142/s2301385023500048
Pascal Spino, K. Matveev
{"title":"Development and Testing of Unmanned Semi-Submersible Vehicle","authors":"Pascal Spino, K. Matveev","doi":"10.1142/s2301385023500048","DOIUrl":"https://doi.org/10.1142/s2301385023500048","url":null,"abstract":"","PeriodicalId":164619,"journal":{"name":"Unmanned Syst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128398797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1142/s2301385022010014
Jie Chen, Ben M. Chen, Lihua Xie
{"title":"A Word of Thanks, and the Reviewer List for 2021","authors":"Jie Chen, Ben M. Chen, Lihua Xie","doi":"10.1142/s2301385022010014","DOIUrl":"https://doi.org/10.1142/s2301385022010014","url":null,"abstract":"","PeriodicalId":164619,"journal":{"name":"Unmanned Syst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128832557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}