Pub Date : 2021-09-01DOI: 10.1080/01677063.2021.1931179
Megan C Neville, Alexander Eastwood, Aaron M Allen, Ammerins de Haan, Tetsuya Nojima, Stephen F Goodwin
The identification of mutations in the gene fruitless (fru) paved the way for understanding the genetic basis of male sexual behavior in the vinegar fly Drosophila melanogaster. D. melanogaster males perform an elaborate courtship display to the female, ultimately leading to copulation. Mutations in fru have been shown to disrupt most aspects of the male's behavioral display, rendering males behaviorally sterile. The fru genomic locus encodes for multiple transcription factor isoforms from several promoters; only those under the regulation of the most distal P1 promoter are under the control of the sex determination hierarchy and play a role in male-specific behaviors. In this study, we used CRISPR/Cas9-based targeted genome editing of the fru gene, to remove the P1 promoter region. We have shown that removal of the P1 promoter leads to a dramatic decrease in male courtship displays towards females and male-specific sterility. We have expanded the analysis of fru P1-dependent behaviors, examining male's response to courtship song and general activity levels during12-hour light: dark cycles. Our novel allele expands the mutant repertoire available for future studies of fru P1-derived function in D. melanogaster. Our fruΔP1 mutant will be useful for future studies of fru P1-derived function, as it can be homozygosed without disrupting additional downstream promoter function and can be utilized in heterozygous combinations with other extant fru alleles.
{"title":"Generation and characterization of <i>fruitless</i> P1 promoter mutant in <i>Drosophila melanogaster</i>.","authors":"Megan C Neville, Alexander Eastwood, Aaron M Allen, Ammerins de Haan, Tetsuya Nojima, Stephen F Goodwin","doi":"10.1080/01677063.2021.1931179","DOIUrl":"https://doi.org/10.1080/01677063.2021.1931179","url":null,"abstract":"<p><p>The identification of mutations in the gene <i>fruitless</i> (<i>fru</i>) paved the way for understanding the genetic basis of male sexual behavior in the vinegar fly <i>Drosophila melanogaster</i>. <i>D. melanogaster</i> males perform an elaborate courtship display to the female, ultimately leading to copulation. Mutations in <i>fru</i> have been shown to disrupt most aspects of the male's behavioral display, rendering males behaviorally sterile. The <i>fru</i> genomic locus encodes for multiple transcription factor isoforms from several promoters; only those under the regulation of the most distal P1 promoter are under the control of the sex determination hierarchy and play a role in male-specific behaviors. In this study, we used CRISPR/Cas9-based targeted genome editing of the <i>fru</i> gene, to remove the P1 promoter region. We have shown that removal of the P1 promoter leads to a dramatic decrease in male courtship displays towards females and male-specific sterility. We have expanded the analysis of <i>fru</i> P1-dependent behaviors, examining male's response to courtship song and general activity levels during12-hour light: dark cycles. Our novel allele expands the mutant repertoire available for future studies of <i>fru</i> P1-derived function in <i>D. melanogaster</i>. Our <i>fru<sup>ΔP1</sup></i> mutant will be useful for future studies of <i>fru</i> P1-derived function, as it can be homozygosed without disrupting additional downstream promoter function and can be utilized in heterozygous combinations with other extant <i>fru</i> alleles.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"35 3","pages":"285-294"},"PeriodicalIF":1.9,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01677063.2021.1931179","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9311488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01DOI: 10.1080/01677063.2021.1931180
Hongyu Ruan, Wei-Dong Yao
Addiction results from drug-elicited alterations of synaptic plasticity mechanisms in dopaminergic reward circuits. Impaired metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD) and accumulation of synaptic Ca2+-permeable AMPA receptors (CP-AMPARs) following drug exposure have emerged as important mechanisms underlying drug craving and relapse. Here we show that repeated cocaine exposure in vivo causes transient but complete loss of mGluR1- and mTOR (mammalian target of rapamycin)-dependent LTD in layer 5 pyramidal neurons of mouse prefrontal cortex (PFC), a major dopaminergic target in the reward circuitry. This mGluR1-LTD impairment was prevented by in vivo administration of an mGluR1 positive allosteric modulator (PAM) and rescued by inhibition of dopamine D1 receptors, suggesting that impaired mGluR1 tone and excessive D1 signaling underlie this LTD deficit. Concurrently, CP-AMPARs were generated, indicated by increased sensitivity to the CP-AMPAR inhibitor Naspm and rectification of synaptic AMPAR currents, which were reversed by PAM in cocaine-exposed mice. Finally, these CP-AMPARs mediate an abnormal spike-timing-dependent long-term potentiation enabled by cocaine exposure. Our findings reveal a mechanism by which cocaine impairs LTD and remodels synaptic AMPARs to influence Hebbian plasticity in the PFC. Failure to undergo LTD may prevent the reversal of drug-potentiated brain circuits to their baseline states, perpetuating addictive behaviors.HIGHLIGHTSA mGluR1- and mTOR-dependent LTD is present in the mouse medial prefrontal cortex.Repeated cocaine exposure in vivo temporally but completely abolishes prefrontal mGluR1-LTD.Impaired mGluR1 function and excessive D1 DA signaling likely underlie cocaine impairment of mGluR1-LTD.Ca2+-permeable AMPA receptors are generated by cocaine exposure, likely resulting from mGluR1-LTD impairment, and contribute to a cocaine-induced extended spike timing LTP.
{"title":"Loss of mGluR1-LTD following cocaine exposure accumulates Ca<sup>2+</sup>-permeable AMPA receptors and facilitates synaptic potentiation in the prefrontal cortex.","authors":"Hongyu Ruan, Wei-Dong Yao","doi":"10.1080/01677063.2021.1931180","DOIUrl":"https://doi.org/10.1080/01677063.2021.1931180","url":null,"abstract":"<p><p>Addiction results from drug-elicited alterations of synaptic plasticity mechanisms in dopaminergic reward circuits. Impaired metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD) and accumulation of synaptic Ca<sup>2+</sup>-permeable AMPA receptors (CP-AMPARs) following drug exposure have emerged as important mechanisms underlying drug craving and relapse. Here we show that repeated cocaine exposure in vivo causes transient but complete loss of mGluR1- and mTOR (mammalian target of rapamycin)-dependent LTD in layer 5 pyramidal neurons of mouse prefrontal cortex (PFC), a major dopaminergic target in the reward circuitry. This mGluR1-LTD impairment was prevented by in vivo administration of an mGluR1 positive allosteric modulator (PAM) and rescued by inhibition of dopamine D1 receptors, suggesting that impaired mGluR1 tone and excessive D1 signaling underlie this LTD deficit. Concurrently, CP-AMPARs were generated, indicated by increased sensitivity to the CP-AMPAR inhibitor Naspm and rectification of synaptic AMPAR currents, which were reversed by PAM in cocaine-exposed mice. Finally, these CP-AMPARs mediate an abnormal spike-timing-dependent long-term potentiation enabled by cocaine exposure. Our findings reveal a mechanism by which cocaine impairs LTD and remodels synaptic AMPARs to influence Hebbian plasticity in the PFC. Failure to undergo LTD may prevent the reversal of drug-potentiated brain circuits to their baseline states, perpetuating addictive behaviors.HIGHLIGHTSA mGluR1- and mTOR-dependent LTD is present in the mouse medial prefrontal cortex.Repeated cocaine exposure <i>in vivo</i> temporally but completely abolishes prefrontal mGluR1-LTD.Impaired mGluR1 function and excessive D1 DA signaling likely underlie cocaine impairment of mGluR1-LTD.Ca<sup>2+</sup>-permeable AMPA receptors are generated by cocaine exposure, likely resulting from mGluR1-LTD impairment, and contribute to a cocaine-induced extended spike timing LTP.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"35 4","pages":"358-369"},"PeriodicalIF":1.9,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01677063.2021.1931180","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10441038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01Epub Date: 2020-11-09DOI: 10.1080/01677063.2020.1833005
David R Andrew, Mariah E Moe, Dailu Chen, Judith A Tello, Rachel L Doser, William E Conner, Jaswinder K Ghuman, Linda L Restifo
Mutations in hundreds of genes cause neurodevelopmental disorders with abnormal motor behavior alongside cognitive deficits. Boys with fragile X syndrome (FXS), a leading monogenic cause of intellectual disability, often display repetitive behaviors, a core feature of autism. By direct observation and manual analysis, we characterized spontaneous-motor-behavior phenotypes of Drosophila dfmr1 mutants, an established model for FXS. We recorded individual 1-day-old adult flies, with mature nervous systems and prior to the onset of aging, in small arenas. We scored behavior using open-source video-annotation software to generate continuous activity timelines, which were represented graphically and quantitatively. Young dfmr1 mutants spent excessive time grooming, with increased bout number and duration; both were rescued by transgenic wild-type dfmr1+. By two grooming-pattern measures, dfmr1-mutant flies showed elevated repetitions consistent with perseveration, which is common in FXS. In addition, the mutant flies display a preference for grooming posterior body structures, and an increased rate of grooming transitions from one site to another. We raise the possibility that courtship and circadian rhythm defects, previously reported for dfmr1 mutants, are complicated by excessive grooming. We also observed significantly increased grooming in CASK mutants, despite their dramatically decreased walking phenotype. The mutant flies, a model for human CASK-related neurodevelopmental disorders, displayed consistently elevated grooming indices throughout the assay, but transient locomotory activation immediately after placement in the arena. Based on published data identifying FMRP-target transcripts and functional analyses of mutations causing human genetic neurodevelopmental disorders, we propose the following proteins as candidate mediators of excessive repetitive behaviors in FXS: CaMKIIα, NMDA receptor subunits 2A and 2B, NLGN3, and SHANK3. Together, these fly-mutant phenotypes and mechanistic insights provide starting points for drug discovery to identify compounds that reduce dysfunctional repetitive behaviors.
{"title":"Spontaneous motor-behavior abnormalities in two <i>Drosophila</i> models of neurodevelopmental disorders.","authors":"David R Andrew, Mariah E Moe, Dailu Chen, Judith A Tello, Rachel L Doser, William E Conner, Jaswinder K Ghuman, Linda L Restifo","doi":"10.1080/01677063.2020.1833005","DOIUrl":"https://doi.org/10.1080/01677063.2020.1833005","url":null,"abstract":"<p><p>Mutations in hundreds of genes cause neurodevelopmental disorders with abnormal motor behavior alongside cognitive deficits. Boys with fragile X syndrome (FXS), a leading monogenic cause of intellectual disability, often display repetitive behaviors, a core feature of autism. By direct observation and manual analysis, we characterized spontaneous-motor-behavior phenotypes of <i>Drosophila dfmr1</i> mutants, an established model for FXS. We recorded individual 1-day-old adult flies, with mature nervous systems and prior to the onset of aging, in small arenas. We scored behavior using open-source video-annotation software to generate continuous activity timelines, which were represented graphically and quantitatively. Young <i>dfmr1</i> mutants spent excessive time grooming, with increased bout number and duration; both were rescued by transgenic wild-type <i>dfmr1<sup>+</sup></i>. By two grooming-pattern measures, <i>dfmr1</i>-mutant flies showed elevated repetitions consistent with perseveration, which is common in FXS. In addition, the mutant flies display a preference for grooming posterior body structures, and an increased rate of grooming transitions from one site to another. We raise the possibility that courtship and circadian rhythm defects, previously reported for <i>dfmr1</i> mutants, are complicated by excessive grooming. We also observed significantly increased grooming in <i>CASK</i> mutants, despite their dramatically decreased walking phenotype. The mutant flies, a model for human <i>CASK</i>-related neurodevelopmental disorders, displayed consistently elevated grooming indices throughout the assay, but transient locomotory activation immediately after placement in the arena. Based on published data identifying FMRP-target transcripts and functional analyses of mutations causing human genetic neurodevelopmental disorders, we propose the following proteins as candidate mediators of excessive repetitive behaviors in FXS: CaMKIIα, NMDA receptor subunits 2A and 2B, NLGN3, and SHANK3. Together, these fly-mutant phenotypes and mechanistic insights provide starting points for drug discovery to identify compounds that reduce dysfunctional repetitive behaviors.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"35 1","pages":"1-22"},"PeriodicalIF":1.9,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01677063.2020.1833005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38583553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01Epub Date: 2021-04-06DOI: 10.1080/01677063.2021.1892094
Antonio Gennaro Nicotera, Daniela Dicanio, Erica Pironti, Maria Bonsignore, Anna Cafeo, Stephanie Efthymiou, Patrizia Mondello, Vincenzo Salpietro, Henry Houlden, Gabriella Di Rosa
The SLC25A22 (Solute Carrier Family 25, Member 22) gene encodes for a mitochondrial glutamate/H+ symporter and is involved in the mitochondrial transport of metabolites across the mitochondrial membrane. We hereby report a 12-year-old girl presenting with early-onset epileptic encephalopathy, hypotonia, and global developmental delay. Whole exome sequencing identified a novel homozygous missense mutation in SLC25A22 gene (c.97A>G; p.Lys33Glu), as the likely cause of the disease. The phenotype of our patient and EEG recordings do not completely overlap with the phenotypes previously described, leading to a new and more complex form of disease associated with SLC25A22 variants, characterized by dyskinetic movements and oculogyric crisis.
{"title":"De novo mutation in <i>SLC25A22</i> gene: expansion of the clinical and electroencephalographic phenotype.","authors":"Antonio Gennaro Nicotera, Daniela Dicanio, Erica Pironti, Maria Bonsignore, Anna Cafeo, Stephanie Efthymiou, Patrizia Mondello, Vincenzo Salpietro, Henry Houlden, Gabriella Di Rosa","doi":"10.1080/01677063.2021.1892094","DOIUrl":"https://doi.org/10.1080/01677063.2021.1892094","url":null,"abstract":"<p><p>The <i>SLC25A22</i> (Solute Carrier Family 25, Member 22) gene encodes for a mitochondrial glutamate/H<sup>+</sup> symporter and is involved in the mitochondrial transport of metabolites across the mitochondrial membrane. We hereby report a 12-year-old girl presenting with early-onset epileptic encephalopathy, hypotonia, and global developmental delay. Whole exome sequencing identified a novel homozygous missense mutation in <i>SLC25A22</i> gene (c.97A>G; p.Lys33Glu), as the likely cause of the disease. The phenotype of our patient and EEG recordings do not completely overlap with the phenotypes previously described, leading to a new and more complex form of disease associated with <i>SLC25A22</i> variants, characterized by dyskinetic movements and oculogyric crisis.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"35 2","pages":"67-73"},"PeriodicalIF":1.9,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01677063.2021.1892094","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25563588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01Epub Date: 2021-04-07DOI: 10.1080/01677063.2021.1904922
Meltem Cerrah Gunes, Murat Salih Gunes, Alperen Vural, Fatma Aybuga, Arslan Bayram, Keziban Korkmaz Bayram, Mehmet Ilhan Sahin, Muhammet Ensar Dogan, Sevda Yesim Ozdemir, Yusuf Ozkul
The characteristic feature of noise-induced hearing loss (NIHL) is the loss or malfunction of the outer hair cells (OHC) and the inner hair cells (IHC) of the cochlea. 90-95% of the spiral ganglion neurons, forming the cell bodies of cochlear nerve, synapse with the IHCs. Glutamate is the most potent excitatory neurotransmitter for IHC-auditory nerve synapses. Excessive release of glutamate in response to acoustic trauma (AT), may cause excitotoxicity by causing damage to the spiral ganglion neurons (SGN) or loss of the spiral ganglion dendrites, post-synaptic to the IHCs. Another neurotransmitter, GABA, plays an important role in the processing of acoustic stimuli and central regulation after peripheral injury, so it is potentially related to the regulation of hearing function and sensitivity after noise. The aim of this study is to evaluate the effect of AT on the expressions of glutamate excitotoxicity, GABA inhibition and neurosteroid synthesis genes.We exposed 24 BALB/c mice to AT. Controls were sacrificed without exposure to noise, Post-AT(1) and Post-AT(15) were sacrificed on the 1st and 15th day, respectively, after noise exposure. The expressions of various genes playing roles in glutamate, GABA and neurosteroid pathways were compared between groups by real-time PCR.Expressions of Cyp11a1, Gls, Gabra1, Grin2b, Sult1a1, Gad1, and Slc1a2 genes in Post-AT(15) mice were significantly decreased in comparison to control and Post-AT(1) mice. No significant differences in the expression of Slc6a1 and Slc17a8 genes was detected.These findings support the possible role of balance between glutamate excitotoxicity and GABA inhibition is disturbed during the post AT days and also the synthesis of some neurosteroids such as pregnenolone sulfate may be important in this balance.
{"title":"Change in gene expression levels of GABA, glutamate and neurosteroid pathways due to acoustic trauma in the cochlea.","authors":"Meltem Cerrah Gunes, Murat Salih Gunes, Alperen Vural, Fatma Aybuga, Arslan Bayram, Keziban Korkmaz Bayram, Mehmet Ilhan Sahin, Muhammet Ensar Dogan, Sevda Yesim Ozdemir, Yusuf Ozkul","doi":"10.1080/01677063.2021.1904922","DOIUrl":"https://doi.org/10.1080/01677063.2021.1904922","url":null,"abstract":"<p><p>The characteristic feature of noise-induced hearing loss (NIHL) is the loss or malfunction of the outer hair cells (OHC) and the inner hair cells (IHC) of the cochlea. 90-95% of the spiral ganglion neurons, forming the cell bodies of cochlear nerve, synapse with the IHCs. Glutamate is the most potent excitatory neurotransmitter for IHC-auditory nerve synapses. Excessive release of glutamate in response to acoustic trauma (AT), may cause excitotoxicity by causing damage to the spiral ganglion neurons (SGN) or loss of the spiral ganglion dendrites, post-synaptic to the IHCs. Another neurotransmitter, GABA, plays an important role in the processing of acoustic stimuli and central regulation after peripheral injury, so it is potentially related to the regulation of hearing function and sensitivity after noise. The aim of this study is to evaluate the effect of AT on the expressions of glutamate excitotoxicity, GABA inhibition and neurosteroid synthesis genes.We exposed 24 BALB/c mice to AT. Controls were sacrificed without exposure to noise, Post-AT(1) and Post-AT(15) were sacrificed on the 1st and 15th day, respectively, after noise exposure. The expressions of various genes playing roles in glutamate, GABA and neurosteroid pathways were compared between groups by real-time PCR.Expressions of <i>Cyp11a1</i>, <i>Gls</i>, <i>Gabra1</i>, <i>Grin2b</i>, <i>Sult1a1</i>, <i>Gad1,</i> and <i>Slc1a2</i> genes in Post-AT(15) mice were significantly decreased in comparison to control and Post-AT(1) mice. No significant differences in the expression of <i>Slc6a1</i> and <i>Slc17a8</i> genes was detected.These findings support the possible role of balance between glutamate excitotoxicity and GABA inhibition is disturbed during the post AT days and also the synthesis of some neurosteroids such as pregnenolone sulfate may be important in this balance.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"35 1","pages":"45-57"},"PeriodicalIF":1.9,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01677063.2021.1904922","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25568122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous neurodegenerative disorder, characterized by lower-limb spasticity and weakness. To date, more than 82 loci/genes (SPG1-SPG82) have been identified that contribute to the cause of HSP. Despite the use of next-generation sequencing-based methods, genetic-analysis has failed in the finding of causative genes in more than 50% of HSP patients, indicating a more significant heterogeneity and absence of a given phenotype-genotype correlation. Here, we performed whole-exome sequencing (WES) to identify HSP-causing genes in three unrelated-Iranian probands. Candidate variants were detected and confirmed in the probands and co-segregated in the family members. The phenotypic data gathered and compared with earlier cases with the same sub-types of disease. Three novel homozygous variants, c.978delT; p.Q327Kfs*39, c.A1208G; p.D403G and c.3811delT; p.S1271Lfs*44, in known HSP-causing genes including ENTPD1, CYP7B1, and ZFYVE26 were identified, respectively. Intra and interfamilial clinical variability were observed among affected individuals. Mutations in CYP7B1 and ZFYVE26 are relatively common causes of HSP and associated with SPG5A and SPG15, respectively. However, mutations in ENTPD1 are related to SPG64 which is an ultra-rare form of HSP. The research affirmed more complexities of phenotypic manifestations and allelic heterogeneity in HSP. Due to these complexities, it is not feasible to show a clear phenotype-genotype correlation in HSP cases. Identification of more families with mutations in HSP-causing genes may help the establishment of this correlation, further understanding of the molecular basis of the disease, and would provide an opportunity for genetic-counseling in these families.
{"title":"Description of clinical features and genetic analysis of one ultra-rare (SPG64) and two common forms (SPG5A and SPG15) of hereditary spastic paraplegia families.","authors":"Mahdieh Pashaei, Atefeh Davarzani, Reza Hajati, Babak Zamani, Shahriar Nafissi, Farzaneh Larti, Yalda Nilipour, Mohammad Rohani, Afagh Alavi","doi":"10.1080/01677063.2021.1895146","DOIUrl":"https://doi.org/10.1080/01677063.2021.1895146","url":null,"abstract":"<p><p>Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous neurodegenerative disorder, characterized by lower-limb spasticity and weakness. To date, more than 82 loci/genes (SPG1-SPG82) have been identified that contribute to the cause of HSP. Despite the use of next-generation sequencing-based methods, genetic-analysis has failed in the finding of causative genes in more than 50% of HSP patients, indicating a more significant heterogeneity and absence of a given phenotype-genotype correlation. Here, we performed whole-exome sequencing (WES) to identify HSP-causing genes in three unrelated-Iranian probands. Candidate variants were detected and confirmed in the probands and co-segregated in the family members. The phenotypic data gathered and compared with earlier cases with the same sub-types of disease. Three novel homozygous variants, c.978delT; p.Q327Kfs*39, c.A1208G; p.D403G and c.3811delT; p.S1271Lfs*44, in known HSP-causing genes including <i>ENTPD1</i>, <i>CYP7B1</i>, and <i>ZFYVE26</i> were identified, respectively. Intra and interfamilial clinical variability were observed among affected individuals. Mutations in <i>CYP7B1</i> and <i>ZFYVE26</i> are relatively common causes of HSP and associated with SPG5A and SPG15, respectively. However, mutations in <i>ENTPD1</i> are related to SPG64 which is an ultra-rare form of HSP. The research affirmed more complexities of phenotypic manifestations and allelic heterogeneity in HSP. Due to these complexities, it is not feasible to show a clear phenotype-genotype correlation in HSP cases. Identification of more families with mutations in HSP-causing genes may help the establishment of this correlation, further understanding of the molecular basis of the disease, and would provide an opportunity for genetic-counseling in these families.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"35 2","pages":"84-94"},"PeriodicalIF":1.9,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01677063.2021.1895146","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25520610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01Epub Date: 2021-05-10DOI: 10.1080/01677063.2021.1892095
Elizabeth A Burke, Morgan Sturgeon, Diane B Zastrow, Liliana Fernandez, Cameron Prybol, Shruti Marwaha, Edward P Frothingham, Patricia A Ward, Christine M Eng, Laure Fresard, Stephen B Montgomery, Gregory M Enns, Paul G Fisher, Lynne A Wolfe, Brian Harding, Blake Carrington, Kevin Bishop, Raman Sood, Yan Huang, Abdel Elkahloun, Camilo Toro, Alexander G Bassuk, Matthew T Wheeler, Thomas C Markello, William A Gahl, May Christine V Malicdan
KCTD7 is a member of the potassium channel tetramerization domain-containing protein family and has been associated with progressive myoclonic epilepsy (PME), characterized by myoclonus, epilepsy, and neurological deterioration. Here we report four affected individuals from two unrelated families in which we identified KCTD7 compound heterozygous single nucleotide variants through exome sequencing. RNAseq was used to detect a non-annotated splicing junction created by a synonymous variant in the second family. Whole-cell patch-clamp analysis of neuroblastoma cells overexpressing the patients' variant alleles demonstrated aberrant potassium regulation. While all four patients experienced many of the common clinical features of PME, they also showed variable phenotypes not previously reported, including dysautonomia, brain pathology findings including a significantly reduced thalamus, and the lack of myoclonic seizures. To gain further insight into the pathogenesis of the disorder, zinc finger nucleases were used to generate kctd7 knockout zebrafish. Kctd7 homozygous mutants showed global dysregulation of gene expression and increased transcription of c-fos, which has previously been correlated with seizure activity in animal models. Together these findings expand the known phenotypic spectrum of KCTD7-associated PME, report a new animal model for future studies, and contribute valuable insights into the disease.
{"title":"Compound heterozygous <i>KCTD7</i> variants in progressive myoclonus epilepsy.","authors":"Elizabeth A Burke, Morgan Sturgeon, Diane B Zastrow, Liliana Fernandez, Cameron Prybol, Shruti Marwaha, Edward P Frothingham, Patricia A Ward, Christine M Eng, Laure Fresard, Stephen B Montgomery, Gregory M Enns, Paul G Fisher, Lynne A Wolfe, Brian Harding, Blake Carrington, Kevin Bishop, Raman Sood, Yan Huang, Abdel Elkahloun, Camilo Toro, Alexander G Bassuk, Matthew T Wheeler, Thomas C Markello, William A Gahl, May Christine V Malicdan","doi":"10.1080/01677063.2021.1892095","DOIUrl":"https://doi.org/10.1080/01677063.2021.1892095","url":null,"abstract":"<p><p>KCTD7 is a member of the potassium channel tetramerization domain-containing protein family and has been associated with progressive myoclonic epilepsy (PME), characterized by myoclonus, epilepsy, and neurological deterioration. Here we report four affected individuals from two unrelated families in which we identified <i>KCTD7</i> compound heterozygous single nucleotide variants through exome sequencing. RNAseq was used to detect a non-annotated splicing junction created by a synonymous variant in the second family. Whole-cell patch-clamp analysis of neuroblastoma cells overexpressing the patients' variant alleles demonstrated aberrant potassium regulation. While all four patients experienced many of the common clinical features of PME, they also showed variable phenotypes not previously reported, including dysautonomia, brain pathology findings including a significantly reduced thalamus, and the lack of myoclonic seizures. To gain further insight into the pathogenesis of the disorder, zinc finger nucleases were used to generate <i>kctd7</i> knockout zebrafish. <i>Kctd7</i> homozygous mutants showed global dysregulation of gene expression and increased transcription of <i>c-fos</i>, which has previously been correlated with seizure activity in animal models. Together these findings expand the known phenotypic spectrum of <i>KCTD7</i>-associated PME, report a new animal model for future studies, and contribute valuable insights into the disease.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"35 2","pages":"74-83"},"PeriodicalIF":1.9,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01677063.2021.1892095","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38967602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Spinal muscular atrophy (SMA) is a common autosomal recessive disorder which has been considered as the second common cause of infant death, with an estimated prevalence of 1 in 10,000 live births. The disorder is caused by survival motor neuron 1 gene (SMN1) deficiency leading to limb weakness, difficult swallowing and abnormal breathing. Here, a fast and accurate method for SMA detection has been developed. Genomic DNA sample collected from whole blood, amniotic fluid, or dried blood spots can be analysed by using the Clarity™ Digital PCR (dPCR) System for determining the copy numbers of SMN1 and SMN2 genes. Two hundred and fourteen clinical samples determined by qPCR-based method were enrolled and used to establish the cut-off ranges for unaffected individual, SMA carrier and SMA patient categories. After setting the cut-off range for each group, 12 samples were analyzed by both dPCR-based method and MLPA (multiplex ligation-dependent probe amplification), the current testing golden standard for SMA, and 100% concordant results between the two testing methods were performed. CSB SMA Detection Kit combined with dPCR platform provides a robust and precise approach to distinguish unaffected individuals, SMA carrier and SMA patients. This rapid molecular diagnostic method can be adapted to pre-pregnancy eugenics inspection, prenatal testing as well as newborns screening and help physicians or genetic counselors to improve population SMA incidence.
{"title":"A rapid molecular diagnostic method for spinal muscular atrophy.","authors":"Kai-Chen Wang, Chiao-Yuan Fang, Chi-Chang Chang, Chien-Kuan Chiang, Yi-Wen Chen","doi":"10.1080/01677063.2020.1853721","DOIUrl":"https://doi.org/10.1080/01677063.2020.1853721","url":null,"abstract":"<p><p>Spinal muscular atrophy (SMA) is a common autosomal recessive disorder which has been considered as the second common cause of infant death, with an estimated prevalence of 1 in 10,000 live births. The disorder is caused by survival motor neuron 1 gene (<i>SMN1</i>) deficiency leading to limb weakness, difficult swallowing and abnormal breathing. Here, a fast and accurate method for SMA detection has been developed. Genomic DNA sample collected from whole blood, amniotic fluid, or dried blood spots can be analysed by using the Clarity™ Digital PCR (dPCR) System for determining the copy numbers of <i>SMN1</i> and <i>SMN2</i> genes. Two hundred and fourteen clinical samples determined by qPCR-based method were enrolled and used to establish the cut-off ranges for unaffected individual, SMA carrier and SMA patient categories. After setting the cut-off range for each group, 12 samples were analyzed by both dPCR-based method and MLPA (multiplex ligation-dependent probe amplification), the current testing golden standard for SMA, and 100% concordant results between the two testing methods were performed. CSB SMA Detection Kit combined with dPCR platform provides a robust and precise approach to distinguish unaffected individuals, SMA carrier and SMA patients. This rapid molecular diagnostic method can be adapted to pre-pregnancy eugenics inspection, prenatal testing as well as newborns screening and help physicians or genetic counselors to improve population SMA incidence.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"35 1","pages":"29-32"},"PeriodicalIF":1.9,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01677063.2020.1853721","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38725268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01Epub Date: 2020-11-20DOI: 10.1080/01677063.2020.1833006
Ahmet Okay Caglayan, Kourosh Yaghouti, Tanyel Kockaya, Demet Kemer, Tufan Cankaya, Najim Ameziane, Ozgur Cogulu, Mahmut Coker, Cengiz Yalcinkaya
To date, less than 10 pedigrees have been reported with ZNF335 mutations since it was discovered in 2012 and little is known about ZNF335-related clinical spectrum. We describe a 12 years old male patient who is only child of nonconsanguineous Turkish parents. Trio whole genome sequencing identified previously unreported compound heterozygous variants in ZNF335, namely, c.3889T > A p.(Ser1297Thr) and c.758G > A p.(Arg253Gln) where transmitted by his father and mother, respectively. Patient' magnetic resonance imaging findings were overlapping to those observed in the previous cases with ZNF335 mutations. Here we report the oldest patient with biallelic ZNF335 mutations. We recommend screening for ZNF335 defects in patients with basal ganglia anomaly, secondary white matter abnormalities and microcephaly.
自2012年发现ZNF335突变以来,迄今为止,只有不到10个家系报道了ZNF335突变,并且对ZNF335相关的临床谱知之甚少。我们描述了一个12岁的男性患者谁是唯一的孩子非近亲土耳其父母。三人全基因组测序结果显示,ZNF335的复合杂合变异为c.3889T > A p.(Ser1297Thr)和c.758G > A p.(Arg253Gln),分别由父亲和母亲遗传。患者的磁共振成像结果与先前ZNF335突变病例的观察结果重叠。在这里,我们报告了年龄最大的双等位基因ZNF335突变患者。我们建议在基底神经节异常、继发性白质异常和小头畸形患者中筛查ZNF335缺陷。
{"title":"<i>Biallelic ZNF335</i> mutations cause basal ganglia abnormality with progressive cerebral/cerebellar atrophy.","authors":"Ahmet Okay Caglayan, Kourosh Yaghouti, Tanyel Kockaya, Demet Kemer, Tufan Cankaya, Najim Ameziane, Ozgur Cogulu, Mahmut Coker, Cengiz Yalcinkaya","doi":"10.1080/01677063.2020.1833006","DOIUrl":"https://doi.org/10.1080/01677063.2020.1833006","url":null,"abstract":"<p><p>To date, less than 10 pedigrees have been reported with <i>ZNF335</i> mutations since it was discovered in 2012 and little is known about ZNF335-related clinical spectrum. We describe a 12 years old male patient who is only child of nonconsanguineous Turkish parents. Trio whole genome sequencing identified previously unreported compound heterozygous variants in <i>ZNF335</i>, namely, c.3889T > A p.(Ser1297Thr) and c.758G > A p.(Arg253Gln) where transmitted by his father and mother, respectively. Patient' magnetic resonance imaging findings were overlapping to those observed in the previous cases with <i>ZNF335</i> mutations. Here we report the oldest patient with biallelic <i>ZNF335</i> mutations. We recommend screening for ZNF335 defects in patients with basal ganglia anomaly, secondary white matter abnormalities and microcephaly.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"35 1","pages":"23-28"},"PeriodicalIF":1.9,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01677063.2020.1833006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38627967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01Epub Date: 2021-05-10DOI: 10.1080/01677063.2020.1866569
David Curtis
Variants in APOE are associated with risk of late onset Alzheimer's disease (LOAD) but the magnitude of the effect has been reported to vary across ancestries. Also, other variants in the region have been reported to show association though it has been unclear whether this was secondary to their linkage disequilibrium with the APOE variants rs429358 and rs7412. Previous analyses of exome-sequenced samples have identified other genes in which rare variants impact risk of disease. In this study 2000 whole genome sequenced cases and controls with different ancestries were subjected to gene-based weighted burden analysis to identify risk genes. Additionally, individual variants in the APOE region were tested for association with LOAD. When using the APOE variants as covariates no individual genes showed statistically significant evidence for association after Bonferroni correction for multiple testing, which may well be a consequence of the modest sample size. Likewise, for those variants initially showing evidence of association with LOAD incorporating the APOE variants as covariates dramatically reduced the strength of association. These results demonstrate that the differential association of APOE across ancestries does not appear to be driven by another variant in the region. It seems likely that no other genes in the region have a direct effect on LOAD risk.
{"title":"Analysis of whole genome sequenced cases and controls shows that the association of variants in <i>TOMM40</i>, <i>BCAM</i>, <i>NECTIN2</i> and <i>APOC1</i> with late onset Alzheimer's disease is driven by linkage disequilibrium with <i>APOE</i> ε2/ε3/ε4 alleles.","authors":"David Curtis","doi":"10.1080/01677063.2020.1866569","DOIUrl":"10.1080/01677063.2020.1866569","url":null,"abstract":"<p><p>Variants in <i>APOE</i> are associated with risk of late onset Alzheimer's disease (LOAD) but the magnitude of the effect has been reported to vary across ancestries. Also, other variants in the region have been reported to show association though it has been unclear whether this was secondary to their linkage disequilibrium with the <i>APOE</i> variants rs429358 and rs7412. Previous analyses of exome-sequenced samples have identified other genes in which rare variants impact risk of disease. In this study 2000 whole genome sequenced cases and controls with different ancestries were subjected to gene-based weighted burden analysis to identify risk genes. Additionally, individual variants in the <i>APOE</i> region were tested for association with LOAD. When using the <i>APOE</i> variants as covariates no individual genes showed statistically significant evidence for association after Bonferroni correction for multiple testing, which may well be a consequence of the modest sample size. Likewise, for those variants initially showing evidence of association with LOAD incorporating the <i>APOE</i> variants as covariates dramatically reduced the strength of association. These results demonstrate that the differential association of <i>APOE</i> across ancestries does not appear to be driven by another variant in the region. It seems likely that no other genes in the region have a direct effect on LOAD risk.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"35 2","pages":"59-66"},"PeriodicalIF":1.9,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38977590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}