首页 > 最新文献

Journal of neurogenetics最新文献

英文 中文
A deep learning analysis of Drosophila body kinematics during magnetically tethered flight. 果蝇在磁系飞行过程中身体运动学的深度学习分析。
IF 1.9 4区 医学 Q3 GENETICS & HEREDITY Pub Date : 2023-03-01 DOI: 10.1080/01677063.2023.2210682
Geonil Kim, JoonHu An, Subin Ha, Anmo J Kim

Flying Drosophila rely on their vision to detect visual objects and adjust their flight course. Despite their robust fixation on a dark, vertical bar, our understanding of the underlying visuomotor neural circuits remains limited, in part due to difficulties in analyzing detailed body kinematics in a sensitive behavioral assay. In this study, we observed the body kinematics of flying Drosophila using a magnetically tethered flight assay, in which flies are free to rotate around their yaw axis, enabling naturalistic visual and proprioceptive feedback. Additionally, we used deep learning-based video analyses to characterize the kinematics of multiple body parts in flying animals. By applying this pipeline of behavioral experiments and analyses, we characterized the detailed body kinematics during rapid flight turns (or saccades) in two different visual conditions: spontaneous flight saccades under static screen and bar-fixating saccades while tracking a rotating bar. We found that both types of saccades involved movements of multiple body parts and that the overall dynamics were comparable. Our study highlights the importance of sensitive behavioral assays and analysis tools for characterizing complex visual behaviors.

果蝇依靠它们的视觉来探测视觉物体并调整它们的飞行路线。尽管他们牢固地固定在一个黑暗的垂直条上,我们对潜在的视觉运动神经回路的理解仍然有限,部分原因是难以在敏感的行为分析中分析详细的身体运动学。在这项研究中,我们使用磁系飞行实验观察飞行果蝇的身体运动学,其中苍蝇可以围绕其偏航轴自由旋转,从而实现自然的视觉和本体感觉反馈。此外,我们使用基于深度学习的视频分析来表征飞行动物多个身体部位的运动学。通过应用这些行为实验和分析,我们在两种不同的视觉条件下描述了快速飞行转弯(或扫视)时的详细身体运动学:静态屏幕下的自发飞行扫视和跟踪旋转杆时注视杆的扫视。我们发现,两种类型的扫视都涉及到多个身体部位的运动,而且总体动态是相似的。我们的研究强调了敏感的行为分析和分析工具对表征复杂视觉行为的重要性。
{"title":"A deep learning analysis of <i>Drosophila</i> body kinematics during magnetically tethered flight.","authors":"Geonil Kim,&nbsp;JoonHu An,&nbsp;Subin Ha,&nbsp;Anmo J Kim","doi":"10.1080/01677063.2023.2210682","DOIUrl":"https://doi.org/10.1080/01677063.2023.2210682","url":null,"abstract":"<p><p>Flying <i>Drosophila</i> rely on their vision to detect visual objects and adjust their flight course. Despite their robust fixation on a dark, vertical bar, our understanding of the underlying visuomotor neural circuits remains limited, in part due to difficulties in analyzing detailed body kinematics in a sensitive behavioral assay. In this study, we observed the body kinematics of flying <i>Drosophila</i> using a magnetically tethered flight assay, in which flies are free to rotate around their yaw axis, enabling naturalistic visual and proprioceptive feedback. Additionally, we used deep learning-based video analyses to characterize the kinematics of multiple body parts in flying animals. By applying this pipeline of behavioral experiments and analyses, we characterized the detailed body kinematics during rapid flight turns (or saccades) in two different visual conditions: spontaneous flight saccades under static screen and bar-fixating saccades while tracking a rotating bar. We found that both types of saccades involved movements of multiple body parts and that the overall dynamics were comparable. Our study highlights the importance of sensitive behavioral assays and analysis tools for characterizing complex visual behaviors.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"37 1-2","pages":"47-56"},"PeriodicalIF":1.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9784307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Reduced branched-chain aminotransferase activity alleviates metabolic vulnerability caused by dim light exposure at night in Drosophila. 支链转氨酶活性降低可减轻果蝇夜间弱光暴露引起的代谢脆弱性。
IF 1.9 4区 医学 Q3 GENETICS & HEREDITY Pub Date : 2023-03-01 DOI: 10.1080/01677063.2022.2144292
Mari Kim, Gwang-Ic Son, Yun-Ho Cho, Gye-Hyeong Kim, Sung-Eun Yun, Young-Joon Kim, Jongkyeong Chung, Eunil Lee, Joong-Jean Park

The rhythmic pattern of biological processes controlled by light over 24 h is termed the circadian rhythm. Disturbance of circadian rhythm due to exposure to light at night (LAN) disrupts the sleep-wake cycle and can promote cardiovascular disease, diabetes, cancer, and metabolic disorders in humans. We studied how dim LAN affects the circadian rhythm and metabolism using male Drosophila. Wild-type flies exposed to the dim light of 10 lux at night displayed altered 24 h sleep-wake behavior and expression patterns of circadian rhythm genes. In addition, the flies became more vulnerable to metabolic stress, such as starvation. Whole-body metabolite analysis revealed decreased amounts of branched-chain amino acids (BCAAs), such as isoleucine and valine. The dim light exposure also increased the expression of branched-chain amino acid aminotransferase (BCAT) and branched-chain α-keto acid dehydrogenase (BCKDC) enzyme complexes that regulate the metabolism of BCAAs. Flies with the Bcat heterozygous mutation were not vulnerable to starvation stress, even when exposed to dim LAN, and hemolymph BCAA levels did not decrease in these flies. Furthermore, the vulnerability to starvation stress was also suppressed when the Bcat expression level was reduced in the whole body, neurons, or fat body during adulthood using conditional GAL4 and RNA interference. Finally, the metabolic vulnerability was reversed when BCAAs were fed to wild-type flies exposed to LAN. Thus, short-term dim light exposure at night affects the expression of circadian genes and BCAA metabolism in Drosophila, implying a novel function of BCAAs in suppressing metabolic stress caused by disrupted circadian rhythm.

光在24小时内控制生物过程的节律模式被称为昼夜节律。夜间光照引起的昼夜节律紊乱会扰乱睡眠-觉醒周期,并可能导致人类心血管疾病、糖尿病、癌症和代谢紊乱。我们以雄性果蝇为研究对象,研究了暗LAN对果蝇昼夜节律和代谢的影响。夜间暴露在10勒克斯的昏暗光线下的野生型果蝇表现出24小时睡眠-觉醒行为和昼夜节律基因表达模式的改变。此外,果蝇更容易受到代谢压力的影响,比如饥饿。全身代谢物分析显示支链氨基酸(BCAAs)的数量减少,如异亮氨酸和缬氨酸。昏暗光照还增加了调节BCAAs代谢的支链氨基酸转氨酶(BCAT)和支链α-酮酸脱氢酶(BCKDC)酶复合物的表达。携带Bcat杂合突变的果蝇不容易受到饥饿应激,即使暴露在昏暗的LAN中,这些果蝇的血淋巴BCAA水平也没有下降。此外,通过条件GAL4和RNA干扰,降低成年期全身、神经元或脂肪体的Bcat表达水平,也抑制了对饥饿应激的易损性。最后,当BCAAs被喂食给暴露于LAN的野生型果蝇时,代谢脆弱性被逆转。因此,夜间短时间的昏暗光照会影响果蝇昼夜节律基因的表达和BCAA代谢,这意味着BCAA具有抑制昼夜节律紊乱引起的代谢应激的新功能。
{"title":"Reduced branched-chain aminotransferase activity alleviates metabolic vulnerability caused by dim light exposure at night in <i>Drosophila</i>.","authors":"Mari Kim,&nbsp;Gwang-Ic Son,&nbsp;Yun-Ho Cho,&nbsp;Gye-Hyeong Kim,&nbsp;Sung-Eun Yun,&nbsp;Young-Joon Kim,&nbsp;Jongkyeong Chung,&nbsp;Eunil Lee,&nbsp;Joong-Jean Park","doi":"10.1080/01677063.2022.2144292","DOIUrl":"https://doi.org/10.1080/01677063.2022.2144292","url":null,"abstract":"<p><p>The rhythmic pattern of biological processes controlled by light over 24 h is termed the circadian rhythm. Disturbance of circadian rhythm due to exposure to light at night (LAN) disrupts the sleep-wake cycle and can promote cardiovascular disease, diabetes, cancer, and metabolic disorders in humans. We studied how dim LAN affects the circadian rhythm and metabolism using male <i>Drosophila</i>. Wild-type flies exposed to the dim light of 10 lux at night displayed altered 24 h sleep-wake behavior and expression patterns of circadian rhythm genes. In addition, the flies became more vulnerable to metabolic stress, such as starvation. Whole-body metabolite analysis revealed decreased amounts of branched-chain amino acids (BCAAs), such as isoleucine and valine. The dim light exposure also increased the expression of branched-chain amino acid aminotransferase (BCAT) and branched-chain α-keto acid dehydrogenase (BCKDC) enzyme complexes that regulate the metabolism of BCAAs. Flies with the <i>Bcat</i> heterozygous mutation were not vulnerable to starvation stress, even when exposed to dim LAN, and hemolymph BCAA levels did not decrease in these flies. Furthermore, the vulnerability to starvation stress was also suppressed when the <i>Bcat</i> expression level was reduced in the whole body, neurons, or fat body during adulthood using conditional GAL4 and RNA interference. Finally, the metabolic vulnerability was reversed when BCAAs were fed to wild-type flies exposed to LAN. Thus, short-term dim light exposure at night affects the expression of circadian genes and BCAA metabolism in <i>Drosophila</i>, implying a novel function of BCAAs in suppressing metabolic stress caused by disrupted circadian rhythm.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"37 1-2","pages":"25-35"},"PeriodicalIF":1.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9785853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Knockdown of glutathione S-transferase leads to mislocalization and accumulation of cabeza, a drosophila homolog of FUS, in the brain. 谷胱甘肽s -转移酶的敲低导致cabeza在大脑中的错误定位和积累,cabeza是果蝇FUS的同源物。
IF 1.9 4区 医学 Q3 GENETICS & HEREDITY Pub Date : 2023-03-01 DOI: 10.1080/01677063.2022.2149747
Sun Joo Cha, Ja Hoon Yoon, Yeo Jeong Han, Kiyoung Kim

Glutathione S-transferase omega (GSTO) is an antioxidant enzyme involved in reducing oxidative stress. Recent studies suggest that polymorphic variants of GSTOs affect the onset age and progression of neurodegenerative diseases. Although GSTO activity may affect the development and age dependency of several diseases, the mechanism by which GSTO inactivation in neurons regulates the susceptibility to neurodegenerative diseases is unclear. In the present study, GstO2 knockdown in Drosophila led to increased levels of Cabeza (Caz) protein in neurons in an age-dependent manner. Drosophila Caz is the ortholog of human FUS, which is associated with neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We found that cytoplasmic Caz mislocalization and aggregation in neurons significantly increased after GstO2 knockdown in vivo. Downregulation of GstO2 decreased the solubility of the Caz protein in aging neurons. These findings demonstrate that GSTO is a critical modulator of the development of neurodegenerative diseases by regulating Caz localization and aggregation in the nervous system of Drosophila.

谷胱甘肽s -转移酶(GSTO)是一种抗氧化酶,参与减少氧化应激。最近的研究表明,GSTOs的多态性变异影响神经退行性疾病的发病年龄和进展。虽然GSTO活性可能影响多种疾病的发展和年龄依赖性,但神经元中GSTO失活调控神经退行性疾病易感性的机制尚不清楚。在本研究中,果蝇中GstO2的敲低导致神经元中Cabeza (Caz)蛋白水平以年龄依赖的方式增加。Caz果蝇是人类FUS的同源基因,它与神经退行性疾病有关,包括肌萎缩侧索硬化症(ALS)和额颞叶痴呆(FTD)。我们发现GstO2敲除后神经元胞质Caz错定位和聚集显著增加。GstO2的下调降低了老化神经元中Caz蛋白的溶解度。这些发现表明GSTO通过调节果蝇神经系统中Caz的定位和聚集,是神经退行性疾病发展的重要调节剂。
{"title":"Knockdown of glutathione S-transferase leads to mislocalization and accumulation of cabeza, a <i>drosophila</i> homolog of FUS, in the brain.","authors":"Sun Joo Cha,&nbsp;Ja Hoon Yoon,&nbsp;Yeo Jeong Han,&nbsp;Kiyoung Kim","doi":"10.1080/01677063.2022.2149747","DOIUrl":"https://doi.org/10.1080/01677063.2022.2149747","url":null,"abstract":"<p><p>Glutathione S-transferase omega (GSTO) is an antioxidant enzyme involved in reducing oxidative stress. Recent studies suggest that polymorphic variants of GSTOs affect the onset age and progression of neurodegenerative diseases. Although GSTO activity may affect the development and age dependency of several diseases, the mechanism by which GSTO inactivation in neurons regulates the susceptibility to neurodegenerative diseases is unclear. In the present study, <i>GstO2</i> knockdown in <i>Drosophila</i> led to increased levels of Cabeza (Caz) protein in neurons in an age-dependent manner. <i>Drosophila</i> Caz is the ortholog of human FUS, which is associated with neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We found that cytoplasmic Caz mislocalization and aggregation in neurons significantly increased after <i>GstO2</i> knockdown <i>in vivo</i>. Downregulation of <i>GstO2</i> decreased the solubility of the Caz protein in aging neurons. These findings demonstrate that GSTO is a critical modulator of the development of neurodegenerative diseases by regulating Caz localization and aggregation in the nervous system of <i>Drosophila</i>.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"37 1-2","pages":"20-24"},"PeriodicalIF":1.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9788818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
History of Drosophila neurogenetic research in South Korea. 韩国果蝇神经遗传学研究的历史。
IF 1.9 4区 医学 Q3 GENETICS & HEREDITY Pub Date : 2023-03-01 DOI: 10.1080/01677063.2022.2115040
Greg S B Suh, Kweon Yu, Young-Joon Kim, Yangkyun Oh, Joong-Jean Park

Neurogenetic research using the Drosophila model has immensely expanded around the world. Likewise, scientists in South Korea have leveraged the advantages of Drosophila genetic tools to understand various neurobiological processes. In this special issue, we will overview the history of Drosophila neurogenetic research in South Korea that led to significant discoveries and notably implications. We will describe how Drosophila system was first introduced to elevate neural developmental studies in 1990s. Establishing Drosophila-related resources has been a key venture, which led to the generation of over 100,000 mutant lines and the launch of the K-Gut initiative with Korea Drosophila Research Center (KDRC). These resources have supported the pioneer studies in modeling human disease and understanding genes and neural circuits that regulate animal behavior and physiology.

使用果蝇模型的神经遗传学研究在世界范围内得到了极大的扩展。同样,韩国科学家利用果蝇遗传工具的优势来理解各种神经生物学过程。在本期特刊中,我们将概述韩国果蝇神经遗传学研究的历史,这些研究导致了重大发现和显著影响。我们将描述果蝇系统如何在20世纪90年代首次被引入以提升神经发育研究。建立与果蝇相关的资源是一项关键的冒险,它导致了超过10万个突变系的产生,并与韩国果蝇研究中心(KDRC)启动了K-Gut计划。这些资源支持了人类疾病建模和理解调节动物行为和生理的基因和神经回路的先驱研究。
{"title":"History of <i>Drosophila</i> neurogenetic research in South Korea.","authors":"Greg S B Suh,&nbsp;Kweon Yu,&nbsp;Young-Joon Kim,&nbsp;Yangkyun Oh,&nbsp;Joong-Jean Park","doi":"10.1080/01677063.2022.2115040","DOIUrl":"https://doi.org/10.1080/01677063.2022.2115040","url":null,"abstract":"<p><p>Neurogenetic research using the <i>Drosophila</i> model has immensely expanded around the world. Likewise, scientists in South Korea have leveraged the advantages of <i>Drosophila</i> genetic tools to understand various neurobiological processes. In this special issue, we will overview the history of <i>Drosophila</i> neurogenetic research in South Korea that led to significant discoveries and notably implications. We will describe how <i>Drosophila</i> system was first introduced to elevate neural developmental studies in 1990s. Establishing <i>Drosophila</i>-related resources has been a key venture, which led to the generation of over 100,000 mutant lines and the launch of the K-Gut initiative with Korea <i>Drosophila</i> Research Center (KDRC). These resources have supported the pioneer studies in modeling human disease and understanding genes and neural circuits that regulate animal behavior and physiology.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"37 1-2","pages":"3-9"},"PeriodicalIF":1.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10187434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Editorial/preface: Neurogenetics innovation in South Korea. 社论/前言:韩国的神经遗传学创新。
IF 1.9 4区 医学 Q3 GENETICS & HEREDITY Pub Date : 2023-03-01 DOI: 10.1080/01677063.2023.2216054
Jing W Wang, Greg S B Suh, Chun-Fang Wu
Expanding the representation of research from countries beyond Europe and North America is a goal for the Journal of Neurogenetics. This special issue is designed to highlight the flourishing discipline of Drosophila neurogenetics in South Korea. The aim is to provide readers with a snapshot of the diverse research areas that are at the cutting edge of the field. Neurogenetics, the single-gene approach to study a wide range of neurobiological phenomena from the assembly of the nervous system, neurophysiology and circuit function to animal behaviors, has withstood early criticisms. Today, it stands as a fullyfledged and flourishing field. Early research efforts were focused on neural development and behavior, for which many genetic tools were produced. As these tools became more sophisticated, they were utilized to delve deeper and provide better mechanistic insights. The evolution of Drosophila neurogenetics in South Korea remarkably mirrors this progression. In the 1990s, a vast array of mutant lines was generated to study neural development, which enabled researchers to extend their investigations beyond their original questions. This expansion of research horizons fueled the creation of new and more advanced genetic reagents. This cycle of innovating with old tools, which eventually leads to the development of new ones, is a perfect encapsulation of the spirit of neurogenetics. This special issue is structured into four sections, beginning with the molecular mechanisms of neurodegeneration (Cha et al., 2022; Lee, Jo, et al., 2022), followed by the sensory modulation of sleep and arousal (Kim et al., 2022; Lee & Lim, 2022), then the use of machine learning to interrogate animal behaviors (Kim, An, et al., 2023; Kim, Kim, et al., 2023), and finally, nutrient sensors in feeding and non-feeding behaviors (Oh & Suh, 2022; Kim et al., 2023; Yoon et al., 2022). These studies offer exciting new findings as well as sketch out the future directions for the field in South Korea and around the world.
{"title":"Editorial/preface: Neurogenetics innovation in South Korea.","authors":"Jing W Wang,&nbsp;Greg S B Suh,&nbsp;Chun-Fang Wu","doi":"10.1080/01677063.2023.2216054","DOIUrl":"https://doi.org/10.1080/01677063.2023.2216054","url":null,"abstract":"Expanding the representation of research from countries beyond Europe and North America is a goal for the Journal of Neurogenetics. This special issue is designed to highlight the flourishing discipline of Drosophila neurogenetics in South Korea. The aim is to provide readers with a snapshot of the diverse research areas that are at the cutting edge of the field. Neurogenetics, the single-gene approach to study a wide range of neurobiological phenomena from the assembly of the nervous system, neurophysiology and circuit function to animal behaviors, has withstood early criticisms. Today, it stands as a fullyfledged and flourishing field. Early research efforts were focused on neural development and behavior, for which many genetic tools were produced. As these tools became more sophisticated, they were utilized to delve deeper and provide better mechanistic insights. The evolution of Drosophila neurogenetics in South Korea remarkably mirrors this progression. In the 1990s, a vast array of mutant lines was generated to study neural development, which enabled researchers to extend their investigations beyond their original questions. This expansion of research horizons fueled the creation of new and more advanced genetic reagents. This cycle of innovating with old tools, which eventually leads to the development of new ones, is a perfect encapsulation of the spirit of neurogenetics. This special issue is structured into four sections, beginning with the molecular mechanisms of neurodegeneration (Cha et al., 2022; Lee, Jo, et al., 2022), followed by the sensory modulation of sleep and arousal (Kim et al., 2022; Lee & Lim, 2022), then the use of machine learning to interrogate animal behaviors (Kim, An, et al., 2023; Kim, Kim, et al., 2023), and finally, nutrient sensors in feeding and non-feeding behaviors (Oh & Suh, 2022; Kim et al., 2023; Yoon et al., 2022). These studies offer exciting new findings as well as sketch out the future directions for the field in South Korea and around the world.","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"37 1-2","pages":"1-2"},"PeriodicalIF":1.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10173262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PTK2 regulates tau-induced neurotoxicity via phosphorylation of p62 at Ser403. PTK2通过p62 Ser403位点的磷酸化调节tau诱导的神经毒性。
IF 1.9 4区 医学 Q3 GENETICS & HEREDITY Pub Date : 2023-03-01 DOI: 10.1080/01677063.2022.2114471
Shinrye Lee, Myungjin Jo, Younghwi Kwon, Yu-Mi Jeon, Seyeon Kim, Kea Joo Lee, Hyung-Jun Kim

Tau is a microtubule-associated protein that forms insoluble filaments that accumulate as neurofibrillary tangles in neurodegenerative diseases such as Alzheimer's disease and other related tauopathies. A relationship between abnormal Tau accumulation and ubiquitin-proteasome system impairment has been reported. However, the molecular mechanism linking Tau accumulation and ubiquitin proteasome system (UPS) dysfunction remains unclear. Here, we show that overexpression of wild-type or mutant (P301L) Tau increases the abundance of polyubiquitinated proteins and activates the autophagy-lysosome pathway in mammalian neuronal cells. Previous studies found that PTK2 inhibition mitigates toxicity induced by UPS impairment. Thus, we investigated whether PTK2 inhibition can attenuate Tau-induced UPS impairment and cell toxicity. We found that PTK2 inhibition significantly reduces Tau-induced death in mammalian neuronal cells. Moreover, overexpression of WT or mutant Tau increased the phosphorylation levels of PTK2 and p62. We also confirmed that PTK2 inhibition suppresses Tau-induced phosphorylation of PTK2 and p62. Furthermore, PTK2 inhibition significantly attenuated the climbing defect and shortened the lifespan in the Drosophila model of tauopathy. In addition, we observed that phosphorylation of p62 is markedly increased in Alzheimer's disease patients with tauopathies. Taken together, our results indicate that the UPS dysfunction induced by Tau accumulation might contribute directly to neurodegeneration in tauopathies and that PTK2 could be a promising therapeutic target for tauopathies.

Tau是一种微管相关蛋白,在神经退行性疾病(如阿尔茨海默病和其他相关的Tau病)中形成不溶性细丝,以神经原纤维缠结的形式积累。异常Tau积累与泛素-蛋白酶体系统损伤之间的关系已被报道。然而,连接Tau积累和泛素蛋白酶体系统(UPS)功能障碍的分子机制尚不清楚。在这里,我们发现野生型或突变型(P301L) Tau的过表达增加了哺乳动物神经元细胞中多泛素化蛋白的丰度,并激活了自噬-溶酶体途径。先前的研究发现,抑制PTK2可减轻UPS损伤引起的毒性。因此,我们研究了PTK2抑制是否可以减轻tau诱导的UPS损伤和细胞毒性。我们发现,PTK2抑制显著降低tau诱导的哺乳动物神经元细胞死亡。此外,过表达WT或突变型Tau增加了PTK2和p62的磷酸化水平。我们还证实,PTK2抑制抑制tau诱导的PTK2和p62磷酸化。此外,PTK2抑制显著减轻了果蝇的攀爬缺陷,缩短了果蝇的寿命。此外,我们观察到p62的磷酸化在伴有牛头病变的阿尔茨海默病患者中显着增加。综上所述,我们的研究结果表明,Tau积累诱导的UPS功能障碍可能直接导致牛头病的神经退行性变,而PTK2可能是牛头病的一个有希望的治疗靶点。
{"title":"PTK2 regulates tau-induced neurotoxicity via phosphorylation of p62 at Ser403.","authors":"Shinrye Lee,&nbsp;Myungjin Jo,&nbsp;Younghwi Kwon,&nbsp;Yu-Mi Jeon,&nbsp;Seyeon Kim,&nbsp;Kea Joo Lee,&nbsp;Hyung-Jun Kim","doi":"10.1080/01677063.2022.2114471","DOIUrl":"https://doi.org/10.1080/01677063.2022.2114471","url":null,"abstract":"<p><p>Tau is a microtubule-associated protein that forms insoluble filaments that accumulate as neurofibrillary tangles in neurodegenerative diseases such as Alzheimer's disease and other related tauopathies. A relationship between abnormal Tau accumulation and ubiquitin-proteasome system impairment has been reported. However, the molecular mechanism linking Tau accumulation and ubiquitin proteasome system (UPS) dysfunction remains unclear. Here, we show that overexpression of wild-type or mutant (P301L) Tau increases the abundance of polyubiquitinated proteins and activates the autophagy-lysosome pathway in mammalian neuronal cells. Previous studies found that PTK2 inhibition mitigates toxicity induced by UPS impairment. Thus, we investigated whether PTK2 inhibition can attenuate Tau-induced UPS impairment and cell toxicity. We found that PTK2 inhibition significantly reduces Tau-induced death in mammalian neuronal cells. Moreover, overexpression of WT or mutant Tau increased the phosphorylation levels of PTK2 and p62. We also confirmed that PTK2 inhibition suppresses Tau-induced phosphorylation of PTK2 and p62. Furthermore, PTK2 inhibition significantly attenuated the climbing defect and shortened the lifespan in the <i>Drosophila</i> model of tauopathy. In addition, we observed that phosphorylation of p62 is markedly increased in Alzheimer's disease patients with tauopathies. Taken together, our results indicate that the UPS dysfunction induced by Tau accumulation might contribute directly to neurodegeneration in tauopathies and that PTK2 could be a promising therapeutic target for tauopathies.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"37 1-2","pages":"10-19"},"PeriodicalIF":1.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9782169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Evaluation of mouse behavioral responses to nutritive versus nonnutritive sugar using a deep learning-based 3D real-time pose estimation system. 使用基于深度学习的三维实时姿态估计系统评估小鼠对营养糖和非营养糖的行为反应。
IF 1.9 4区 医学 Q3 GENETICS & HEREDITY Pub Date : 2023-03-01 DOI: 10.1080/01677063.2023.2174982
Jineun Kim, Dae-Gun Kim, Wongyo Jung, Greg S B Suh

Animals are able to detect the nutritional content of sugar independently of taste. When given a choice between nutritive sugar and nonnutritive sugar, animals develop a preference for nutritive sugar over nonnutritive sugar during a period of food deprivation (Buchanan et al., 2022; Dus et al., 2011; 2015; Tan et al., 2020; Tellez et al., 2016). To quantify behavioral features during an episode of licking nutritive versus nonnutritive sugar, we implemented a multi-vision, deep learning-based 3D pose estimation system, termed the AI Vision Analysis for Three-dimensional Action in Real-Time (AVATAR)(Kim et al., 2022). Using this method, we found that mice exhibit significantly different approach behavioral responses toward nutritive sugar versus nonnutritive sugar even before licking a sugar solution. Notably, the behavioral sequences during the approach toward nutritive versus nonnutritive sugar became significantly different over time. These results suggest that the nutritional value of sugar not only promotes its consumption but also elicits distinct repertoires of feeding behavior in deprived mice.

动物能够独立于味道检测出糖的营养成分。当在营养糖和非营养糖之间做出选择时,动物在食物剥夺期间会对营养糖而不是非营养糖产生偏好(Buchanan et al., 2022;Dus等,2011;2015;Tan et al., 2020;Tellez等人,2016)。为了量化舔营养糖和非营养糖时的行为特征,我们实施了一个多视觉、基于深度学习的3D姿势估计系统,称为实时三维动作人工智能视觉分析(AVATAR)(Kim等人,2022)。使用这种方法,我们发现即使在舔糖溶液之前,小鼠对营养糖和非营养糖的接近行为反应也有显著差异。值得注意的是,在摄入营养糖和非营养糖的过程中,行为序列随着时间的推移变得明显不同。这些结果表明,糖的营养价值不仅促进了糖的消耗,而且在被剥夺的小鼠中引起了不同的摄食行为。
{"title":"Evaluation of mouse behavioral responses to nutritive versus nonnutritive sugar using a deep learning-based 3D real-time pose estimation system.","authors":"Jineun Kim,&nbsp;Dae-Gun Kim,&nbsp;Wongyo Jung,&nbsp;Greg S B Suh","doi":"10.1080/01677063.2023.2174982","DOIUrl":"https://doi.org/10.1080/01677063.2023.2174982","url":null,"abstract":"<p><p>Animals are able to detect the nutritional content of sugar independently of taste. When given a choice between nutritive sugar and nonnutritive sugar, animals develop a preference for nutritive sugar over nonnutritive sugar during a period of food deprivation (Buchanan <i>et al.</i>, 2022; Dus <i>et al.</i>, 2011; 2015; Tan <i>et al.</i>, 2020; Tellez <i>et al.</i>, 2016). To quantify behavioral features during an episode of licking nutritive versus nonnutritive sugar, we implemented a multi-vision, deep learning-based 3D pose estimation system, termed the AI Vision Analysis for Three-dimensional Action in Real-Time (AVATAR)(Kim <i>et al.</i>, 2022). Using this method, we found that mice exhibit significantly different approach behavioral responses toward nutritive sugar versus nonnutritive sugar even before licking a sugar solution. Notably, the behavioral sequences during the approach toward <i>nutritive</i> versus nonnutritive sugar became significantly different over time. These results suggest that the nutritional value of sugar not only promotes its consumption but also elicits distinct repertoires of feeding behavior in deprived mice.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"37 1-2","pages":"78-83"},"PeriodicalIF":1.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9787480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Inter-organ regulation by the brain in Drosophila development and physiology. 果蝇发育和生理中大脑的器官间调节。
IF 1.9 4区 医学 Q3 GENETICS & HEREDITY Pub Date : 2023-03-01 DOI: 10.1080/01677063.2022.2137162
Sunggyu Yoon, Mingyu Shin, Jiwon Shim

The brain plays an essential role in regulating physiological homeostasis by communicating with other organs. Neuronal cells either directly innervate target tissues and transmit signals or secrete systemic factors into the hemolymph to regulate bodily functions, including physiology, development, metabolism, and immunity. In this review, we discuss the systemic functions of inter-organ communication mediated by the brain in four distinct categories: (1) nutrient sensing and feeding, (2) gastrointestinal activity and metabolism, (3) development and metamorphosis, and (4) immunity and hematopoiesis. First, we describe how chemosensory signals are sensed and transmitted to the brain in Drosophila and how the brain stimulates or modifies feeding behavior. Second, we summarize the brain-organ axis that regulates appetite activities and neuroendocrine pathways that maintain metabolic homeostasis. Third, we discuss how overall development in Drosophila is achieved by insulin and how it affects ecdysone signaling to initiate pupariation. Finally, we discuss how the central or peripheral nervous system controls hematopoiesis and innate immunity in Drosophila larvae. Given the functional parallels between Drosophila and humans, homologous pathways are likely to be conserved in human development and disease models, and the fly model system will continue to provide mechanistic insights into understanding complex interactions.

大脑通过与其他器官的交流在调节生理稳态中起着至关重要的作用。神经细胞可以直接支配目标组织并传递信号,也可以向血淋巴分泌系统因子来调节身体机能,包括生理、发育、代谢和免疫。在这篇综述中,我们从四个不同的方面讨论了由大脑介导的器官间通讯的系统功能:(1)营养感知和摄食,(2)胃肠活动和代谢,(3)发育和变态,(4)免疫和造血。首先,我们描述了化学感觉信号在果蝇中是如何被感知并传递到大脑的,以及大脑是如何刺激或改变摄食行为的。其次,我们总结了调节食欲活动的脑器官轴和维持代谢稳态的神经内分泌途径。第三,我们讨论了果蝇的整体发育是如何通过胰岛素实现的,以及胰岛素如何影响蜕皮激素信号来启动蛹期。最后,我们讨论了中枢或周围神经系统如何控制果蝇幼虫的造血和先天免疫。鉴于果蝇和人类在功能上的相似之处,同源通路可能在人类发育和疾病模型中是保守的,而果蝇模型系统将继续为理解复杂的相互作用提供机制上的见解。
{"title":"Inter-organ regulation by the brain in <i>Drosophila</i> development and physiology.","authors":"Sunggyu Yoon,&nbsp;Mingyu Shin,&nbsp;Jiwon Shim","doi":"10.1080/01677063.2022.2137162","DOIUrl":"https://doi.org/10.1080/01677063.2022.2137162","url":null,"abstract":"<p><p>The brain plays an essential role in regulating physiological homeostasis by communicating with other organs. Neuronal cells either directly innervate target tissues and transmit signals or secrete systemic factors into the hemolymph to regulate bodily functions, including physiology, development, metabolism, and immunity. In this review, we discuss the systemic functions of inter-organ communication mediated by the brain in four distinct categories: (1) nutrient sensing and feeding, (2) gastrointestinal activity and metabolism, (3) development and metamorphosis, and (4) immunity and hematopoiesis. First, we describe how chemosensory signals are sensed and transmitted to the brain in <i>Drosophila</i> and how the brain stimulates or modifies feeding behavior. Second, we summarize the brain-organ axis that regulates appetite activities and neuroendocrine pathways that maintain metabolic homeostasis. Third, we discuss how overall development in <i>Drosophila</i> is achieved by insulin and how it affects ecdysone signaling to initiate pupariation. Finally, we discuss how the central or peripheral nervous system controls hematopoiesis and innate immunity in <i>Drosophila</i> larvae. Given the functional parallels between <i>Drosophila</i> and humans, homologous pathways are likely to be conserved in human development and disease models, and the fly model system will continue to provide mechanistic insights into understanding complex interactions.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"37 1-2","pages":"57-69"},"PeriodicalIF":1.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9776568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Circadian gating of light-induced arousal in Drosophila sleep. 果蝇睡眠中光诱导觉醒的昼夜节律门控。
IF 1.9 4区 医学 Q3 GENETICS & HEREDITY Pub Date : 2023-03-01 DOI: 10.1080/01677063.2022.2151596
Hoyeon Lee, Chunghun Lim

Circadian rhythms and sleep homeostasis constitute the two-process model for daily sleep regulation. However, evidence for circadian control of sleep-wake cycles has been relatively short since clock-less animals often show sleep behaviors quantitatively comparable to wild-type. Here we examine Drosophila sleep behaviors under different light-dark regimes and demonstrate that circadian clocks gate light-induced arousal. Genetic excitation of tyrosine decarboxylase 2 (TDC2)-expressing neurons suppressed sleep more evidently at night, causing nocturnal activity. The arousal effects were likely mediated in part by glutamate transmission from the octopaminergic neurons and substantially masked by light. Application of T12 cycles (6-h light: 6-h dark) further showed that the light-sensitive effects of TDC2 neurons depended on the time of the day. In particular, light-sensing via visual input pathway led to strong sleep suppression at subjective night, and such an effect disappeared in clock-less mutants. Transgenic mapping revealed that light-induced arousal and free-running behavioral rhythms require distinct groups of circadian pacemaker neurons. These results provide convincing evidence that circadian control of sleep is mediated by the dedicated clock neurons for light-induced arousal.

昼夜节律和睡眠稳态构成了日常睡眠调节的双过程模型。然而,昼夜节律控制睡眠-觉醒周期的证据相对较短,因为无生物钟动物通常表现出与野生型动物相当的睡眠行为。在这里,我们研究了果蝇在不同的光-暗制度下的睡眠行为,并证明昼夜节律钟控制了光诱导的觉醒。表达酪氨酸脱羧酶2 (TDC2)的神经元的基因兴奋在夜间更明显地抑制睡眠,引起夜间活动。唤醒效应可能部分是由来自章鱼胺能神经元的谷氨酸传递介导的,并且基本上被光线掩盖。T12周期(6小时光照:6小时黑暗)的应用进一步表明,TDC2神经元的光敏效应依赖于一天中的时间。特别是,通过视觉输入通路的光感导致主观夜晚强烈的睡眠抑制,而这种效应在无时钟突变体中消失。转基因图谱显示,光诱导的觉醒和自由运行的行为节律需要不同的昼夜节律起搏器神经元群。这些结果提供了令人信服的证据,表明睡眠的昼夜节律控制是由专门用于光诱导唤醒的时钟神经元介导的。
{"title":"Circadian gating of light-induced arousal in <i>Drosophila</i> sleep.","authors":"Hoyeon Lee,&nbsp;Chunghun Lim","doi":"10.1080/01677063.2022.2151596","DOIUrl":"https://doi.org/10.1080/01677063.2022.2151596","url":null,"abstract":"<p><p>Circadian rhythms and sleep homeostasis constitute the two-process model for daily sleep regulation. However, evidence for circadian control of sleep-wake cycles has been relatively short since clock-less animals often show sleep behaviors quantitatively comparable to wild-type. Here we examine <i>Drosophila</i> sleep behaviors under different light-dark regimes and demonstrate that circadian clocks gate light-induced arousal. Genetic excitation of tyrosine decarboxylase 2 (TDC2)-expressing neurons suppressed sleep more evidently at night, causing nocturnal activity. The arousal effects were likely mediated in part by glutamate transmission from the octopaminergic neurons and substantially masked by light. Application of T12 cycles (6-h light: 6-h dark) further showed that the light-sensitive effects of TDC2 neurons depended on the time of the day. In particular, light-sensing via visual input pathway led to strong sleep suppression at subjective night, and such an effect disappeared in clock-less mutants. Transgenic mapping revealed that light-induced arousal and free-running behavioral rhythms require distinct groups of circadian pacemaker neurons. These results provide convincing evidence that circadian control of sleep is mediated by the dedicated clock neurons for light-induced arousal.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"37 1-2","pages":"36-46"},"PeriodicalIF":1.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9783262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
TERT distal promoter GC islands are critical for telomerase and together with DNMT3B silencing may serve as a senescence-inducing agent in gliomas. TERT远端启动子GC岛对端粒酶至关重要,与DNMT3B沉默一起可能作为胶质瘤的衰老诱导剂。
IF 1.9 4区 医学 Q3 GENETICS & HEREDITY Pub Date : 2022-09-01 DOI: 10.1080/01677063.2022.2106371
Naz Şerifoğlu, Begün Erbaba, Michelle M Adams, Ayça Arslan-Ergül

Telomerase is reactivated in the majority of cancers. For instance, in gliomas, it is common that the TERT promoter is mutated. Research on telomere promoter GC islands have been focused primarily on proximal TERT promoter but little is known about the distal promoter. Therefore, in this study, we investigated the proximal and distal TERT promoter, in terms of DNA methylation. We did bisulfite sequencing in zebrafish tissue samples for the distal tert promoter. In the zebrafish brain tissues, we identified a hypomethylation site in the tert promoter, and found that this hypomethylation was associated with aging and shortened telomeres. Through site directed mutagenesis in glioma cell lines, we changed 10 GC spots individually, cloned into a reporter vector, and measured promoter activity. Finally, we silenced DNMT3B and measured telomerase activity along with vidaza and adriamycin treatments. Site directed mutagenesis of glioma cell lines revealed that each of the 10 GC spots are critical for telomerase activity. Changing GC to AT abolished promoter activity in all spots when transfected into glioma cell lines. Then, through silencing of DNMT3B, we observed a reduction in hTERT expression levels, while hTR remained the same, and a major increase in senescence-associated beta-galactosidase activity. Finally, we propose a model regarding the efficacy of two chemotherapeutic drugs, adriamycin and azacytidine, on gliomas. Here, we show that distal TERT promoter is critical; changing even one GC to AT abolishes TERT promoter activity. DNMT3B, a de novo methyltransferase, together with GC islands in distal TERT promoter plays an important role in regulation of telomerase expression and senescence.

端粒酶在大多数癌症中被重新激活。例如,在神经胶质瘤中,TERT启动子发生突变是很常见的。对端粒启动子GC岛的研究主要集中在TERT近端启动子上,而对远端启动子知之甚少。因此,在本研究中,我们从DNA甲基化的角度研究了TERT近端启动子和远端启动子。我们在斑马鱼组织样本中对远端启动子进行亚硫酸盐测序。在斑马鱼脑组织中,我们在tert启动子中发现了一个低甲基化位点,并发现这种低甲基化与衰老和端粒缩短有关。通过对胶质瘤细胞系的定点诱变,我们分别改变了10个GC点,克隆成报告载体,并测量了启动子活性。最后,我们沉默DNMT3B并测量端粒酶活性以及维达扎和阿霉素治疗。神经胶质瘤细胞系的定点突变表明,10个GC点中的每一个都对端粒酶活性至关重要。将GC改为AT,转染到胶质瘤细胞系后,所有点的启动子活性都被破坏。然后,通过沉默DNMT3B,我们观察到hTERT表达水平降低,而hTR保持不变,衰老相关的β -半乳糖苷酶活性显著增加。最后,我们提出了一个关于两种化疗药物阿霉素和阿扎胞苷对胶质瘤疗效的模型。在这里,我们表明远端TERT启动子是关键的;即使将一个GC更改为AT也会消除TERT启动子活性。DNMT3B是一种新的甲基转移酶,与TERT远端启动子中的GC岛一起在端粒酶表达和衰老的调控中起重要作用。
{"title":"TERT distal promoter GC islands are critical for telomerase and together with DNMT3B silencing may serve as a senescence-inducing agent in gliomas.","authors":"Naz Şerifoğlu,&nbsp;Begün Erbaba,&nbsp;Michelle M Adams,&nbsp;Ayça Arslan-Ergül","doi":"10.1080/01677063.2022.2106371","DOIUrl":"https://doi.org/10.1080/01677063.2022.2106371","url":null,"abstract":"<p><p>Telomerase is reactivated in the majority of cancers. For instance, in gliomas, it is common that the TERT promoter is mutated. Research on telomere promoter GC islands have been focused primarily on proximal TERT promoter but little is known about the distal promoter. Therefore, in this study, we investigated the proximal and distal TERT promoter, in terms of DNA methylation. We did bisulfite sequencing in zebrafish tissue samples for the distal tert promoter. In the zebrafish brain tissues, we identified a hypomethylation site in the tert promoter, and found that this hypomethylation was associated with aging and shortened telomeres. Through site directed mutagenesis in glioma cell lines, we changed 10 GC spots individually, cloned into a reporter vector, and measured promoter activity. Finally, we silenced DNMT3B and measured telomerase activity along with vidaza and adriamycin treatments. Site directed mutagenesis of glioma cell lines revealed that each of the 10 GC spots are critical for telomerase activity. Changing GC to AT abolished promoter activity in all spots when transfected into glioma cell lines. Then, through silencing of DNMT3B, we observed a reduction in hTERT expression levels, while hTR remained the same, and a major increase in senescence-associated beta-galactosidase activity. Finally, we propose a model regarding the efficacy of two chemotherapeutic drugs, adriamycin and azacytidine, on gliomas. Here, we show that distal TERT promoter is critical; changing even one GC to AT abolishes TERT promoter activity. DNMT3B, a de novo methyltransferase, together with GC islands in distal TERT promoter plays an important role in regulation of telomerase expression and senescence.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"36 4","pages":"89-97"},"PeriodicalIF":1.9,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10477786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of neurogenetics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1