Pub Date : 2020-07-01DOI: 10.22052/JNS.2020.03.003
M. Khodaei
During the last decade, mechanochemical synthesis, which can provide the nanostructured constituents, has been considered as an alternative technique to the conventional thermite reactions to produce the metallic-ceramic composite. Detection of the reinforcement in such nanocomposite powders has been provided challenges as a result of low volume fraction and high induced lattice strain. In this work, the mechanochemical reaction of a non-stoichiometry Fe2O3-Al system (Fe2O3+Al+Fe powder mixture) was performed to produce the Fe3Al-30 vol.% Al2O3 nanocomposite. The progress of the reaction was followed by X-ray diffractometry (XRD) and transmission electron microscopy (TEM). XRD analysis of mechanochemically synthesized Fe3Al-30 vol.% Al2O3 nanocomposite showed no evidence of the produced Al2O3 phase, whereas TEM analysis revealed the crystalline Al2O3 phase. The X-ray absorption by component higher mass absorption coefficient (Fe3Al matrix) in highly strained nanocomposite leads to a decrease in the diffraction intensity of components with lower mass absorption coefficient and with low volume fraction (Al2O3). High-temperature heat treatment lead to crystallite growth as well as lattice strain reducing, which resulted in the capability of detection of Al2O3 by XRD analysis.
{"title":"Characterization of Al2O3 in Fe3Al-30 vol.% Al2O3 nanocomposite powder synthesized by mechanochemical process","authors":"M. Khodaei","doi":"10.22052/JNS.2020.03.003","DOIUrl":"https://doi.org/10.22052/JNS.2020.03.003","url":null,"abstract":"During the last decade, mechanochemical synthesis, which can provide the nanostructured constituents, has been considered as an alternative technique to the conventional thermite reactions to produce the metallic-ceramic composite. Detection of the reinforcement in such nanocomposite powders has been provided challenges as a result of low volume fraction and high induced lattice strain. In this work, the mechanochemical reaction of a non-stoichiometry Fe2O3-Al system (Fe2O3+Al+Fe powder mixture) was performed to produce the Fe3Al-30 vol.% Al2O3 nanocomposite. The progress of the reaction was followed by X-ray diffractometry (XRD) and transmission electron microscopy (TEM). XRD analysis of mechanochemically synthesized Fe3Al-30 vol.% Al2O3 nanocomposite showed no evidence of the produced Al2O3 phase, whereas TEM analysis revealed the crystalline Al2O3 phase. The X-ray absorption by component higher mass absorption coefficient (Fe3Al matrix) in highly strained nanocomposite leads to a decrease in the diffraction intensity of components with lower mass absorption coefficient and with low volume fraction (Al2O3). High-temperature heat treatment lead to crystallite growth as well as lattice strain reducing, which resulted in the capability of detection of Al2O3 by XRD analysis.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"456-462"},"PeriodicalIF":1.4,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47999609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.22052/JNS.2020.03.011
F. Fahma, N. Lisdayana, Belladini Lovely, I. Febiyanti, D. Noviana, Y. W. Sari, M. Yunus, A. Kusumaatmaja, R. Mukti, G. Kadja
Some researchers have reported the successful experiments to produce nanocellulose-based filaments by several spinning methods, including wet spinning and dry spinning. The addition of nanocellulose to the composites was found to improve the mechanical and thermal properties of produced filaments or continuous fibers. However, there are several parameters of spinning that needs to be considered to achieve better quality of filaments, including high aspect ratio of nanocellulose, low viscosity of dope (low solid content), high shear rate in the spinneret, and high draw ratio. This review article focuses on brief explanation of cellulose structure and how to isolate nanocellulose, nanocellulose-based filaments by wet spinning and dry spinning methods, characteristics of wet and dry spun fibers, as well as parameters that affect spinning process. For example, the strength of filament was attributed to the aspect ratio or slenderness and crystallinity of nanocellulose. Further details of the potential application of nanocellulose for filament production is presented here as the reference for application in textile, medical, and other fields.
{"title":"Potential Application of Nanocellulose for Filaments Production: A Review","authors":"F. Fahma, N. Lisdayana, Belladini Lovely, I. Febiyanti, D. Noviana, Y. W. Sari, M. Yunus, A. Kusumaatmaja, R. Mukti, G. Kadja","doi":"10.22052/JNS.2020.03.011","DOIUrl":"https://doi.org/10.22052/JNS.2020.03.011","url":null,"abstract":"Some researchers have reported the successful experiments to produce nanocellulose-based filaments by several spinning methods, including wet spinning and dry spinning. The addition of nanocellulose to the composites was found to improve the mechanical and thermal properties of produced filaments or continuous fibers. However, there are several parameters of spinning that needs to be considered to achieve better quality of filaments, including high aspect ratio of nanocellulose, low viscosity of dope (low solid content), high shear rate in the spinneret, and high draw ratio. This review article focuses on brief explanation of cellulose structure and how to isolate nanocellulose, nanocellulose-based filaments by wet spinning and dry spinning methods, characteristics of wet and dry spun fibers, as well as parameters that affect spinning process. For example, the strength of filament was attributed to the aspect ratio or slenderness and crystallinity of nanocellulose. Further details of the potential application of nanocellulose for filament production is presented here as the reference for application in textile, medical, and other fields.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"553-563"},"PeriodicalIF":1.4,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44635994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.22052/JNS.2020.03.007
M. Ramadan, M. Baloğlu, Y. C. Altunoglu, F. Kandemirli, Hakan Burhan, A. Aygün, H. Sayiner, F. Ozyigit, F. Sen
Isatin based materials can exhibit a wide range of biological activities including antimicrobial, antiviral, antifungal, anthelmintic, antitumor, anti-HIV, anti-inflammatory, antidepressant, antioxidant, anticonvulsant, antitubercular, analgesic, and central nervous system depressant activities. In this study, four compounds containing 5-Fluoro-isatin thiosemicarbazone with methoxyphenyl or methoxyphenyl in different positions and zinc complexes were evaluated based on their biological activities. Compound 2 was the strongest compound affecting gram-negative bacteria compared to the other compounds. Also, this compound indicated better antimicrobial activity than positive control antibiotics. Besides, compound 3 was the only compound that inhibited the growth of Salmonella spp. such as Salmonella enteritidis ATCC 13076 and Salmonella typhimurium NRRLE 4463. 5-Fluoro-Isatin thiosemicarbazone and its derivatives also showed DNA protection property from moderate to good protections. Among them, compound 4 displayed the highest DNA binding affinity. These compounds possessed a capacity for utilization as drugs or drug additives based on their effects on bacteria strains and DNA binding affinity.
{"title":"Evaluation of Biological Activity of 5-Fluoro-Isatin Thiosemicarbazone Derivatives","authors":"M. Ramadan, M. Baloğlu, Y. C. Altunoglu, F. Kandemirli, Hakan Burhan, A. Aygün, H. Sayiner, F. Ozyigit, F. Sen","doi":"10.22052/JNS.2020.03.007","DOIUrl":"https://doi.org/10.22052/JNS.2020.03.007","url":null,"abstract":"Isatin based materials can exhibit a wide range of biological activities including antimicrobial, antiviral, antifungal, anthelmintic, antitumor, anti-HIV, anti-inflammatory, antidepressant, antioxidant, anticonvulsant, antitubercular, analgesic, and central nervous system depressant activities. In this study, four compounds containing 5-Fluoro-isatin thiosemicarbazone with methoxyphenyl or methoxyphenyl in different positions and zinc complexes were evaluated based on their biological activities. Compound 2 was the strongest compound affecting gram-negative bacteria compared to the other compounds. Also, this compound indicated better antimicrobial activity than positive control antibiotics. Besides, compound 3 was the only compound that inhibited the growth of Salmonella spp. such as Salmonella enteritidis ATCC 13076 and Salmonella typhimurium NRRLE 4463. 5-Fluoro-Isatin thiosemicarbazone and its derivatives also showed DNA protection property from moderate to good protections. Among them, compound 4 displayed the highest DNA binding affinity. These compounds possessed a capacity for utilization as drugs or drug additives based on their effects on bacteria strains and DNA binding affinity.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"509-517"},"PeriodicalIF":1.4,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44901847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.22052/JNS.2020.03.010
Mohammad Karbalaei, D. Dideban
IIn this paper, we proposed a short channel Silicon on Insulator Metal-oxide Semiconductor-Field-Effect-Transistor (SOI-MOSFET), in which a thin layer of n+-type doping has been expanded from top of its entire source region into the channel and also a proportionally heavily p-type retrograde doping has been implanted in its channel, close to the source region. Due to source doping expansion in the channel, we call this structure as Source Expanded Doping Silicon on Insulator (SED-SOI) structure. This expanded n+ doping increases the carrier concentration in the source, which can be injected into the channel. Moreover, it increases the amount of carriers, which can be controlled more effectively by the gate electrode. These two advantages enhance both ON state current and transconductance in the device more than 1.9 mA and 5 mS, respectively. Engineered p-type retrograde doping profile causes impurity scattering and this reduces electron mobility in the depth of the device channel, which in turn OFF current decreases down to 0.2 nA. An immense comparison among our proposed device and a conventional structure (C-SOI) shows that it has better performance in terms of Ion/Ioff ratio (>9.5×105), subthreshold swing (75 mV/dec), leakage current, breakdown voltage, hot carrier injection and DIBL. Our analysis demonstrate that SED-SOI transistor can be an excellent candidate for both low power and high performance applications.
{"title":"Implementing expanded source doping to improve performance of a nano-scale fully depleted silicon on insulator transistor","authors":"Mohammad Karbalaei, D. Dideban","doi":"10.22052/JNS.2020.03.010","DOIUrl":"https://doi.org/10.22052/JNS.2020.03.010","url":null,"abstract":"IIn this paper, we proposed a short channel Silicon on Insulator Metal-oxide Semiconductor-Field-Effect-Transistor (SOI-MOSFET), in which a thin layer of n+-type doping has been expanded from top of its entire source region into the channel and also a proportionally heavily p-type retrograde doping has been implanted in its channel, close to the source region. Due to source doping expansion in the channel, we call this structure as Source Expanded Doping Silicon on Insulator (SED-SOI) structure. This expanded n+ doping increases the carrier concentration in the source, which can be injected into the channel. Moreover, it increases the amount of carriers, which can be controlled more effectively by the gate electrode. These two advantages enhance both ON state current and transconductance in the device more than 1.9 mA and 5 mS, respectively. Engineered p-type retrograde doping profile causes impurity scattering and this reduces electron mobility in the depth of the device channel, which in turn OFF current decreases down to 0.2 nA. An immense comparison among our proposed device and a conventional structure (C-SOI) shows that it has better performance in terms of Ion/Ioff ratio (>9.5×105), subthreshold swing (75 mV/dec), leakage current, breakdown voltage, hot carrier injection and DIBL. Our analysis demonstrate that SED-SOI transistor can be an excellent candidate for both low power and high performance applications.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"540-552"},"PeriodicalIF":1.4,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44942110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.22052/JNS.2020.03.001
Farnaz Maghazeii, D. Ghanbari, L. Lotfi
We prepared samples including nanoparticles of ZnS via co-precipitation method in room temperature and with microwave heating using water as a “green” solvent. The procedure was repeated with various natural surfactants. XRD and SEM analysis was performed to determine the nanostructural and morphologic characteristics of nanoparticles. The mean diameter less than 100 nm for ZnS particles showed that there was well-formed pure nanostructure. SEM analysis disclosed that temperature and type of surfactant will affect the nanostructures and so we can control the nanostructure and particle size with changing such parameters. With combining of pure Carbon and ZnS nanoparticles in various proportions, Carbon - ZnS nanocomposites was prepared using microwave heating. SEM and FT-IR analysis was performed on these nanocomposites to compare them with pure Carbon and ZnS nanoparticles. We also assessed the photocatalytic potential of prepared nanocomposites using acidic and neutral pH methyl orange and Congo red solutions under UV- IR radiation. This study confirms that these nanocomposites can be used as photo-catalysts for water refinery in home and industries.
{"title":"The Study of Photocatalytic Behavior of Carbon-ZnS Nanocomposites Prepared with Microwave Co- precipitation Method","authors":"Farnaz Maghazeii, D. Ghanbari, L. Lotfi","doi":"10.22052/JNS.2020.03.001","DOIUrl":"https://doi.org/10.22052/JNS.2020.03.001","url":null,"abstract":"We prepared samples including nanoparticles of ZnS via co-precipitation method in room temperature and with microwave heating using water as a “green” solvent. The procedure was repeated with various natural surfactants. XRD and SEM analysis was performed to determine the nanostructural and morphologic characteristics of nanoparticles. The mean diameter less than 100 nm for ZnS particles showed that there was well-formed pure nanostructure. SEM analysis disclosed that temperature and type of surfactant will affect the nanostructures and so we can control the nanostructure and particle size with changing such parameters. With combining of pure Carbon and ZnS nanoparticles in various proportions, Carbon - ZnS nanocomposites was prepared using microwave heating. SEM and FT-IR analysis was performed on these nanocomposites to compare them with pure Carbon and ZnS nanoparticles. We also assessed the photocatalytic potential of prepared nanocomposites using acidic and neutral pH methyl orange and Congo red solutions under UV- IR radiation. This study confirms that these nanocomposites can be used as photo-catalysts for water refinery in home and industries.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"434-447"},"PeriodicalIF":1.4,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44171234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.22052/JNS.2020.03.006
Fatemeh Seidi, K. Hedayati
At the first step calcium ferrite nanostructures were synthesized via a facile precipitation method in the presence of green and compatible capping agent such as starch, poly vinyl pyrrolidone and glucose in solvent of water. Then cerium oxide nanoparticles and CaFe2O4-CeO2 nanocomposites was made by a fast chemical procedure. The effect of temperature in nanoparticles and nanocomposites concentration and precipitating agent on the morphology and particle size of the products was investigated. The prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. Also the crystalline size of nanoparticles was calculated by Debye-Scherrer formula. Vibrating sample magnetometer (VSM) shows the ferromagnetic property of the ferrite nanostructures. The photocatalytic behaviour of CaFe2O4-CeO2 nanocomposites was evaluated using the degradation of three azo dyes (acid black, acid violet and acid blue) under ultraviolet light irradiation. The results introduce a nanocomposite with applicable magnetic and photocatalytic performance.
{"title":"A facile synthesis and study of photocatalytic properties of magnetic CaFe2O4-CeO2 nanocomposites applicable for separation of toxic azo dyes","authors":"Fatemeh Seidi, K. Hedayati","doi":"10.22052/JNS.2020.03.006","DOIUrl":"https://doi.org/10.22052/JNS.2020.03.006","url":null,"abstract":"At the first step calcium ferrite nanostructures were synthesized via a facile precipitation method in the presence of green and compatible capping agent such as starch, poly vinyl pyrrolidone and glucose in solvent of water. Then cerium oxide nanoparticles and CaFe2O4-CeO2 nanocomposites was made by a fast chemical procedure. The effect of temperature in nanoparticles and nanocomposites concentration and precipitating agent on the morphology and particle size of the products was investigated. The prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. Also the crystalline size of nanoparticles was calculated by Debye-Scherrer formula. Vibrating sample magnetometer (VSM) shows the ferromagnetic property of the ferrite nanostructures. The photocatalytic behaviour of CaFe2O4-CeO2 nanocomposites was evaluated using the degradation of three azo dyes (acid black, acid violet and acid blue) under ultraviolet light irradiation. The results introduce a nanocomposite with applicable magnetic and photocatalytic performance.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"497-508"},"PeriodicalIF":1.4,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48483501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.22052/JNS.2020.03.020
Sajjad Azizi, Jafar Soleymani, S. Shojaei, N. Shadjou
A new nanomaterial based on folic acid functionalized dendritic fibrous nano-silica (FA-KCC-1-NH2) was synthesized and used as a recyclable solid acid and heterogeneous nanocatalyst towards efficient amidation of a variety of carboxylic acids with amines in toluene under reflux conditions. KCC-1 porous nanomaterials were produced utilizing a hydrothermal technique and in the next functionalized with folic acid moieties to yield KCC-1-NH-FA nanocatalyst. The structure of KCC-1, KCC-1-NH2 and KCC-1-NH-FA nanoparticles were investigated by FESEM, DLS, zeta potential and TEM, instrumental techniques. Also, the pore size of KCC-1-NH-FA nanoparticles were moreover investigated with BET where results revealed that the surface of this nanocomposite was expanded. The synthesized KCC-1-NH-FA nanoparticles showed effective catalytic activity in amidation of carboxylic acids with amines affording in high yields (76-89%) and short period of times. Moreover, other advantages of present method are easy workup, no need to use of chromatographic column and excellent recyclability of catalyst without significant loss in its catalytic activity which gives economic rewards.
{"title":"Synthesize of Folic acid functionalized dendritic fibrous nano-silica and its application as an efficient nanocatalyst for access to direct amidation of carboxylic acids with amines","authors":"Sajjad Azizi, Jafar Soleymani, S. Shojaei, N. Shadjou","doi":"10.22052/JNS.2020.03.020","DOIUrl":"https://doi.org/10.22052/JNS.2020.03.020","url":null,"abstract":"A new nanomaterial based on folic acid functionalized dendritic fibrous nano-silica (FA-KCC-1-NH2) was synthesized and used as a recyclable solid acid and heterogeneous nanocatalyst towards efficient amidation of a variety of carboxylic acids with amines in toluene under reflux conditions. KCC-1 porous nanomaterials were produced utilizing a hydrothermal technique and in the next functionalized with folic acid moieties to yield KCC-1-NH-FA nanocatalyst. The structure of KCC-1, KCC-1-NH2 and KCC-1-NH-FA nanoparticles were investigated by FESEM, DLS, zeta potential and TEM, instrumental techniques. Also, the pore size of KCC-1-NH-FA nanoparticles were moreover investigated with BET where results revealed that the surface of this nanocomposite was expanded. The synthesized KCC-1-NH-FA nanoparticles showed effective catalytic activity in amidation of carboxylic acids with amines affording in high yields (76-89%) and short period of times. Moreover, other advantages of present method are easy workup, no need to use of chromatographic column and excellent recyclability of catalyst without significant loss in its catalytic activity which gives economic rewards.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"671-681"},"PeriodicalIF":1.4,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48032942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.22052/JNS.2020.03.018
Behrouz Heidari, M. Fouladian, S. Fatemi
Recently, attention to polymeric nanocomposites has gained a great extent as they present new opportunities to provide superior properties in microwave absorbing materials. In this study polystyrene (PS) nanocomposites containing various nano-fillers were successfully synthesized and employed as microwave absorbing materials. The mentioned materials are usually designed to solve protection against electromagnetic interference in wireless communication systems and high frequency circuit mechanisms. In this study the performance of three various polystyrene (PS) nanocomposites containing: semi-conductor zinc oxide, non-metallic conductive graphene oxide and magnetic Fe3O4 were compared. The fillers type was selected as variable parameter and its influence on the electromagnetic wave absorption and reflection loss (RL) amount was investigated. The scanning electron microscopy (SEM) was used in morphological and particle size study of the nanocomposites. The electromagnetic wave absorption properties of nanocomposites were studied and compared using a vector network analyzer (frequency range of 5-8 GHz). The results indicate that at the same preparation conditions the polystyrene/graphene oxide nanocomposites have higher absorption compared with others.
{"title":"Optimal design of a lightweight and thin radar absorbing nanocomposite","authors":"Behrouz Heidari, M. Fouladian, S. Fatemi","doi":"10.22052/JNS.2020.03.018","DOIUrl":"https://doi.org/10.22052/JNS.2020.03.018","url":null,"abstract":"Recently, attention to polymeric nanocomposites has gained a great extent as they present new opportunities to provide superior properties in microwave absorbing materials. In this study polystyrene (PS) nanocomposites containing various nano-fillers were successfully synthesized and employed as microwave absorbing materials. The mentioned materials are usually designed to solve protection against electromagnetic interference in wireless communication systems and high frequency circuit mechanisms. In this study the performance of three various polystyrene (PS) nanocomposites containing: semi-conductor zinc oxide, non-metallic conductive graphene oxide and magnetic Fe3O4 were compared. The fillers type was selected as variable parameter and its influence on the electromagnetic wave absorption and reflection loss (RL) amount was investigated. The scanning electron microscopy (SEM) was used in morphological and particle size study of the nanocomposites. The electromagnetic wave absorption properties of nanocomposites were studied and compared using a vector network analyzer (frequency range of 5-8 GHz). The results indicate that at the same preparation conditions the polystyrene/graphene oxide nanocomposites have higher absorption compared with others.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"652-659"},"PeriodicalIF":1.4,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47303278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.22052/JNS.2020.03.016
M. H. Abbaspour-Fard, Shadman Mansouri
Nanofibers are one of the most widely used materials in various industrial sectors. Among them Titanium Dioxide (TiO2) nanofibers are excelled, moreover they are environmentally friendly and have shown that they have diverse industrial applications. The physical structure of this fiber (diameter and surface characteristics) is a key effective factor on its behavior for corresponding applications. In this study, the effects of different factors influencing the diameter of TiO2 nanofibers were analyzed and quantified using two statistical analyses namely the Response Level Method (RSM) and the Composite Central Design (CCD) method. The preparation parameters of polymer synthesis including the electrical potential, the distance between electrodes tips, flow rate, and ambient humidity were studied. Results marked polymer concentration as the most important factor affecting the diameter of the nanofibers. However the diameter was almost independent from flow rate, and hence marked as the least effective factor. Furthermore, as humidity increased, the diameter of the fibers decreased significantly and surface roughness increased as demonstrated in the SEM and FESEM images. Since the relative humidity has intense impact on the structural properties of titanium dioxide nanofibers, humidity condition of synthesis space must be strictly controlled and kept below a threshold (38%).
{"title":"Evaluation the effects of humidity and other process parameters on TiO2 Nanofibers by RSM (CCD) and experimental","authors":"M. H. Abbaspour-Fard, Shadman Mansouri","doi":"10.22052/JNS.2020.03.016","DOIUrl":"https://doi.org/10.22052/JNS.2020.03.016","url":null,"abstract":"Nanofibers are one of the most widely used materials in various industrial sectors. Among them Titanium Dioxide (TiO2) nanofibers are excelled, moreover they are environmentally friendly and have shown that they have diverse industrial applications. The physical structure of this fiber (diameter and surface characteristics) is a key effective factor on its behavior for corresponding applications. In this study, the effects of different factors influencing the diameter of TiO2 nanofibers were analyzed and quantified using two statistical analyses namely the Response Level Method (RSM) and the Composite Central Design (CCD) method. The preparation parameters of polymer synthesis including the electrical potential, the distance between electrodes tips, flow rate, and ambient humidity were studied. Results marked polymer concentration as the most important factor affecting the diameter of the nanofibers. However the diameter was almost independent from flow rate, and hence marked as the least effective factor. Furthermore, as humidity increased, the diameter of the fibers decreased significantly and surface roughness increased as demonstrated in the SEM and FESEM images. Since the relative humidity has intense impact on the structural properties of titanium dioxide nanofibers, humidity condition of synthesis space must be strictly controlled and kept below a threshold (38%).","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"624-638"},"PeriodicalIF":1.4,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49452865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.22052/JNS.2020.03.009
C. Manjunatha, V. Chirag, B. Shivaraj, N. Srinivasa, S. Ashoka
Developing a novel sensor for analysing of ascorbic acid present in food items and nutraceuticals is been very important research topic for materials scientists, medicine and food researchers. In the present work, we demonstrate the detection of an ascorbic acid (AA) by using an electrochemical sensor made from novel rGO@ZnO nanocomposite material. We synthesized a ZnO-nanoparticle-decorated reduced graphene oxide composite (rGO@ZnO) using a one-pot hazard free green-hydrothermal method. Multi characterization techniques like X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy and Raman spectroscopy, were precisely used to understand the structure and properties of the rGO@ZnO nanohybrid. Finally, the synthesized rGO@ZnO nanohybrids were utilized to fabricate low cost screen printed electrode (SPE) electrochemical sensor for highly sensitive detection of ascorbic acid (AA). The observed electrochemical sensing results indicate wide linearity from 0.1 mmol to 1.5 mmol with good repeatability and reproducibility. The results confirm that the synthesized novel rGO@ZnO nanohybrids exhibit excellent electrocatalytic activity towards AA with high stability and sensitivity.
{"title":"One pot green synthesis of novel rGO@ZnO nanocomposite and fabrication of electrochemical sensor for ascorbic acid using screen-printed electrode","authors":"C. Manjunatha, V. Chirag, B. Shivaraj, N. Srinivasa, S. Ashoka","doi":"10.22052/JNS.2020.03.009","DOIUrl":"https://doi.org/10.22052/JNS.2020.03.009","url":null,"abstract":"Developing a novel sensor for analysing of ascorbic acid present in food items and nutraceuticals is been very important research topic for materials scientists, medicine and food researchers. In the present work, we demonstrate the detection of an ascorbic acid (AA) by using an electrochemical sensor made from novel rGO@ZnO nanocomposite material. We synthesized a ZnO-nanoparticle-decorated reduced graphene oxide composite (rGO@ZnO) using a one-pot hazard free green-hydrothermal method. Multi characterization techniques like X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy and Raman spectroscopy, were precisely used to understand the structure and properties of the rGO@ZnO nanohybrid. Finally, the synthesized rGO@ZnO nanohybrids were utilized to fabricate low cost screen printed electrode (SPE) electrochemical sensor for highly sensitive detection of ascorbic acid (AA). The observed electrochemical sensing results indicate wide linearity from 0.1 mmol to 1.5 mmol with good repeatability and reproducibility. The results confirm that the synthesized novel rGO@ZnO nanohybrids exhibit excellent electrocatalytic activity towards AA with high stability and sensitivity.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"531-539"},"PeriodicalIF":1.4,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44924573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}