首页 > 最新文献

Journal of Nuclear Science and Technology最新文献

英文 中文
Development of nuclear data processing code FRENDY version 2 核数据处理代码FRENDY版本2的开发
4区 工程技术 Q2 NUCLEAR SCIENCE & TECHNOLOGY Pub Date : 2023-11-06 DOI: 10.1080/00223131.2023.2278600
Kenichi Tada, Akio Yamamoto, Satoshi Kunieda, Chikara Konno, Ryoichi Kondo, Tomohiro Endo, Go Chiba, Michitaka Ono, Masayuki Tojo
ABSTRACTNuclear data processing is important to connect evaluated nuclear data libraries and radiation transport codes. The nuclear data processing code FRENDY version 1 was released in 2019 to generate ACE formatted cross section files with simple input data. After we released FRENDY version 1, many functions were developed, e.g., neutron multi-group cross section generation, explicit consideration of the resonance interference effect among different nuclides in a material, adaptive setting of the background cross sections, consideration of the resonance upscattering, ACE file perturbation, statistical uncertainty quantification of probability table, and modification of ENDF-6 formatted file. FRENDY version 2 was released including these new functions. It generates GENDF and MATXS formatted neutron multi-group cross section files from an ACE formatted cross section file or an evaluated nuclear data file. This paper explains the features of the new functions implemented in FRENDY version 2 and the verification of the neutron multigroup cross section generation function of this code.KEYWORDS: FRENDYnuclear data processingevaluated nuclear data libraryneutron multigroup cross section generationACEGENDFMATXSDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. Figure 1. Difference in the neutron multi-group cross section generation between a conventional code and FRENDY.Display full sizeFigure 2. Cross section of U-238 from JENDL-4.0 with and without resonance upscattering (MT=102, XMAS 172g).Display full sizeFigure 3. Secondary photon spectrum of Fe-56 from JENDL-4.0 (MT=102, Ein=12.5-12.8 MeV, VITAMIN-J 42g).Display full sizeFigure 4. Secondary photon spectrum of Fe-56 from JENDL-4.0 (MT=22, Ein=12.5-12.8 MeV, VITAMIN-J 42g).Display full sizeFigure 5. Example of the interpolation of energy with a ratio of 1:2 in the two-dimensional interpolation procedure.Display full sizeFigure 6. Comparison of secondary photon spectra of Fe-56 from JENDL-4.0 in each division number (MT=22, Ein=12.5-12.8 MeV, VITAMIN-J 42g)Display full sizeFigure 7. Secondary photon spectrum of Fe-56, MT=22, Ein=12 and 13 MeV from JENDL-4.0.Display full sizeFigure 8. Comparison of neutron spectra at the distance of 60 cm from the center of a 1 m radius Fe-56 sphere (JENDL-4.0, VITAMIN-B6 199g).Display full sizeFigure 9. Comparison of secondary photon spectra at the distance of 60 cm from the center of a 1 m radius Fe-56 sphere (JENDL-4.0, VITAMIN-J 42g).Display full size
摘要核数据处理对于连接已评估的核数据库和辐射传输代码具有重要意义。核数据处理代码FRENDY版本1于2019年发布,用于生成具有简单输入数据的ACE格式截面文件。我们发布了FRENDY版本1后,开发了中子多群截面生成、明确考虑材料中不同核素之间的共振干涉效应、背景截面自适应设置、考虑共振上散射、ACE文件扰动、概率表统计不确定性量化、ENDF-6格式文件修改等功能。FRENDY版本2发布了,包括这些新功能。它从ACE格式的截面文件或评估的核数据文件生成GENDF和MATXS格式的中子多组截面文件。本文阐述了FRENDY version 2中实现的新函数的特点,并对该代码的中子多群截面生成函数进行了验证。关键词:FRENDYnuclear data processing evaluation nuclear data library中子多群截面生成acegendfmatxs免责声明作为对作者和研究人员的服务,我们提供此版本的已接受稿件(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。图1所示。传统码与FRENDY码在中子多群截面生成上的差异。显示完整尺寸图2JENDL-4.0的U-238有和没有共振上散射的截面(MT=102, XMAS 172g)。显示完整尺寸图3JENDL-4.0 (MT=102, Ein=12.5-12.8 MeV, VITAMIN-J 42g) Fe-56的二次光子光谱。显示完整尺寸图4。JENDL-4.0 (MT=22, Ein=12.5-12.8 MeV, VITAMIN-J 42g) Fe-56的二次光子光谱。显示完整尺寸图5举例说明了以1:2的比例进行能量插补的二维插补程序。显示完整尺寸图6JENDL-4.0在各分裂数(MT=22, Ein=12.5-12.8 MeV, VITAMIN-J 42g)下Fe-56的二次光子光谱比较JENDL-4.0的Fe-56, MT=22, Ein=12和13 MeV的二次光子光谱。显示完整尺寸图8。距离半径1 m的Fe-56球体中心60 cm处的中子能谱比较(JENDL-4.0, VITAMIN-B6 199g)。显示完整尺寸图9。距离半径1 m的Fe-56球体中心60 cm处的二次光子光谱比较(JENDL-4.0, VITAMIN-J 42g)。全尺寸显示
{"title":"Development of nuclear data processing code FRENDY version 2","authors":"Kenichi Tada, Akio Yamamoto, Satoshi Kunieda, Chikara Konno, Ryoichi Kondo, Tomohiro Endo, Go Chiba, Michitaka Ono, Masayuki Tojo","doi":"10.1080/00223131.2023.2278600","DOIUrl":"https://doi.org/10.1080/00223131.2023.2278600","url":null,"abstract":"ABSTRACTNuclear data processing is important to connect evaluated nuclear data libraries and radiation transport codes. The nuclear data processing code FRENDY version 1 was released in 2019 to generate ACE formatted cross section files with simple input data. After we released FRENDY version 1, many functions were developed, e.g., neutron multi-group cross section generation, explicit consideration of the resonance interference effect among different nuclides in a material, adaptive setting of the background cross sections, consideration of the resonance upscattering, ACE file perturbation, statistical uncertainty quantification of probability table, and modification of ENDF-6 formatted file. FRENDY version 2 was released including these new functions. It generates GENDF and MATXS formatted neutron multi-group cross section files from an ACE formatted cross section file or an evaluated nuclear data file. This paper explains the features of the new functions implemented in FRENDY version 2 and the verification of the neutron multigroup cross section generation function of this code.KEYWORDS: FRENDYnuclear data processingevaluated nuclear data libraryneutron multigroup cross section generationACEGENDFMATXSDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. Figure 1. Difference in the neutron multi-group cross section generation between a conventional code and FRENDY.Display full sizeFigure 2. Cross section of U-238 from JENDL-4.0 with and without resonance upscattering (MT=102, XMAS 172g).Display full sizeFigure 3. Secondary photon spectrum of Fe-56 from JENDL-4.0 (MT=102, Ein=12.5-12.8 MeV, VITAMIN-J 42g).Display full sizeFigure 4. Secondary photon spectrum of Fe-56 from JENDL-4.0 (MT=22, Ein=12.5-12.8 MeV, VITAMIN-J 42g).Display full sizeFigure 5. Example of the interpolation of energy with a ratio of 1:2 in the two-dimensional interpolation procedure.Display full sizeFigure 6. Comparison of secondary photon spectra of Fe-56 from JENDL-4.0 in each division number (MT=22, Ein=12.5-12.8 MeV, VITAMIN-J 42g)Display full sizeFigure 7. Secondary photon spectrum of Fe-56, MT=22, Ein=12 and 13 MeV from JENDL-4.0.Display full sizeFigure 8. Comparison of neutron spectra at the distance of 60 cm from the center of a 1 m radius Fe-56 sphere (JENDL-4.0, VITAMIN-B6 199g).Display full sizeFigure 9. Comparison of secondary photon spectra at the distance of 60 cm from the center of a 1 m radius Fe-56 sphere (JENDL-4.0, VITAMIN-J 42g).Display full size","PeriodicalId":16526,"journal":{"name":"Journal of Nuclear Science and Technology","volume":"9 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135678847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Whole core analysis of BEAVRS benchmark for hot zero Power condition using MVP3 with JENDL-5 利用MVP3和JENDL-5对热零功率条件下BEAVRS基准的全核分析
4区 工程技术 Q2 NUCLEAR SCIENCE & TECHNOLOGY Pub Date : 2023-11-06 DOI: 10.1080/00223131.2023.2279299
Motomu Suzuki, Yasunobu Nagaya
ABSTRACTWith the release of the latest Japanese evaluated nuclear data library JENDL-5, the prediction accuracy of JENDL-5 for neutronics parameters of the BEAVRS benchmark for the hot zero power condition was evaluated in this study. The criticality, control rod bank worth (CRW), isothermal temperature coefficient (ITC), and in-core detector signals were calculated and compared with the measured data for evaluation. For the criticality, the calculation-to-measurement (C/E) values varied between 1.0001 and 1.0045. Sensitivity analysis by replacing cross section data from the JENDL-4.0u1 with JENDL-5 revealed that 1H, 235U, 238U, and 16O significantly affected the criticality. The individual CRW agreed within 50 pcm, and total CRW also agreed within 100 pcm from the measured values. The ITC results calculated with a temperature deviation of 5.56 K case were negatively overestimated comparing with the measured values; whereas those of with 2.78 K were improved and agreed with the measured values within a standard deviation. The axial detector signals indicated a maximum relative error of 4.46% and the root mean squared error (RMSE) of 2.13%. The differences between the previous version of JENDL-4.0u1 and JENDL-5 were also investigated.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsThe authors thank Dr. Kenichi Tada of JAEA for the support in the handling FRENDY code, such as formatted cross section generation and plotting.Figure 1. Fuel assembly (Asm.), burnable absorber, and control rod bank layout (quarter rotational symmetry) [Citation28].Display full sizeFigure 2. Instrument tube positions [Citation28].Display full sizeFigure 3. Whole core calculation model of the horizontal plane at the axial mid-plane.Display full sizeFigure 4. Whole core calculation model of the vertical plane at the core center.Display full sizeFigure 5. Comparison of criticality between JENDL-4.0u1 and JENDL-5 for six cases with different boron concentrations and control rod bank conditions.Display full sizeFigure 6. Comparison of neutron spectra between JENDL-4.0u1 and JENDL-5 in ARO (D = 213 steps) case.Display full sizeFigure 7. Nuclide Substitution Reactivity of JENDL-4.0u1 with JENDL-5.Display full sizeFigure 8. Comparison of scattering cross sections of TSL data for 1H in H2O between JENDL-4.0u1 and JENDL-5.Display full sizeFigure 9. Comparison of capture cross sections of 16O between JENDL-4.0u1 and JENDL-5.Display full sizeFigure 10. Comparison of fission and capture cross sections of 235U between JENDL-4.0u1 and JENDL-5.Display full sizeFigure 11. Comparison of
摘要利用日本最新评估核数据库JENDL-5的发布,评估了JENDL-5对BEAVRS基准热零功率条件下中子参数的预测精度。计算了临界值、控制棒组值(CRW)、等温温度系数(ITC)和芯内探测器信号,并与实测数据进行了比较。对于临界,计算测量值(C/E)在1.0001和1.0045之间变化。用JENDL-5代替JENDL-4.0u1的截面数据进行敏感性分析,发现1H、235U、238U和16O对临界度有显著影响。个体CRW在50 pcm范围内一致,总CRW也在测量值的100 pcm范围内一致。与实测值相比,温度偏差为5.56 K的ITC计算结果被负高估;而在2.78 K条件下,测量值与实测值在一个标准偏差内一致。轴向检测器信号的最大相对误差为4.46%,均方根误差(RMSE)为2.13%。还研究了JENDL-4.0u1和JENDL-5之前版本之间的差异。免责声明作为对作者和研究人员的服务,我们提供了这个版本的已接受的手稿(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。作者感谢JAEA的Kenichi Tada博士在处理FRENDY代码方面的支持,例如格式化的截面生成和绘图。图1所示。燃料组件(Asm.),可燃吸收器和控制棒组布局(四分之一旋转对称)[Citation28]。显示完整尺寸图2仪表管位置[引文28]。显示完整尺寸图3整个岩心在轴向中平面的水平面计算模型。显示完整尺寸图4。整个岩心的计算模型为岩心中心垂直平面。显示完整尺寸图5JENDL-4.0u1和JENDL-5在不同硼浓度和控制棒组条件下的临界性比较显示完整尺寸图6JENDL-4.0u1与JENDL-5在ARO (D = 213步)情况下的中子能谱比较。显示完整尺寸图7。JENDL-4.0u1与JENDL-5的核素取代反应性。显示完整尺寸图8。JENDL-4.0u1与JENDL-5水中1H TSL数据散射截面比较显示完整尺寸图9。JENDL-4.0u1与JENDL-5的16O捕获截面比较。显示完整尺寸图10JENDL-4.0u1和JENDL-5的235U裂变和俘获截面比较。显示完整尺寸图11。JENDL-4.0u1和JENDL-5的238U裂变和俘获截面比较。显示完整尺寸图12JENDL-4.0u1和JENDL-5对235U裂变和俘获反应速率的比较。显示完整尺寸图13JENDL-4.0u1和JENDL-5对238U裂变和俘获反应速率的比较显示完整尺寸图14。每个控制棒组的计算值与实测值之间的反应性差。显示完整尺寸图15。各控制棒组插入条件下的ITC计算值与实测值的比较。显示完整尺寸图16。轴向集成探测器信号JENDL-4.0u1计算结果与实测值的比较。显示完整尺寸图17JENDL-5轴向积分探测器信号计算结果与实测值的比较。显示完整尺寸图18。燃料组件8(原组件j8)中探测器信号轴向分布计算结果与实测值的比较。显示完整尺寸图19。燃料组件e13(原组件c5)中探测器信号轴向分布计算结果与实测值的比较。显示完整尺寸。控制棒组值计算结果与实测数据的比较。下载CSVDisplay table表7。ITC计算结果与实测数据的比较。下载CSVDisplay table表8。JENDL-4.0u1和JENDL-5在控制棒组C和D插入情况下ITC、MTC和FTC的比较。下载csv显示表
{"title":"Whole core analysis of BEAVRS benchmark for hot zero Power condition using MVP3 with JENDL-5","authors":"Motomu Suzuki, Yasunobu Nagaya","doi":"10.1080/00223131.2023.2279299","DOIUrl":"https://doi.org/10.1080/00223131.2023.2279299","url":null,"abstract":"ABSTRACTWith the release of the latest Japanese evaluated nuclear data library JENDL-5, the prediction accuracy of JENDL-5 for neutronics parameters of the BEAVRS benchmark for the hot zero power condition was evaluated in this study. The criticality, control rod bank worth (CRW), isothermal temperature coefficient (ITC), and in-core detector signals were calculated and compared with the measured data for evaluation. For the criticality, the calculation-to-measurement (C/E) values varied between 1.0001 and 1.0045. Sensitivity analysis by replacing cross section data from the JENDL-4.0u1 with JENDL-5 revealed that 1H, 235U, 238U, and 16O significantly affected the criticality. The individual CRW agreed within 50 pcm, and total CRW also agreed within 100 pcm from the measured values. The ITC results calculated with a temperature deviation of 5.56 K case were negatively overestimated comparing with the measured values; whereas those of with 2.78 K were improved and agreed with the measured values within a standard deviation. The axial detector signals indicated a maximum relative error of 4.46% and the root mean squared error (RMSE) of 2.13%. The differences between the previous version of JENDL-4.0u1 and JENDL-5 were also investigated.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsThe authors thank Dr. Kenichi Tada of JAEA for the support in the handling FRENDY code, such as formatted cross section generation and plotting.Figure 1. Fuel assembly (Asm.), burnable absorber, and control rod bank layout (quarter rotational symmetry) [Citation28].Display full sizeFigure 2. Instrument tube positions [Citation28].Display full sizeFigure 3. Whole core calculation model of the horizontal plane at the axial mid-plane.Display full sizeFigure 4. Whole core calculation model of the vertical plane at the core center.Display full sizeFigure 5. Comparison of criticality between JENDL-4.0u1 and JENDL-5 for six cases with different boron concentrations and control rod bank conditions.Display full sizeFigure 6. Comparison of neutron spectra between JENDL-4.0u1 and JENDL-5 in ARO (D = 213 steps) case.Display full sizeFigure 7. Nuclide Substitution Reactivity of JENDL-4.0u1 with JENDL-5.Display full sizeFigure 8. Comparison of scattering cross sections of TSL data for 1H in H2O between JENDL-4.0u1 and JENDL-5.Display full sizeFigure 9. Comparison of capture cross sections of 16O between JENDL-4.0u1 and JENDL-5.Display full sizeFigure 10. Comparison of fission and capture cross sections of 235U between JENDL-4.0u1 and JENDL-5.Display full sizeFigure 11. Comparison of ","PeriodicalId":16526,"journal":{"name":"Journal of Nuclear Science and Technology","volume":"248 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135678745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of a HPGe detector response for activation cross section measurements: regression method versus Monte Carlo method 激活截面测量的HPGe探测器响应的表征:回归方法与蒙特卡罗方法
4区 工程技术 Q2 NUCLEAR SCIENCE & TECHNOLOGY Pub Date : 2023-11-06 DOI: 10.1080/00223131.2023.2278598
Valentina Semkova, Naohiko Otuka, Arjan J. M. Plompen
The full energy peak efficiencies and covariances of a high purity germanium (HPGe) detector determined by the regression method and Monte Carlo method were compared. The impact of the obtained results on the neutron activation cross sections measured relative to monitor cross sections was determined. In the regression method, the efficiencies measured for a set of calibration point sources were analysed by the least-squares analysis. In the Monte Carlo method, the efficiencies for the calibration point sources were calculated by MCNP. The covariances of the efficiencies determined by the regression method were calculated analytically. Perturbation analysis was performed to estimate the covariances of the efficiencies calculated by the Monte Carlo method. Positive correlations higher than 0.8 were found in the uncertainties of the MCNP data for point-like sources. In the case of the regression method, the correlation matrix contains both positive and negative terms. The efficiencies and their covariances were estimated by both methods to take into account sample effects such as geometrical effect and gamma-ray self-absorption and found considerable differences in the cross sections and their uncertainties for reaction products quantified with low energy gammas. The efficiencies and covariances were clearly affected by the properties of the sample.
比较了回归法和蒙特卡罗法测定的高纯锗(HPGe)探测器的全能量峰效率和协方差。测定了所得结果对中子活化截面相对于监测截面的影响。在回归方法中,采用最小二乘分析方法对一组标定点源的效率进行了分析。在蒙特卡罗方法中,利用MCNP计算了标定点源的效率。用回归法计算了各效率的协方差。用摄动分析估计了用蒙特卡罗方法计算的效率的协方差。对于点状源,MCNP数据的不确定性存在大于0.8的正相关。在回归方法的情况下,相关矩阵包含正负项。考虑到样品的几何效应和伽马射线自吸收等效应,两种方法的效率及其协方差都得到了估计,并发现用低能伽马量化的反应产物的截面及其不确定度有相当大的差异。效率和协方差明显受到样品性质的影响。
{"title":"Characterization of a HPGe detector response for activation cross section measurements: regression method versus Monte Carlo method","authors":"Valentina Semkova, Naohiko Otuka, Arjan J. M. Plompen","doi":"10.1080/00223131.2023.2278598","DOIUrl":"https://doi.org/10.1080/00223131.2023.2278598","url":null,"abstract":"The full energy peak efficiencies and covariances of a high purity germanium (HPGe) detector determined by the regression method and Monte Carlo method were compared. The impact of the obtained results on the neutron activation cross sections measured relative to monitor cross sections was determined. In the regression method, the efficiencies measured for a set of calibration point sources were analysed by the least-squares analysis. In the Monte Carlo method, the efficiencies for the calibration point sources were calculated by MCNP. The covariances of the efficiencies determined by the regression method were calculated analytically. Perturbation analysis was performed to estimate the covariances of the efficiencies calculated by the Monte Carlo method. Positive correlations higher than 0.8 were found in the uncertainties of the MCNP data for point-like sources. In the case of the regression method, the correlation matrix contains both positive and negative terms. The efficiencies and their covariances were estimated by both methods to take into account sample effects such as geometrical effect and gamma-ray self-absorption and found considerable differences in the cross sections and their uncertainties for reaction products quantified with low energy gammas. The efficiencies and covariances were clearly affected by the properties of the sample.","PeriodicalId":16526,"journal":{"name":"Journal of Nuclear Science and Technology","volume":"268 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135678928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EXFOR-Editor package for entering, processing and representing Nuclear reaction data in the EXFOR format EXFOR编辑器包,用于输入、处理和表示EXFOR格式的核反应数据
4区 工程技术 Q2 NUCLEAR SCIENCE & TECHNOLOGY Pub Date : 2023-10-31 DOI: 10.1080/00223131.2023.2271895
G.N. Pikulina, S.M. Taova
{"title":"EXFOR-Editor package for entering, processing and representing Nuclear reaction data in the EXFOR format","authors":"G.N. Pikulina, S.M. Taova","doi":"10.1080/00223131.2023.2271895","DOIUrl":"https://doi.org/10.1080/00223131.2023.2271895","url":null,"abstract":"","PeriodicalId":16526,"journal":{"name":"Journal of Nuclear Science and Technology","volume":"34 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135870047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent improvements of the particle and Heavy Ion transport code system – PHITS version 3.33 粒子和重离子输运代码系统的最新改进- PHITS 3.33版
4区 工程技术 Q2 NUCLEAR SCIENCE & TECHNOLOGY Pub Date : 2023-10-31 DOI: 10.1080/00223131.2023.2275736
Tatsuhiko Sato, Yosuke Iwamoto, Shintaro Hashimoto, Tatsuhiko Ogawa, Takuya Furuta, Shin-Ichiro Abe, Takeshi Kai, Yusuke Matsuya, Norihiro Matsuda, Yuho Hirata, Takuya Sekikawa, Lan Yao, Pi-En Tsai, Hunter N. Ratliff, Hiroshi Iwase, Yasuhito Sakaki, Kenta Sugihara, Nobuhiro Shigyo, Lembit Sihver, Koji Niita
The Particle and Heavy Ion Transport code System (PHITS) is a general-purpose Monte Carlo radiation transport code that can simulate the behavior of most particle species with energies up to 1 TeV (per nucleon for ions). Its new version, PHITS3.33, was recently developed and released to the public. In the new version, the compatibility with nuclear data libraries and the algorithm of the track-structure modes have been improved, and they are recommended to be used for certain simulation conditions. Some utility functions and software have been developed and integrated into the new PHITS package, such as PHITS Interactive Geometry viewer in 3D (PHIG-3D) and RadioTherapy packaged based on PHITS (RT-PHITS). With these upgraded features, PHITS can be applied in a wide diversity of fields – beyond traditional nuclear engineering domains – including cosmic-ray, environmental, medical, life, and material sciences. In this paper, we summarize the upgraded features of PHITS3.33 with respect to the physics models, utility functions, and application software introduced since the release of PHITS3.02 in 2017.
粒子和重离子输运码系统(PHITS)是一个通用的蒙特卡罗辐射输运码,可以模拟能量高达1tev(离子的每核子)的大多数粒子的行为。它的新版本PHITS3.33最近已开发并向公众发布。在新版本中,改进了与核数据库的兼容性和轨迹结构模式的算法,并推荐在某些仿真条件下使用。一些实用功能和软件已经开发并集成到新的PHITS软件包中,例如PHITS交互式三维几何查看器(PHIG-3D)和基于PHITS的放射治疗软件包(RT-PHITS)。凭借这些升级后的功能,PHITS可以应用于广泛的领域-超越传统的核工程领域-包括宇宙射线,环境,医学,生命和材料科学。本文总结了PHITS3.33自2017年PHITS3.02发布以来在物理模型、实用函数和应用软件方面的升级特性。
{"title":"Recent improvements of the particle and Heavy Ion transport code system – PHITS version 3.33","authors":"Tatsuhiko Sato, Yosuke Iwamoto, Shintaro Hashimoto, Tatsuhiko Ogawa, Takuya Furuta, Shin-Ichiro Abe, Takeshi Kai, Yusuke Matsuya, Norihiro Matsuda, Yuho Hirata, Takuya Sekikawa, Lan Yao, Pi-En Tsai, Hunter N. Ratliff, Hiroshi Iwase, Yasuhito Sakaki, Kenta Sugihara, Nobuhiro Shigyo, Lembit Sihver, Koji Niita","doi":"10.1080/00223131.2023.2275736","DOIUrl":"https://doi.org/10.1080/00223131.2023.2275736","url":null,"abstract":"The Particle and Heavy Ion Transport code System (PHITS) is a general-purpose Monte Carlo radiation transport code that can simulate the behavior of most particle species with energies up to 1 TeV (per nucleon for ions). Its new version, PHITS3.33, was recently developed and released to the public. In the new version, the compatibility with nuclear data libraries and the algorithm of the track-structure modes have been improved, and they are recommended to be used for certain simulation conditions. Some utility functions and software have been developed and integrated into the new PHITS package, such as PHITS Interactive Geometry viewer in 3D (PHIG-3D) and RadioTherapy packaged based on PHITS (RT-PHITS). With these upgraded features, PHITS can be applied in a wide diversity of fields – beyond traditional nuclear engineering domains – including cosmic-ray, environmental, medical, life, and material sciences. In this paper, we summarize the upgraded features of PHITS3.33 with respect to the physics models, utility functions, and application software introduced since the release of PHITS3.02 in 2017.","PeriodicalId":16526,"journal":{"name":"Journal of Nuclear Science and Technology","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135765824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Research on the design of a radiation biodevice based on a compact D-D neutron generator 基于紧凑D-D中子发生器的辐射生物装置设计研究
4区 工程技术 Q2 NUCLEAR SCIENCE & TECHNOLOGY Pub Date : 2023-10-31 DOI: 10.1080/00223131.2023.2276409
Dapeng Xu, Zhiqi Guo, Xu Yang, Xiaohou Bai, Zhiming Hu, Changqi Liu, Junrun Wang, Yu Zhang, Ze’en Yao
ABSTRACTIn this research, we used a self-developed compact D-D neutron generator and designed a neutron radiation biological device. The research results showed that lead was the material with the best neutron permeability; thus, hard lead was selected as the structural material for this device. Our research disclosed a phenomenon that differed from conventional wisdom, namely, the dose contribution of the neutrons reflected from the hard lead material at the top of the device was about twice that of the polyethylene material. Therefore, hard lead was also selected for the material of the top reflector in this device. The study also showed that the device had good dose uniformity, and the standard neutron absorption dose in each irradiation zone could be obtained according to the simulation results. This device may further promote the development of future research work such as neutron radiation biological effects and mutation breeding.KEYWORDS: D-D neutron generatorNeutronRadiation biodeviceAbsorption doseDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsThis work was Supported by the National Natural Science Foundation of China (No. 12075106), the Natural Science Foundation of Gansu Province (No. 20JR10RA607), and the Fundamental Research Funds for the Central Universities of China.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the Fundamental Research Funds for the Central Universities; National Natural Science Foundation of China [12075106]; Natural Science Foundation of Gansu Province [20JR10RA607].
在本研究中,我们采用自行研制的紧凑型D-D中子发生器,设计了一个中子辐射生物装置。研究结果表明,铅是中子渗透率最好的材料;因此,我们选择硬铅作为该装置的结构材料。我们的研究揭示了一个与传统观点不同的现象,即从设备顶部的硬铅材料反射的中子的剂量贡献大约是聚乙烯材料的两倍。因此,本装置顶部反射镜的材料也选用了硬铅。研究还表明,该装置具有良好的剂量均匀性,根据模拟结果可以得到各照射区的标准中子吸收剂量。该装置可进一步促进中子辐射生物效应和突变育种等未来研究工作的发展。关键词:D-D中子发生器中子辐射生物装置吸收剂量免责声明作为对作者和研究人员的服务,我们提供此版本的已接受稿件(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。国家自然科学基金项目(No. 12075106)、甘肃省自然科学基金项目(No. 20JR10RA607)和中央高校基本科研业务费专项资助。披露声明作者未报告潜在的利益冲突。本研究由中央高校基本科研业务费资助;国家自然科学基金[12075106];甘肃省自然科学基金项目[20JR10RA607]。
{"title":"Research on the design of a radiation biodevice based on a compact D-D neutron generator","authors":"Dapeng Xu, Zhiqi Guo, Xu Yang, Xiaohou Bai, Zhiming Hu, Changqi Liu, Junrun Wang, Yu Zhang, Ze’en Yao","doi":"10.1080/00223131.2023.2276409","DOIUrl":"https://doi.org/10.1080/00223131.2023.2276409","url":null,"abstract":"ABSTRACTIn this research, we used a self-developed compact D-D neutron generator and designed a neutron radiation biological device. The research results showed that lead was the material with the best neutron permeability; thus, hard lead was selected as the structural material for this device. Our research disclosed a phenomenon that differed from conventional wisdom, namely, the dose contribution of the neutrons reflected from the hard lead material at the top of the device was about twice that of the polyethylene material. Therefore, hard lead was also selected for the material of the top reflector in this device. The study also showed that the device had good dose uniformity, and the standard neutron absorption dose in each irradiation zone could be obtained according to the simulation results. This device may further promote the development of future research work such as neutron radiation biological effects and mutation breeding.KEYWORDS: D-D neutron generatorNeutronRadiation biodeviceAbsorption doseDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsThis work was Supported by the National Natural Science Foundation of China (No. 12075106), the Natural Science Foundation of Gansu Province (No. 20JR10RA607), and the Fundamental Research Funds for the Central Universities of China.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the Fundamental Research Funds for the Central Universities; National Natural Science Foundation of China [12075106]; Natural Science Foundation of Gansu Province [20JR10RA607].","PeriodicalId":16526,"journal":{"name":"Journal of Nuclear Science and Technology","volume":"208 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135929239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and computational verifications of the dose calculation accuracy of PHITS for high-energy photon beam therapy PHITS用于高能光子束治疗的剂量计算精度的实验和计算验证
4区 工程技术 Q2 NUCLEAR SCIENCE & TECHNOLOGY Pub Date : 2023-10-26 DOI: 10.1080/00223131.2023.2275737
Naoya Kuga, Takuro Shiiba, Tatsuhiko Sato, Shintaro Hashimoto, Yasuyoshi Kuroiwa
{"title":"Experimental and computational verifications of the dose calculation accuracy of PHITS for high-energy photon beam therapy","authors":"Naoya Kuga, Takuro Shiiba, Tatsuhiko Sato, Shintaro Hashimoto, Yasuyoshi Kuroiwa","doi":"10.1080/00223131.2023.2275737","DOIUrl":"https://doi.org/10.1080/00223131.2023.2275737","url":null,"abstract":"","PeriodicalId":16526,"journal":{"name":"Journal of Nuclear Science and Technology","volume":"13 2-3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134908441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
High temperature electrochemical reaction parameters affecting electrochemical corrosion potential of stainless steels in hydrogen peroxide environment 高温电化学反应参数对不锈钢在过氧化氢环境下电化学腐蚀电位的影响
4区 工程技术 Q2 NUCLEAR SCIENCE & TECHNOLOGY Pub Date : 2023-10-26 DOI: 10.1080/00223131.2023.2273469
Yoichi Wada, Kazushige Ishida, Masahiko Tachibana, Mayu Sasaki, Makoto Nagase, Ryosuke Shimizu
{"title":"High temperature electrochemical reaction parameters affecting electrochemical corrosion potential of stainless steels in hydrogen peroxide environment","authors":"Yoichi Wada, Kazushige Ishida, Masahiko Tachibana, Mayu Sasaki, Makoto Nagase, Ryosuke Shimizu","doi":"10.1080/00223131.2023.2273469","DOIUrl":"https://doi.org/10.1080/00223131.2023.2273469","url":null,"abstract":"","PeriodicalId":16526,"journal":{"name":"Journal of Nuclear Science and Technology","volume":"8 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134908151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement of neutron spectra for various thicknesses of concrete and steel shielding at 24-GeV/c proton beam facility using Bonner sphere spectrometer 用邦纳球谱仪测量24 gev /c质子束装置中不同厚度混凝土和钢屏蔽层的中子能谱
4区 工程技术 Q2 NUCLEAR SCIENCE & TECHNOLOGY Pub Date : 2023-10-26 DOI: 10.1080/00223131.2023.2274933
Tetsuro Matsumoto, Akihiko Masuda, Eunji Lee, Toshiya Sanami, Takahiro Oyama, Tsuyoshi Kajimoto, Noriaki Nakao, Hiroshi Yashima, Seiji Nagaguro, Yoshitomo Uwamino, Seiya Manabe, Nobuhiro Shigyo, Hideki Harano, Robert Froeschl, Elpida Iliopoulou, Angelo Infantino, Stefan Roesler, Markus Brugger
ABSTRACTNeutron energy spectra down to thermal energy were measured using a Bonner sphere spectrometer (BSS) for various thicknesses of concrete and steel shielding at the CERN/CHARM facility, where high-energy neutrons were produced by 24-GeV/c protons incident on a thick copper target. The thicknesses of the concrete and steel shielding blocks ranged from 40 cm to 200 cm and from 20 cm to 80 cm, respectively. The BSS consisted of a spherical 3He proportional counter and five polyethylene moderators with diameters of 7.62 cm, 10.2 cm, 12.7 cm, 17.8 cm, and 24.1 cm, respectively. In addition, polyethylene moderators combined with a lead or copper inner shell were used to increase the sensitivity to high-energy neutrons. The neutron energy spectra were deduced using an unfolding method. The initial guesses were obtained using the PHITS code for each experimental geometry. The response function for the BSS was determined using the MCNP6.2 code with JENDL-4.0/HE. The neutron energy spectra over the entire energy region from 10−4 eV to 10 GeV were successfully obtained for the different shielding conditions. The validity of the response function and the contribution of each moderator are discussed referring to previous studies and tests at the standard neutron fields of AIST.KEYWORDS: Neutronsconcrete shieldingsteel shieldinghigh-energy neutronsBonner sphere spectrometerunfoldingDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. Additional informationFundingThis study was supported by the Tsukuba Innovation Arena (TIA) collaborative research program “Kakehashi”.
在CERN/CHARM装置上,用24gev /c质子撞击厚铜靶产生高能中子,利用Bonner球谱仪(BSS)测量了不同厚度的混凝土和钢屏蔽层的中子能谱至热能。混凝土屏蔽块厚度为40 ~ 200 cm,钢屏蔽块厚度为20 ~ 80 cm。BSS由一个球形3He比例计数器和5个直径分别为7.62 cm、10.2 cm、12.7 cm、17.8 cm和24.1 cm的聚乙烯缓和剂组成。此外,聚乙烯减速剂与铅或铜的内壳相结合,以提高对高能中子的灵敏度。用展开法推导了中子能谱。使用PHITS代码对每个实验几何图形进行初始猜测。采用JENDL-4.0/HE的MCNP6.2代码确定BSS的响应函数。在不同的屏蔽条件下,成功地获得了从10−4 eV到10 GeV的整个能量区域的中子能谱。参考前人在AIST标准中子场的研究和试验,讨论了响应函数的有效性和各慢化剂的贡献。关键词:中子,混凝土屏蔽,钢屏蔽,高能中子,邦纳球光谱仪,展开免责声明作为对作者和研究人员的服务,我们提供这个版本的接受稿件(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。本研究得到筑波创新竞技场(TIA)合作研究项目“Kakehashi”的支持。
{"title":"Measurement of neutron spectra for various thicknesses of concrete and steel shielding at 24-GeV/c proton beam facility using Bonner sphere spectrometer","authors":"Tetsuro Matsumoto, Akihiko Masuda, Eunji Lee, Toshiya Sanami, Takahiro Oyama, Tsuyoshi Kajimoto, Noriaki Nakao, Hiroshi Yashima, Seiji Nagaguro, Yoshitomo Uwamino, Seiya Manabe, Nobuhiro Shigyo, Hideki Harano, Robert Froeschl, Elpida Iliopoulou, Angelo Infantino, Stefan Roesler, Markus Brugger","doi":"10.1080/00223131.2023.2274933","DOIUrl":"https://doi.org/10.1080/00223131.2023.2274933","url":null,"abstract":"ABSTRACTNeutron energy spectra down to thermal energy were measured using a Bonner sphere spectrometer (BSS) for various thicknesses of concrete and steel shielding at the CERN/CHARM facility, where high-energy neutrons were produced by 24-GeV/c protons incident on a thick copper target. The thicknesses of the concrete and steel shielding blocks ranged from 40 cm to 200 cm and from 20 cm to 80 cm, respectively. The BSS consisted of a spherical 3He proportional counter and five polyethylene moderators with diameters of 7.62 cm, 10.2 cm, 12.7 cm, 17.8 cm, and 24.1 cm, respectively. In addition, polyethylene moderators combined with a lead or copper inner shell were used to increase the sensitivity to high-energy neutrons. The neutron energy spectra were deduced using an unfolding method. The initial guesses were obtained using the PHITS code for each experimental geometry. The response function for the BSS was determined using the MCNP6.2 code with JENDL-4.0/HE. The neutron energy spectra over the entire energy region from 10−4 eV to 10 GeV were successfully obtained for the different shielding conditions. The validity of the response function and the contribution of each moderator are discussed referring to previous studies and tests at the standard neutron fields of AIST.KEYWORDS: Neutronsconcrete shieldingsteel shieldinghigh-energy neutronsBonner sphere spectrometerunfoldingDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. Additional informationFundingThis study was supported by the Tsukuba Innovation Arena (TIA) collaborative research program “Kakehashi”.","PeriodicalId":16526,"journal":{"name":"Journal of Nuclear Science and Technology","volume":"60 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136381339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of correlations in uncertainties of total cross section and elastic angular distribution for a deep-penetration of 14-MeV neutrons in Cu 14-MeV中子深穿透Cu的总截面和弹性角分布不确定度相关性的影响
4区 工程技术 Q2 NUCLEAR SCIENCE & TECHNOLOGY Pub Date : 2023-10-24 DOI: 10.1080/00223131.2023.2272759
Naoki Yamano, Satoshi Chiba, Tsunenori Inakura, Chikako Ishizuka
ABSTRACTUncertainty in neutron reaction rates after penetrating a thick copper benchmark assembly was estimated based on two different kinds of Total Monte Carlo methods under random sampling methodology. 500 random nuclear data files were generated for 63Cu by Bayesian Monte-Carlo method by perturbing underlying nuclear model parameters. In the first method, these files were used directly to generate processed libraries preserving all the correlations among different physical quantities. In the second method, the random files generated in the first method were used but the angular distributions of elastic scattering were kept fixed to those of the non-perturbed nominal one. It was found that the two methods gave the same neutron reaction rate after 608 mm penetration of a copper. However, the uncertainty of the first method was smaller than that of the second method. It shows that the correlation between angular distribution of elastic scattering at 0 degrees and total cross section, which stems from Wick’s inequality, affects uncertainty of the calculated neutron reaction rate. It could be concluded that the uncertainty obtained by using the covariance files given in the ENDF-6 format may not give correct results for the uncertainty of neutron penetration calculations.KEYWORDS: Uncertainty of nuclear datacovariancecross-sections14MeV neutron63Cutotal Monte Carlo methodcorrelation of different physical quantitiesfusion neutronicsDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. Competing interestsThe authors declare that they have no competing interests.Figure 1. Calculation scheme of cross section and associated covariance (T6, upper part), and the Total Monte Carlo (TMC) method (lower part). TANES and TAFIS in T6 were not used in the present work.Display full sizeFigure 2. 63Cu neutron total cross sections estimated by T6 system (gray lines) compared with ENDF/B-VIII.0 (red line) and experimental data and the errors [Citation15–20].Display full sizeFigure 3. 63Cu neutron elastic cross sections estimated by T6 system (gray lines) compared with ENDF/B-VIII.0 (red line) and experimental data [Citation21–24].Display full sizeFigure 4. Computational geometry model of FNS copper benchmark experiment.Display full sizeFigure 5. Comparison of 90Zr(n,2n)89Zr reaction rate distribution and the standard deviation between T6 and the result ignoring perturbation of angular distribution.Display full sizeFigure 6. Comparison of 59Co(n,α)56Mn reaction rate distribution and the standard deviation between T6 and the result ignoring perturbation of angular distribution.Display fu
摘要在随机抽样方法下,采用两种不同的Total Monte Carlo方法估计了穿透厚铜基准组件后中子反应速率的不确定性。采用贝叶斯蒙特卡罗方法,通过扰动底层核模型参数,生成了500个随机核数据文件。在第一种方法中,这些文件被直接用于生成保留不同物理量之间所有相关性的处理库。第二种方法利用第一种方法产生的随机文件,但保持弹性散射角分布不变,不变为无扰动标称散射角分布。结果表明,两种方法在铜的608 mm穿透后的中子反应速率相同。然而,第一种方法的不确定度小于第二种方法。结果表明,由Wick不等式引起的0度弹性散射角分布与总截面的相关性影响了中子反应速率计算的不确定性。可以得出结论,用ENDF-6格式给出的协方差文件得到的不确定度不能给出中子侵彻计算的不确定度的正确结果。关键词:核数据的不确定性协方差横截面14mev中子总量蒙特卡罗方法不同物理量的相关性聚变中子免责声明作为对作者和研究人员的服务,我们提供此版本的已接受稿件(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。竞争利益作者声明他们没有竞争利益。图1所示。截面及相关协方差的计算方案(T6,上半部分)和Total Monte Carlo (TMC)方法(下半部分)。T6中的TANES和TAFIS在本工作中未被使用。显示完整尺寸图2T6系统估算的63Cu中子总截面(灰线)与ENDF/B-VIII.0的比较(红线)和实验数据及误差[Citation15-20]。显示完整尺寸图3T6系统估算的63Cu中子弹性截面(灰线)与ENDF/B-VIII.0的比较(红线)和实验数据[Citation21-24]。显示完整尺寸图4。FNS铜基准实验计算几何模型。显示完整尺寸图5比较90Zr(n,2n)89Zr反应速率分布及T6与忽略角分布扰动结果的标准差。显示完整尺寸图659Co(n,α)56Mn反应速率分布及T6与忽略角分布扰动结果的标准差比较。显示完整尺寸图7。比较56Fe(n,p)56Mn反应速率分布及T6与忽略角分布扰动结果的标准差。显示完整尺寸图8。64Zn(n,p)64Cu反应速率分布及T6与忽略角分布扰动结果的标准差比较。显示完整尺寸图9。115In(n,n ')115mIn反应速率分布与T6与忽略角分布扰动结果的标准差比较。显示完整尺寸图10比较55Mn(n,γ)56Mn的反应速率分布和T6与忽略角分布扰动的结果之间的标准差。显示完整尺寸图11。63Cu(n,γ)64Cu的反应速率分布及T6与忽略角分布扰动结果的标准差比较。显示完整尺寸图12T6生成的1000个随机文件的63Cu总截面与0度弹性散射截面的相关性入射中子能量为14兆电子伏。显示完整尺寸图13T6生成的1000个随机文件的63Cu总截面与0度弹性散射截面的相关性入射中子能量为2.2 MeV。显示完整尺寸图14。T6生成的1000个随机文件的63Cu总截面与0度弹性散射截面的相关性入射中子能量为1.0兆电子伏。显示完整尺寸图15。T6生成的1000个随机文件的63Cu总截面与0度弹性散射截面的相关性入射中子能量为0.2兆电子伏。全尺寸显示
{"title":"Effects of correlations in uncertainties of total cross section and elastic angular distribution for a deep-penetration of 14-MeV neutrons in Cu","authors":"Naoki Yamano, Satoshi Chiba, Tsunenori Inakura, Chikako Ishizuka","doi":"10.1080/00223131.2023.2272759","DOIUrl":"https://doi.org/10.1080/00223131.2023.2272759","url":null,"abstract":"ABSTRACTUncertainty in neutron reaction rates after penetrating a thick copper benchmark assembly was estimated based on two different kinds of Total Monte Carlo methods under random sampling methodology. 500 random nuclear data files were generated for 63Cu by Bayesian Monte-Carlo method by perturbing underlying nuclear model parameters. In the first method, these files were used directly to generate processed libraries preserving all the correlations among different physical quantities. In the second method, the random files generated in the first method were used but the angular distributions of elastic scattering were kept fixed to those of the non-perturbed nominal one. It was found that the two methods gave the same neutron reaction rate after 608 mm penetration of a copper. However, the uncertainty of the first method was smaller than that of the second method. It shows that the correlation between angular distribution of elastic scattering at 0 degrees and total cross section, which stems from Wick’s inequality, affects uncertainty of the calculated neutron reaction rate. It could be concluded that the uncertainty obtained by using the covariance files given in the ENDF-6 format may not give correct results for the uncertainty of neutron penetration calculations.KEYWORDS: Uncertainty of nuclear datacovariancecross-sections14MeV neutron63Cutotal Monte Carlo methodcorrelation of different physical quantitiesfusion neutronicsDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. Competing interestsThe authors declare that they have no competing interests.Figure 1. Calculation scheme of cross section and associated covariance (T6, upper part), and the Total Monte Carlo (TMC) method (lower part). TANES and TAFIS in T6 were not used in the present work.Display full sizeFigure 2. 63Cu neutron total cross sections estimated by T6 system (gray lines) compared with ENDF/B-VIII.0 (red line) and experimental data and the errors [Citation15–20].Display full sizeFigure 3. 63Cu neutron elastic cross sections estimated by T6 system (gray lines) compared with ENDF/B-VIII.0 (red line) and experimental data [Citation21–24].Display full sizeFigure 4. Computational geometry model of FNS copper benchmark experiment.Display full sizeFigure 5. Comparison of 90Zr(n,2n)89Zr reaction rate distribution and the standard deviation between T6 and the result ignoring perturbation of angular distribution.Display full sizeFigure 6. Comparison of 59Co(n,α)56Mn reaction rate distribution and the standard deviation between T6 and the result ignoring perturbation of angular distribution.Display fu","PeriodicalId":16526,"journal":{"name":"Journal of Nuclear Science and Technology","volume":"66 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135315854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Nuclear Science and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1