Pub Date : 2021-01-01DOI: 10.22052/JNS.2021.01.002
K. Madlum, E. J. Khamees, Shaymaa Abdulridha Ahmed, R. Naji
An ablative pulsed laser is an efficient physical technique for nanomaterial synthesis, particularly ablation of solids in liquid environments. This method is much simpler than chemical methods and produces highly purified nanoparticles with weak agglomeration effects. This study aimed to fabricate new nanoparticles with unique biological activity. Platinum nanoparticles (PtNPs) were prepared striking platinum plate with Nd-YAG (1064 nm) laser pulses in double deionized water (DDW) for a total number of pulses of (100 and 150). NPs samples were characterized using a Transmission Electron Microscope (TEM) and UV-Visible, double beam spectrophotometer. To evaluate the biological activity, three types of pathogenic microorganisms (Pseudomonas aeruginosa, Staphylococcus aureus, E. coli, and Candida albicans) and two cell lines (Hepa 1-6) hepatoma and MDCK cells were used. High-purity platinum nanoparticles (PtNPs) with two particle sizes (10 and 20 nm) have been successfully synthesized. The antimicrobial assay showed high anti-pseudomonas activity of these nanoparticles while it showed no effects on other organisms. PtNPs with a particle size of 10 nm showed higher toxicity than PtNPs with a particle size of (20 nm) at the same concentrations used. MTT assay showed that PtNPs have high cytotoxic effects on carcinoma cell lines at low concentrations. As a conclusion, PtNPs showed promising selective antibacterial activity against P. aeruginosa as well as an inhibitory effect on the cancer cell line. These nanoparticles can be used to treat complicated pseudomonas infections.
{"title":"Antimicrobial and Cytotoxic Activity of Platinum Nanoparticles Synthesized by Laser Ablation Technique","authors":"K. Madlum, E. J. Khamees, Shaymaa Abdulridha Ahmed, R. Naji","doi":"10.22052/JNS.2021.01.002","DOIUrl":"https://doi.org/10.22052/JNS.2021.01.002","url":null,"abstract":"An ablative pulsed laser is an efficient physical technique for nanomaterial synthesis, particularly ablation of solids in liquid environments. This method is much simpler than chemical methods and produces highly purified nanoparticles with weak agglomeration effects. This study aimed to fabricate new nanoparticles with unique biological activity. Platinum nanoparticles (PtNPs) were prepared striking platinum plate with Nd-YAG (1064 nm) laser pulses in double deionized water (DDW) for a total number of pulses of (100 and 150). NPs samples were characterized using a Transmission Electron Microscope (TEM) and UV-Visible, double beam spectrophotometer. To evaluate the biological activity, three types of pathogenic microorganisms (Pseudomonas aeruginosa, Staphylococcus aureus, E. coli, and Candida albicans) and two cell lines (Hepa 1-6) hepatoma and MDCK cells were used. High-purity platinum nanoparticles (PtNPs) with two particle sizes (10 and 20 nm) have been successfully synthesized. The antimicrobial assay showed high anti-pseudomonas activity of these nanoparticles while it showed no effects on other organisms. PtNPs with a particle size of 10 nm showed higher toxicity than PtNPs with a particle size of (20 nm) at the same concentrations used. MTT assay showed that PtNPs have high cytotoxic effects on carcinoma cell lines at low concentrations. As a conclusion, PtNPs showed promising selective antibacterial activity against P. aeruginosa as well as an inhibitory effect on the cancer cell line. These nanoparticles can be used to treat complicated pseudomonas infections.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"11 1","pages":"13-19"},"PeriodicalIF":1.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68411616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.22052/JNS.2021.01.003
S. Mousavi, M. Golestaneh
In this research, a facile and clean sonochemical synthesis was described for Fe/ZnO hollow spheres nanostructures as high-efficiency UV-Vis light photocatalyst through an environmentally-friendly procedure. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and field-emission scanning electron microscopy (FE-SEM) were utilized for the investigation of the produced Fe/ZnO hollow spheres nanostructures. Then, the photocatalytic activities of the catalysts were evaluated on the degradation of Methylene Blue and Congo Red in an aqueous solution under both UV and visible light irradiation (λ > 420 nm). Also, to illustrate the influence of morphologies on the degradation of these organic dyes, the Fe/ZnO nanostructures with the wood-like, flower-like, rod-like, and nanoparticle morphologies were synthesized and the photocatalyst efficiency of them was determined. The obtained results confirmed that the Fe/ZnO hollow spheres have significant photocatalytic activity compared to other morphologies and could be used as outstanding potential photocatalyst materials for removing dye pollutants from water.
{"title":"Facile Synthesis of Fe/ZnO Hollow Spheres Nanostructures by Green Approach for the Photodegradation and Removal of Organic Dye Contaminants in Water","authors":"S. Mousavi, M. Golestaneh","doi":"10.22052/JNS.2021.01.003","DOIUrl":"https://doi.org/10.22052/JNS.2021.01.003","url":null,"abstract":"In this research, a facile and clean sonochemical synthesis was described for Fe/ZnO hollow spheres nanostructures as high-efficiency UV-Vis light photocatalyst through an environmentally-friendly procedure. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and field-emission scanning electron microscopy (FE-SEM) were utilized for the investigation of the produced Fe/ZnO hollow spheres nanostructures. Then, the photocatalytic activities of the catalysts were evaluated on the degradation of Methylene Blue and Congo Red in an aqueous solution under both UV and visible light irradiation (λ > 420 nm). Also, to illustrate the influence of morphologies on the degradation of these organic dyes, the Fe/ZnO nanostructures with the wood-like, flower-like, rod-like, and nanoparticle morphologies were synthesized and the photocatalyst efficiency of them was determined. The obtained results confirmed that the Fe/ZnO hollow spheres have significant photocatalytic activity compared to other morphologies and could be used as outstanding potential photocatalyst materials for removing dye pollutants from water.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"11 1","pages":"20-30"},"PeriodicalIF":1.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68411627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.22052/JNS.2021.01.005
Samaneh Katebi Koushali, M. Hamadanian, A. Ghasemi, M. Ashrafi
In this paper, the effects of synthesized TiO2 nanoparticles and polyethylene glycol (PEG) on mechanical, morphological, and thermal properties of unsaturated polyester (UPE) based nanocomposites were studied. The TiO2 nanoparticles were synthesized by sol-gel method. The UPE/PEG/TiO2 nanocomposites were prepared at various concentrations of synthesized TiO2 nanoparticles and PEG by direct mechanical mixing technique. The synthesized TiO2 nanoparticles were mixed with UPE resin through ultra-sonication in different weight fractions (wt%), namely, 0 wt%, 0.5 wt%, 0.75 wt%, and 1 wt%. The PEG was considered in different wt% fractions such as 5 wt%, 10 wt%, 15 wt% for preparing UPE/PEG/TiO2 nanocomposite. Consequently, chemical structure of nanocomposite was investigated with FT-IR analyses. Also, the TiO2 nanoparticles and optimized samples were characterized by TGA, SEM and XRD analyses. The results obtained by TGA, FT-IR, SEM and XRD analyses exhibited an improvement of thermal and mechanical properties of the nanocomposites containing synthesized TiO2 nanoparticles (0.5 wt%) and PEG (10 wt%) compared to pristine polyester.
{"title":"Investigation of Mechanical Properties of Polyester/Polyethylene glycol/TiO2 Nanocomposites","authors":"Samaneh Katebi Koushali, M. Hamadanian, A. Ghasemi, M. Ashrafi","doi":"10.22052/JNS.2021.01.005","DOIUrl":"https://doi.org/10.22052/JNS.2021.01.005","url":null,"abstract":"In this paper, the effects of synthesized TiO2 nanoparticles and polyethylene glycol (PEG) on mechanical, morphological, and thermal properties of unsaturated polyester (UPE) based nanocomposites were studied. The TiO2 nanoparticles were synthesized by sol-gel method. The UPE/PEG/TiO2 nanocomposites were prepared at various concentrations of synthesized TiO2 nanoparticles and PEG by direct mechanical mixing technique. The synthesized TiO2 nanoparticles were mixed with UPE resin through ultra-sonication in different weight fractions (wt%), namely, 0 wt%, 0.5 wt%, 0.75 wt%, and 1 wt%. The PEG was considered in different wt% fractions such as 5 wt%, 10 wt%, 15 wt% for preparing UPE/PEG/TiO2 nanocomposite. Consequently, chemical structure of nanocomposite was investigated with FT-IR analyses. Also, the TiO2 nanoparticles and optimized samples were characterized by TGA, SEM and XRD analyses. The results obtained by TGA, FT-IR, SEM and XRD analyses exhibited an improvement of thermal and mechanical properties of the nanocomposites containing synthesized TiO2 nanoparticles (0.5 wt%) and PEG (10 wt%) compared to pristine polyester.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"11 1","pages":"38-47"},"PeriodicalIF":1.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68411746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.22052/JNS.2021.01.018
Z. Ghaedrahmat, M. Moussavi, S. Jorfi, Mehrnoosh Abtahi, N. Jaafarzadeh
ABSTRACTPhotocatalytic oxidation using novel photo-catalysts has been considered as an effective method for destruction of recalcitrant organics. In this study, photocatalytic degradation of 4-chlorophenol (4-CP) using lanthanum Oxide nanoparticles (LONPs) was investigated under UVC/Vis irradiation. Effect of operational parameters including pH (2 – 11), catalyst content (250-3000 mg L-1), contact time (20 - 180 min) 4-CP concentration (25- 400 mgL-1) were investigated according to one factor at the time experimental procedure. Highest removal efficiency of 4-CP was observed at pH =7. Result was indicated that the removal of 4-CP was increased from 76% to 92%, with increasing catalyst dosage from 0.25 to 1 g L-1. Then, a decrease was observed in 4-CP removal with an enhancement in catalyst dosage from 1 to 3 g L-1. Highest 4-CP removal (98%) was observed at the initial concentration of 25 mg L-1. At the contact time from 20 to 60 min, removal efficiency of 4-CP was increased from 24% to 64%, respectively. The contact time was increased to 120 min, removal efficiency of 4-CP was increased to 100%. Therefore, the optimal reaction time was 100 min. The AOS indices was showed an increasing trend of mineralization. In other words, the process of degradation of 4-CP was improved with photocatalytic degradation by UVC-La2O3. Among the kinetic models, the pseudo-first order model due to the highest correlation coefficient of R2 = 0.991 for the La2O3-UVC process.
摘要利用新型光催化剂进行光催化氧化是一种有效的降解难降解有机物的方法。在UVC/Vis照射下,研究了氧化镧纳米颗粒(LONPs)光催化降解4-氯苯酚(4-CP)。考察了pH(2 ~ 11)、催化剂用量(250 ~ 3000 mgL-1)、接触时间(20 ~ 180 min)、4-CP浓度(25 ~ 400 mgL-1)等操作参数对反应的影响。pH =7时4-CP去除率最高。结果表明,当催化剂用量由0.25 g L-1增加到1 g L-1时,4-CP的去除率由76%提高到92%。然后,随着催化剂用量从1 g - L-1增加到3 g - L-1,观察到4-CP去除率下降。在初始浓度为25 mg L-1时,4-CP去除率最高(98%)。当接触时间为20 ~ 60 min时,4-CP的去除率分别由24%提高到64%。将接触时间延长至120 min, 4-CP的去除率提高到100%。因此,最佳反应时间为100 min。AOS指标呈矿化增加趋势。也就是说,UVC-La2O3光催化降解改善了4-CP的降解过程。其中,La2O3-UVC过程的拟一阶动力学模型相关系数最高,R2 = 0.991。
{"title":"Enhanced Photocatalytic Degradation of 4-chlorophenol using Lanthanum Oxide Nano-particles under UVC/Vis Irradiation","authors":"Z. Ghaedrahmat, M. Moussavi, S. Jorfi, Mehrnoosh Abtahi, N. Jaafarzadeh","doi":"10.22052/JNS.2021.01.018","DOIUrl":"https://doi.org/10.22052/JNS.2021.01.018","url":null,"abstract":"ABSTRACTPhotocatalytic oxidation using novel photo-catalysts has been considered as an effective method for destruction of recalcitrant organics. In this study, photocatalytic degradation of 4-chlorophenol (4-CP) using lanthanum Oxide nanoparticles (LONPs) was investigated under UVC/Vis irradiation. Effect of operational parameters including pH (2 – 11), catalyst content (250-3000 mg L-1), contact time (20 - 180 min) 4-CP concentration (25- 400 mgL-1) were investigated according to one factor at the time experimental procedure. Highest removal efficiency of 4-CP was observed at pH =7. Result was indicated that the removal of 4-CP was increased from 76% to 92%, with increasing catalyst dosage from 0.25 to 1 g L-1. Then, a decrease was observed in 4-CP removal with an enhancement in catalyst dosage from 1 to 3 g L-1. Highest 4-CP removal (98%) was observed at the initial concentration of 25 mg L-1. At the contact time from 20 to 60 min, removal efficiency of 4-CP was increased from 24% to 64%, respectively. The contact time was increased to 120 min, removal efficiency of 4-CP was increased to 100%. Therefore, the optimal reaction time was 100 min. The AOS indices was showed an increasing trend of mineralization. In other words, the process of degradation of 4-CP was improved with photocatalytic degradation by UVC-La2O3. Among the kinetic models, the pseudo-first order model due to the highest correlation coefficient of R2 = 0.991 for the La2O3-UVC process.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"11 1","pages":"165-180"},"PeriodicalIF":1.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68412195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.22052/JNS.2021.01.007
Saman Dahi-Azar, Shahrzad Abdolmohammadi, J. Mokhtari
In the last decades, metal oxide nanoparticles (NPs) have been used as inexpensive efficient heterogeneous catalysts in different chemical reactions, due to their favorable properties such as high available surface area, small loading of catalyst, convenient catalyst recycling, and degradation of environmental pollutants. An efficient synthesis of xanthenones and [1]benzopyrano[d]pyrimidinediones are achieved by cyclocondensation reaction of 3,4-methylenedioxyphenol, aromatic aldehydes, and active methylene compound including dimedone or 1,3-dimethylbarbituric acid using CdO NPs as a robust catalyst under ultrasonic irradiation in water at room temperature. The described catalyst was prepared successfully by a simple precipitation method and characterized by the Fourier transformed infrared absorption (FT-IR) spectroscopy, X-Ray diffraction (XRD) analytical technique, and scanning electron microscopy (SEM). All synthesized compounds were well characterized by IR, 1H and 13C NMR spectroscopy, and also by elemental analyses. The remarkable advantages of this protocol are high yields of products, short reaction times, use of simple and readily available starting materials, experimental simplicity, and applying the sonochemical method as an efficient method and innocuous tool for the synthesis of heterocycles.
{"title":"CdO Nanoparticles: A Highly Effective Catalyst in Cyclocondensation Reaction of 3,4-Methylenedioxyphenol, Aromatic Aldehydes, and Active Methylene Compounds under Ultrasonic Irradiation","authors":"Saman Dahi-Azar, Shahrzad Abdolmohammadi, J. Mokhtari","doi":"10.22052/JNS.2021.01.007","DOIUrl":"https://doi.org/10.22052/JNS.2021.01.007","url":null,"abstract":"In the last decades, metal oxide nanoparticles (NPs) have been used as inexpensive efficient heterogeneous catalysts in different chemical reactions, due to their favorable properties such as high available surface area, small loading of catalyst, convenient catalyst recycling, and degradation of environmental pollutants. An efficient synthesis of xanthenones and [1]benzopyrano[d]pyrimidinediones are achieved by cyclocondensation reaction of 3,4-methylenedioxyphenol, aromatic aldehydes, and active methylene compound including dimedone or 1,3-dimethylbarbituric acid using CdO NPs as a robust catalyst under ultrasonic irradiation in water at room temperature. The described catalyst was prepared successfully by a simple precipitation method and characterized by the Fourier transformed infrared absorption (FT-IR) spectroscopy, X-Ray diffraction (XRD) analytical technique, and scanning electron microscopy (SEM). All synthesized compounds were well characterized by IR, 1H and 13C NMR spectroscopy, and also by elemental analyses. The remarkable advantages of this protocol are high yields of products, short reaction times, use of simple and readily available starting materials, experimental simplicity, and applying the sonochemical method as an efficient method and innocuous tool for the synthesis of heterocycles.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"11 1","pages":"57-65"},"PeriodicalIF":1.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68412010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.22052/JNS.2021.01.012
M. Mousavi, S. T. Yazdi, G. Khorrami
The V2O5 nanoparticles were synthesized from VCl3 precursor via a rather facile sol-gel route in gelatin medium followed by calcination at different temperatures of 400, 500 and 600 °C. The prepared samples were studied for their structural, morphological, optical and magnetic properties. The results showed that the synthesized particles consist mainly of crystalline α-V2O5 orthorombic phase. The calcination at higher temperatures caused an increment in the amount of other vanadium oxides minor phases, namely β-V2O5, and also increased the crystallite size from about 22 to 29 nm. The lattice contraction observed on calcination at higher temperatures may be associated to the the lower density of oxygen vacancies. The optical studies revealed the effect of raising the calcination temperature as an red shift in their direct band gap energy from 2.92 to 2.77 eV due to the size effects. The magnetic characterization of the sample calcined at 400 °C demonstrated a weak ferromagnetic behavior with saturation magnetization of about 0.14 emu/g induced probably by the oxygen vacancies.
{"title":"Structural, Optical and Magnetic Characterization of Vanadium Pentoxide Nanoparticles Synthesized in a Gelatin Medium","authors":"M. Mousavi, S. T. Yazdi, G. Khorrami","doi":"10.22052/JNS.2021.01.012","DOIUrl":"https://doi.org/10.22052/JNS.2021.01.012","url":null,"abstract":"The V2O5 nanoparticles were synthesized from VCl3 precursor via a rather facile sol-gel route in gelatin medium followed by calcination at different temperatures of 400, 500 and 600 °C. The prepared samples were studied for their structural, morphological, optical and magnetic properties. The results showed that the synthesized particles consist mainly of crystalline α-V2O5 orthorombic phase. The calcination at higher temperatures caused an increment in the amount of other vanadium oxides minor phases, namely β-V2O5, and also increased the crystallite size from about 22 to 29 nm. The lattice contraction observed on calcination at higher temperatures may be associated to the the lower density of oxygen vacancies. The optical studies revealed the effect of raising the calcination temperature as an red shift in their direct band gap energy from 2.92 to 2.77 eV due to the size effects. The magnetic characterization of the sample calcined at 400 °C demonstrated a weak ferromagnetic behavior with saturation magnetization of about 0.14 emu/g induced probably by the oxygen vacancies.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"81 1","pages":"105-113"},"PeriodicalIF":1.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68412210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.22052/JNS.2021.01.008
Rusul A. Ghaz, A. Ghazai, Zina M Shaban, K. Abass, N. Habubi, S. Chiad
Nanostructured tin sulfide (SnS) films were grown by chemical bath deposition (CBD) employing trisodium citrate (TSC) as complex agent. Investigation of the effect of different molar concentrations of TSC (0.10, 0.15 and 0.20 M) on the phases of SnS was done. Structure, morphology and optical properties were studied through the use of x-ray diffraction XRD, which proves that the as-prepared SnS films orthorhombic polycrystalline structure. XRD displays that peak of maximum intensity corresponds to the preferred orientation (002) of SnS films at TSC concentration 0.20 M. The decrement of average crystalline size values was due increment of TSC content. A study of SnS morphology indicates the presence of homogeneous grains, while when concentration of TSC of 0.20 M, the grains were not homogeneous and have different sizes. The AFM image showed that the grain size was observed in the area of 72.57 nm to 60.35 nm with concentration of TSC from 0.10 M to 0.20 M respectively. The results showed excellent optical transparency. The optical transmittance reduced from 95 to 80% with increasing TSC content. The ban gap was also reduced of 1.45 to 1.25 eV with increasing TSC content. The results refer that TCS act as a crucial role in the grown of SnS films.
{"title":"Nanostructured Tin Sulfide Thin Films: Preparation via Chemical Bath Deposition and Characterization","authors":"Rusul A. Ghaz, A. Ghazai, Zina M Shaban, K. Abass, N. Habubi, S. Chiad","doi":"10.22052/JNS.2021.01.008","DOIUrl":"https://doi.org/10.22052/JNS.2021.01.008","url":null,"abstract":"Nanostructured tin sulfide (SnS) films were grown by chemical bath deposition (CBD) employing trisodium citrate (TSC) as complex agent. Investigation of the effect of different molar concentrations of TSC (0.10, 0.15 and 0.20 M) on the phases of SnS was done. Structure, morphology and optical properties were studied through the use of x-ray diffraction XRD, which proves that the as-prepared SnS films orthorhombic polycrystalline structure. XRD displays that peak of maximum intensity corresponds to the preferred orientation (002) of SnS films at TSC concentration 0.20 M. The decrement of average crystalline size values was due increment of TSC content. A study of SnS morphology indicates the presence of homogeneous grains, while when concentration of TSC of 0.20 M, the grains were not homogeneous and have different sizes. The AFM image showed that the grain size was observed in the area of 72.57 nm to 60.35 nm with concentration of TSC from 0.10 M to 0.20 M respectively. The results showed excellent optical transparency. The optical transmittance reduced from 95 to 80% with increasing TSC content. The ban gap was also reduced of 1.45 to 1.25 eV with increasing TSC content. The results refer that TCS act as a crucial role in the grown of SnS films.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"11 1","pages":"66-72"},"PeriodicalIF":1.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68411666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.22052/JNS.2021.01.010
Tegene Desalegn, H. Murthy, C. Ravikumar, H. P. Nagaswarupa
The medicinal plant, Syzygium guineense (Willd.) DC (Waterberry) mediated green copper oxide nanostructures (SyG-CuO NSs) were successfully synthesized for the first time in Ethiopia. The antibacterial activity of CuO NSs capped by biomolecules of the plant leaf extract has been investigated. The UV-visible, UV-DRS, FT-IR, XRD, TGA-DTA, SEM, EDXA, TEM, HRTEM and SAED techniques were employed to characterize the NSs. The presence of two absorbance maxima, λmax1 and λmax2 at 423 nm and 451 nm, respectively confirms a mixture of copper oxide (Eg=1.93 eV). FTIR spectra confirmed the presence of biomolecules with SyG-CuO NSs. The XRD patterns of NSs confirmed the presence of CuO with high crystallinity. The purity of the NSs was confirmed by SEM-EDAX analysis. In addition, TEM-HRTEM-SAED analysis revealed the d-spacing value of 0.2854 nm which corresponds to CuO (111) lattice fringe. SyG-CuO NSs showed good antibacterial effect against both Gram-positive bacteria, S. aureus (12 mm), and Gram-negative bacteria, E. coli (12 mm), P. aeruginosa (10 mm), and E. aerogenes (12 mm). The bioactive compounds capped around the CuO NPs served the effective role in disrupting the cell wall of bacterial strains. The CV and EIS studies confirmed the better electrochemical properties for SyG-CuO with low charge transfer resistance value of 49 Ω. These CuO NSs exhibited multifunctional applications.
{"title":"Green Synthesis of CuO Nanostructures using Syzygium guineense (Willd.) DC Plant Leaf Extract and Their Applications","authors":"Tegene Desalegn, H. Murthy, C. Ravikumar, H. P. Nagaswarupa","doi":"10.22052/JNS.2021.01.010","DOIUrl":"https://doi.org/10.22052/JNS.2021.01.010","url":null,"abstract":"The medicinal plant, Syzygium guineense (Willd.) DC (Waterberry) mediated green copper oxide nanostructures (SyG-CuO NSs) were successfully synthesized for the first time in Ethiopia. The antibacterial activity of CuO NSs capped by biomolecules of the plant leaf extract has been investigated. The UV-visible, UV-DRS, FT-IR, XRD, TGA-DTA, SEM, EDXA, TEM, HRTEM and SAED techniques were employed to characterize the NSs. The presence of two absorbance maxima, λmax1 and λmax2 at 423 nm and 451 nm, respectively confirms a mixture of copper oxide (Eg=1.93 eV). FTIR spectra confirmed the presence of biomolecules with SyG-CuO NSs. The XRD patterns of NSs confirmed the presence of CuO with high crystallinity. The purity of the NSs was confirmed by SEM-EDAX analysis. In addition, TEM-HRTEM-SAED analysis revealed the d-spacing value of 0.2854 nm which corresponds to CuO (111) lattice fringe. SyG-CuO NSs showed good antibacterial effect against both Gram-positive bacteria, S. aureus (12 mm), and Gram-negative bacteria, E. coli (12 mm), P. aeruginosa (10 mm), and E. aerogenes (12 mm). The bioactive compounds capped around the CuO NPs served the effective role in disrupting the cell wall of bacterial strains. The CV and EIS studies confirmed the better electrochemical properties for SyG-CuO with low charge transfer resistance value of 49 Ω. These CuO NSs exhibited multifunctional applications.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"11 1","pages":"81-94"},"PeriodicalIF":1.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68412032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.22052/JNS.2021.01.001
Ameen Abdelrahman, A. Radwan, A. Zaki, A. Hamouda
In the present study, Anionic polymerization of Butyl Methyl acrylate has been carried out in oxygen atmosphere over different heterogenic prepared catalytic systems which is composed of a group of three metal oxides ( Ti, Mn Cu ) assembled on thin layers of clay ( Bentonite ) as hydrogenating/dehydrogenating activation for the polymerization reaction. The prepared catalysts and polymeric products were distinguished by different spectroscopic techniques such as XRD , 1HNMR, ,energy-dispersive X-ray spectroscopy (EDX), SCN TEM, IR, and gel permeation chromatography(GPC). we deduced that the dimensions of the efficiency of each catalyst as well as whole composites on the polymerization of Butyl Methyl acrylate of process, also, we approach the reaction mechanism of the polymeric process, furthermore, studying the variation and factors affecting on anionic polymerization like polydispersity index and tactility properties, we approached more details and discussion were deeply investigated in blow throughout figures and applicable data analysis.
{"title":"Assembling a Bunch of Transition Metals Oxides on Sodium Montmorillonite Layer for Anionic Polymerization of Butyl Methyl Acrylate","authors":"Ameen Abdelrahman, A. Radwan, A. Zaki, A. Hamouda","doi":"10.22052/JNS.2021.01.001","DOIUrl":"https://doi.org/10.22052/JNS.2021.01.001","url":null,"abstract":"In the present study, Anionic polymerization of Butyl Methyl acrylate has been carried out in oxygen atmosphere over different heterogenic prepared catalytic systems which is composed of a group of three metal oxides ( Ti, Mn Cu ) assembled on thin layers of clay ( Bentonite ) as hydrogenating/dehydrogenating activation for the polymerization reaction. The prepared catalysts and polymeric products were distinguished by different spectroscopic techniques such as XRD , 1HNMR, ,energy-dispersive X-ray spectroscopy (EDX), SCN TEM, IR, and gel permeation chromatography(GPC). we deduced that the dimensions of the efficiency of each catalyst as well as whole composites on the polymerization of Butyl Methyl acrylate of process, also, we approach the reaction mechanism of the polymeric process, furthermore, studying the variation and factors affecting on anionic polymerization like polydispersity index and tactility properties, we approached more details and discussion were deeply investigated in blow throughout figures and applicable data analysis.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"11 1","pages":"1-12"},"PeriodicalIF":1.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68411377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.22052/JNS.2021.01.016
Tahereh Zadeh Mehrizi, N. Mosaffa, A. Khamesipour, M. Hoseini, H. E. Shahmabadi, M. Ardestani, Amitis Ramezani
Betulinic acid (BA) is an antileishmanial herbal drug with low solubility and high toxicity. To our knowledge, this is the first study in which betulinic acid is loaded into Anionic Linear Globular Dendrimer (ALGD) in order to resolve the toxicity and insolubility problem. In order to solve mentioned problems, BA was loaded into ALGD nanocarrier. The formulation was characterized in terms of chemical bonds and morphology using Fourier Transform Infrared (FTIR) Spectroscopy, Atomic Force Microscopy (AFM) and Proton Nuclear Magnetic Resonance (1HNMR) methods. According to our study insoluble BA could loaded well into ALGD. This loading caused an increase in the solubility rate of BA by more than 700-fold and a decrease in the toxicity effects to zero in vivo environment. Overall, BD at a dose of 40 mg/kg caused a significant decreased in the number of parasite (leishmania major (L. major)) in vitro and in vivo without inducing any toxic effect.
白桦酸是一种低溶解度、高毒性的抗利什曼病中草药。据我们所知,这是第一个将白桦酸加载到阴离子线性球状树突(ALGD)中以解决毒性和不溶性问题的研究。为了解决上述问题,将BA加载到ALGD纳米载体中。采用傅里叶变换红外光谱(FTIR)、原子力显微镜(AFM)和质子核磁共振(1HNMR)等方法对配方进行了化学键和形貌表征。根据我们的研究,不溶性BA可以很好地装载到ALGD中。这种负荷使BA的溶解度提高了700多倍,在体内环境中毒性效应降至零。总体而言,40 mg/kg剂量的双酚d在体外和体内均能显著减少利什曼原虫(leishmania major, L. major)的数量,但未引起任何毒性作用。
{"title":"A Novel Nanoformulation for Reducing the Toxicity and Increasing the Efficacy of Betulinic Acid Using Anionic Linear Globular Dendrimer","authors":"Tahereh Zadeh Mehrizi, N. Mosaffa, A. Khamesipour, M. Hoseini, H. E. Shahmabadi, M. Ardestani, Amitis Ramezani","doi":"10.22052/JNS.2021.01.016","DOIUrl":"https://doi.org/10.22052/JNS.2021.01.016","url":null,"abstract":"Betulinic acid (BA) is an antileishmanial herbal drug with low solubility and high toxicity. To our knowledge, this is the first study in which betulinic acid is loaded into Anionic Linear Globular Dendrimer (ALGD) in order to resolve the toxicity and insolubility problem. In order to solve mentioned problems, BA was loaded into ALGD nanocarrier. The formulation was characterized in terms of chemical bonds and morphology using Fourier Transform Infrared (FTIR) Spectroscopy, Atomic Force Microscopy (AFM) and Proton Nuclear Magnetic Resonance (1HNMR) methods. According to our study insoluble BA could loaded well into ALGD. This loading caused an increase in the solubility rate of BA by more than 700-fold and a decrease in the toxicity effects to zero in vivo environment. Overall, BD at a dose of 40 mg/kg caused a significant decreased in the number of parasite (leishmania major (L. major)) in vitro and in vivo without inducing any toxic effect.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"11 1","pages":"143-152"},"PeriodicalIF":1.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68412117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}