首页 > 最新文献

Journal of Neurochemistry最新文献

英文 中文
o1 and Gαo1/Gαo2 deletion differentially affect hippocampal mossy fiber tract anatomy and neuronal morphogenesis. Gαo1和Gαo1/Gαo2缺失会对海马苔藓纤维束解剖结构和神经元形态发生产生不同影响。
IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-28 DOI: 10.1111/jnc.16248
Markus Höltje, Anton Wolkowicz, Irene Brunk, Jens Baron, Gudrun Ahnert-Hilger

The heterotrimeric G-protein αo subunit is ubiquitously expressed in the CNS as two splice variants Gαo1 and Gαo2, regulating various brain functions. Here, we investigated the effect of single Gαo1, Gαo2, and double Gαo1/2 knockout on the postnatal development of the murine mossy fiber tract, a central pathway of the hippocampal connectivity circuit. The size of the hippocampal synaptic termination fields covered by mossy fiber boutons together with various fiber length parameters of the tract was analyzed by immunohistochemical staining of the vesicular Zinc transporter 3 (ZnT3) or Synaptoporin at postnatal days 2, 4, 8, 12, 16, and in the adult. Ultimately, Gαo1 knockout resulted in a reduced developmental growth of synaptic mossy fiber terminal fields by 37% in the adult Stratum lucidum and by 30% in the total mossy fiber tract size. Other morphological parameters such as projection length of the infrapyramidal bundle of the tract were increased (+52% in Gαo1 -/- mice). In contrast, Gαo2 knockout had no effects on the mossy fiber tract. Moreover, by using primary heterozygous and homozygous Gαo1 knockout hippocampal cultures, we detected a strongly pronounced reduction in axon and dendrite length (-50% and -38%, respectively) as well as axon and dendrite arborization complexity (-75% and -72% branch nodes, respectively) in the homozygous knockout. Deletion of both splice variants Gαo1 and Gαo2 partially rescued the in vivo and completely reconstituted the in vitro effects, indicating an opposing functional relevance of the two Gαo splice variants for neuronal development and synaptic connectivity.

异三聚体G蛋白αo亚基在中枢神经系统中以两种剪接变体Gαo1和Gαo2的形式普遍表达,调控着大脑的各种功能。在这里,我们研究了单Gαo1、Gαo2和双Gαo1/2敲除对小鼠苔藓纤维束(海马连接回路的中心通路)出生后发育的影响。在小鼠出生后第2、4、8、12、16天和成年后,通过对囊泡锌转运体3(ZnT3)或突触素进行免疫组化染色,分析了苔藓纤维束覆盖的海马突触终止区的大小以及苔藓纤维束的各种纤维长度参数。最终,Gαo1基因敲除导致突触苔藓纤维末端场的发育生长在成年后的透明层中减少了37%,苔藓纤维束的总大小减少了30%。其他形态学参数,如束下锥体束的投射长度也有所增加(Gαo1 -/-小鼠的投射长度增加了52%)。相比之下,Gαo2基因敲除对苔藓纤维束没有影响。此外,通过使用原代杂合和同源Gαo1基因敲除的海马培养物,我们检测到同源基因敲除小鼠的轴突和树突长度(分别为-50%和-38%)以及轴突和树突分枝复杂性(分别为-75%和-72%的分枝结点)均明显下降。删除两个剪接变体 Gαo1 和 Gαo2 部分挽救了体内效应,并完全恢复了体外效应,这表明两个 Gαo 剪接变体对神经元发育和突触连接具有相反的功能相关性。
{"title":"Gα<sub>o1</sub> and Gα<sub>o1</sub>/Gα<sub>o2</sub> deletion differentially affect hippocampal mossy fiber tract anatomy and neuronal morphogenesis.","authors":"Markus Höltje, Anton Wolkowicz, Irene Brunk, Jens Baron, Gudrun Ahnert-Hilger","doi":"10.1111/jnc.16248","DOIUrl":"https://doi.org/10.1111/jnc.16248","url":null,"abstract":"<p><p>The heterotrimeric G-protein αo subunit is ubiquitously expressed in the CNS as two splice variants Gα<sub>o1</sub> and Gα<sub>o2</sub>, regulating various brain functions. Here, we investigated the effect of single Gα<sub>o1</sub>, Gα<sub>o2</sub>, and double Gα<sub>o1/2</sub> knockout on the postnatal development of the murine mossy fiber tract, a central pathway of the hippocampal connectivity circuit. The size of the hippocampal synaptic termination fields covered by mossy fiber boutons together with various fiber length parameters of the tract was analyzed by immunohistochemical staining of the vesicular Zinc transporter 3 (ZnT3) or Synaptoporin at postnatal days 2, 4, 8, 12, 16, and in the adult. Ultimately, Gα<sub>o1</sub> knockout resulted in a reduced developmental growth of synaptic mossy fiber terminal fields by 37% in the adult Stratum lucidum and by 30% in the total mossy fiber tract size. Other morphological parameters such as projection length of the infrapyramidal bundle of the tract were increased (+52% in Gα<sub>o1</sub> <sup>-/-</sup> mice). In contrast, Gα<sub>o2</sub> knockout had no effects on the mossy fiber tract. Moreover, by using primary heterozygous and homozygous Gα<sub>o1</sub> knockout hippocampal cultures, we detected a strongly pronounced reduction in axon and dendrite length (-50% and -38%, respectively) as well as axon and dendrite arborization complexity (-75% and -72% branch nodes, respectively) in the homozygous knockout. Deletion of both splice variants Gα<sub>o1</sub> and Gα<sub>o2</sub> partially rescued the in vivo and completely reconstituted the in vitro effects, indicating an opposing functional relevance of the two Gα<sub>o</sub> splice variants for neuronal development and synaptic connectivity.</p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-species translational paradigms for assessing positive valence system as defined by the RDoC matrix. 根据 RDoC 矩阵的定义,评估正价系统的跨物种转化范式。
IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-28 DOI: 10.1111/jnc.16243
Tyler D Dexter, Benjamin Z Roberts, Samantha M Ayoub, Michael Noback, Samuel A Barnes, Jared W Young

Functions associated with processing reward-related information are fundamental drivers of motivation, learning, and goal-directed behavior. Such functions have been classified as the positive valence system under the Research Domain and Criteria (RDoC) criteria and are negatively impacted across a range of psychiatric disorders and mental illnesses. The positive valence system is composed of three comprehensive categories containing related but dissociable functions that are organized into either Reward Responsiveness, Reward Learning, or Reward Valuation. The presence of overlapping behavioral dysfunction across diagnostic mental disorders is in-part what motivated the RDoC initiative, which emphasized that the study of mental illness focus on investigating relevant behavior and cognitive functions and their underlying mechanisms, rather than separating efforts on diagnostic categories (i.e., transdiagnostic). Moreover, the RDoC approach is well-suited for preclinical neuroscience research, as the rise in genetic toolboxes and associated neurotechnologies enables researchers to probe specific cellular targets with high specificity. Thus, there is an opportunity to dissect whether behaviors and cognitive functions are supported by shared or distinct neural mechanisms. For preclinical research to effectively inform our understandings of human behavior however, the cognitive and behavioral paradigms should have predictive, neurobiological, and pharmacological predictive validity to the human test. Touchscreen-based testing systems provide a further advantage for this endeavor enabling tasks to be presented to animals using the same media and task design as in humans. Here, we outline the primary categories of the positive valence system and review the work that has been done cross-species to investigate the neurobiology and neurochemistry underlying reward-related functioning. Additionally, we provide clinical tasks outlined by RDoC, along with validity and/or need for further validation for analogous rodent paradigms with a focus on implementing the touchscreen-based cognitive testing systems.

与处理奖励相关信息有关的功能是动机、学习和目标导向行为的基本驱动力。根据《研究领域与标准》(RDoC)标准,这些功能被归类为正价系统,并在一系列精神障碍和心理疾病中受到负面影响。正价系统由三个综合类别组成,包含相关但可分离的功能,分别归类为奖赏反应、奖赏学习或奖赏评价。RDoC倡议强调,精神疾病研究的重点是调查相关的行为和认知功能及其内在机制,而不是将诊断类别分开(即跨诊断)。此外,RDoC 方法非常适合临床前神经科学研究,因为基因工具箱和相关神经技术的兴起使研究人员能够以高度特异性探查特定的细胞靶标。因此,有机会剖析行为和认知功能是由共同的神经机制支持还是由不同的神经机制支持。不过,要使临床前研究能有效地帮助我们理解人类行为,认知和行为范例应该对人类测试具有预测性、神经生物学和药理学预测有效性。基于触摸屏的测试系统为这项工作提供了进一步的优势,它可以使用与人类相同的媒介和任务设计向动物展示任务。在此,我们概述了积极情绪系统的主要类别,并回顾了跨物种研究奖励相关功能的神经生物学和神经化学的工作。此外,我们还提供了 RDoC 概述的临床任务,以及类似啮齿类动物范例的有效性和/或进一步验证的必要性,重点是实施基于触摸屏的认知测试系统。
{"title":"Cross-species translational paradigms for assessing positive valence system as defined by the RDoC matrix.","authors":"Tyler D Dexter, Benjamin Z Roberts, Samantha M Ayoub, Michael Noback, Samuel A Barnes, Jared W Young","doi":"10.1111/jnc.16243","DOIUrl":"https://doi.org/10.1111/jnc.16243","url":null,"abstract":"<p><p>Functions associated with processing reward-related information are fundamental drivers of motivation, learning, and goal-directed behavior. Such functions have been classified as the positive valence system under the Research Domain and Criteria (RDoC) criteria and are negatively impacted across a range of psychiatric disorders and mental illnesses. The positive valence system is composed of three comprehensive categories containing related but dissociable functions that are organized into either Reward Responsiveness, Reward Learning, or Reward Valuation. The presence of overlapping behavioral dysfunction across diagnostic mental disorders is in-part what motivated the RDoC initiative, which emphasized that the study of mental illness focus on investigating relevant behavior and cognitive functions and their underlying mechanisms, rather than separating efforts on diagnostic categories (i.e., transdiagnostic). Moreover, the RDoC approach is well-suited for preclinical neuroscience research, as the rise in genetic toolboxes and associated neurotechnologies enables researchers to probe specific cellular targets with high specificity. Thus, there is an opportunity to dissect whether behaviors and cognitive functions are supported by shared or distinct neural mechanisms. For preclinical research to effectively inform our understandings of human behavior however, the cognitive and behavioral paradigms should have predictive, neurobiological, and pharmacological predictive validity to the human test. Touchscreen-based testing systems provide a further advantage for this endeavor enabling tasks to be presented to animals using the same media and task design as in humans. Here, we outline the primary categories of the positive valence system and review the work that has been done cross-species to investigate the neurobiology and neurochemistry underlying reward-related functioning. Additionally, we provide clinical tasks outlined by RDoC, along with validity and/or need for further validation for analogous rodent paradigms with a focus on implementing the touchscreen-based cognitive testing systems.</p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypertension is associated with the reduction in epidermal small fibres independently of sural nerve inflammation in type 2 diabetic subjects. 高血压与 2 型糖尿病患者表皮小纤维的减少有关,而与硬神经炎症无关。
IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-25 DOI: 10.1111/jnc.16235
Zhenchao Wang, Hanae Kushibiki, Takefusa Tarusawa, Sho Osonoi, Saori Ogasawara, Chinatsu Miura, Takanori Sasaki, Masaki Ryuzaki, Soroku Yagihashi, Hiroki Mizukami

Diabetic polyneuropathy (DPN) is a multifactorial disease associated not only with hyperglycaemia but also with circulatory disturbances such as hypertension. A close interaction between the immune system and hypertension is known. It remains unclear whether the inflammatory response is associated with hypertension in the pathology of human DPN. Autopsied patients were evaluated: 7 non-diabetic patients (nDM), 11 non-diabetic patients with hypertension (nDMHT), 6 patients with diabetes (DM) and 9 patients with hypertension and diabetes (DMHT). Intraepidermal nerve fibre density (IENFD) was examined by immunofluorescent staining. Dissected sural nerve (SNs) were morphometrically quantified. Dermal and endoneurial macrophage infiltration was evaluated by double immunostaining using anti-CD68 and anti-CD206 antibodies. IENFD was significantly decreased in DM compared to nDM (p < 0.05) and was further decreased in DMHT (p < 0.05). Myelinated nerve fibre density (MNFD) in the SN was significantly decreased in DM compared with nDM (p < 0.05) and further decreased in DMHT (p < 0.01 vs. DM). The infiltration of CD206-/CD68+ proinflammatory macrophages in the SN was significantly increased in DM compared to nDM (p < 0.05), whilst the number of CD206+/CD68+ anti-inflammatory macrophages was decreased in DM (p < 0.05). Hypertension had no impact on macrophage infiltration. The ratio of CD206- and CD206+ macrophage was negatively correlated with MNFD (r = 0.42, p < 0.05) but not IENFD (r = 0.30, p = 0.09). Dermal CD206+ macrophage infiltration was similar amongst all groups. Diabetes complicated by hypertension significantly increased the total diffusion barrier thickness (p < 0.01 vs. DM). Total diffusion barrier thickness was inversely correlated with both IENFD (r = -0.59, p < 0.01) and MNFD (r =-0.62, p < 0.01). Our results suggest that vascular factors and inflammation might be synergistically involved in pathological changes in human diabetic patients through different mechanisms.

糖尿病多发性神经病(DPN)是一种多因素疾病,不仅与高血糖有关,还与高血压等循环障碍有关。众所周知,免疫系统与高血压之间存在密切的相互作用。在人类 DPN 的病理过程中,炎症反应是否与高血压有关仍不清楚。对尸检患者进行了评估:其中包括 7 名非糖尿病患者(nDM)、11 名患有高血压的非糖尿病患者(nDMHT)、6 名糖尿病患者(DM)和 9 名患有高血压和糖尿病的患者(DMHT)。采用免疫荧光染色法检测表皮内神经纤维密度(IENFD)。对解剖的鞍神经(SN)进行形态计量。使用抗-CD68和抗-CD206抗体进行双重免疫染色,评估真皮和内皮巨噬细胞浸润情况。与 nDM 相比,DM 的 IENFD 明显降低(p -/CD68+促炎巨噬细胞在 SN 中的浸润在 DM 中明显增加,与 nDM 相比,p +/CD68+抗炎巨噬细胞在 DM 中减少(p - 和 CD206+ 巨噬细胞与 MNFD 呈负相关(r = 0.42,p + 巨噬细胞浸润在所有组中相似)。糖尿病并发高血压明显增加了总弥散屏障厚度(p
{"title":"Hypertension is associated with the reduction in epidermal small fibres independently of sural nerve inflammation in type 2 diabetic subjects.","authors":"Zhenchao Wang, Hanae Kushibiki, Takefusa Tarusawa, Sho Osonoi, Saori Ogasawara, Chinatsu Miura, Takanori Sasaki, Masaki Ryuzaki, Soroku Yagihashi, Hiroki Mizukami","doi":"10.1111/jnc.16235","DOIUrl":"https://doi.org/10.1111/jnc.16235","url":null,"abstract":"<p><p>Diabetic polyneuropathy (DPN) is a multifactorial disease associated not only with hyperglycaemia but also with circulatory disturbances such as hypertension. A close interaction between the immune system and hypertension is known. It remains unclear whether the inflammatory response is associated with hypertension in the pathology of human DPN. Autopsied patients were evaluated: 7 non-diabetic patients (nDM), 11 non-diabetic patients with hypertension (nDMHT), 6 patients with diabetes (DM) and 9 patients with hypertension and diabetes (DMHT). Intraepidermal nerve fibre density (IENFD) was examined by immunofluorescent staining. Dissected sural nerve (SNs) were morphometrically quantified. Dermal and endoneurial macrophage infiltration was evaluated by double immunostaining using anti-CD68 and anti-CD206 antibodies. IENFD was significantly decreased in DM compared to nDM (p < 0.05) and was further decreased in DMHT (p < 0.05). Myelinated nerve fibre density (MNFD) in the SN was significantly decreased in DM compared with nDM (p < 0.05) and further decreased in DMHT (p < 0.01 vs. DM). The infiltration of CD206<sup>-</sup>/CD68<sup>+</sup> proinflammatory macrophages in the SN was significantly increased in DM compared to nDM (p < 0.05), whilst the number of CD206<sup>+</sup>/CD68<sup>+</sup> anti-inflammatory macrophages was decreased in DM (p < 0.05). Hypertension had no impact on macrophage infiltration. The ratio of CD206<sup>-</sup> and CD206<sup>+</sup> macrophage was negatively correlated with MNFD (r = 0.42, p < 0.05) but not IENFD (r = 0.30, p = 0.09). Dermal CD206<sup>+</sup> macrophage infiltration was similar amongst all groups. Diabetes complicated by hypertension significantly increased the total diffusion barrier thickness (p < 0.01 vs. DM). Total diffusion barrier thickness was inversely correlated with both IENFD (r = -0.59, p < 0.01) and MNFD (r =-0.62, p < 0.01). Our results suggest that vascular factors and inflammation might be synergistically involved in pathological changes in human diabetic patients through different mechanisms.</p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of the glucagon-like peptide-1 receptor agonists on diabetic peripheral neuropathy: A meta-analysis. 胰高血糖素样肽-1 受体激动剂对糖尿病周围神经病变的影响:荟萃分析。
IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-25 DOI: 10.1111/jnc.16242
Shujin Fan, Yue Qiu, Jing Liu, Tianxin Zhu, Chuan Wang, Dan Liu, Li Yan, Meng Ren

Previous researches found that glucagon-like peptide 1 receptor agonists (GLP-1RA) offer benefits beyond their anti-diabetic properties, including weight loss and cardiovascular disease prevention. However, the effects of GLP-1RA on diabetic peripheral neuropathy (DPN) remain unclear. This meta-analysis aims to assess the potential benefits of GLP-1RA treatment in DPN patients by evaluating peripheral neural function. Following the Cochrane Collaboration and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a meta-analysis of the clinical trials investigating the impact of GLP-1RA treatment on peripheral neural function in patients with DPN. Outcomes were measured using electrophysiological tests, including nerve conduction velocity (NCV) and action potential amplitude. Our meta-analysis included six studies with 271 participants. Following GLP-1RA treatment, NCV significantly improved compared to the control group (MD 1.74; 95% CI 1.16 to 2.33; p < 0.001) and before treatment (MD 2.16; 95% CI 1.04 to 3.27; p < 0.001). Despite the improvement in NCV, blood glucose levels did not change significantly (MD -0.20 95% CI -0.87 to 0.46, p = 0.55) indicating that GLP-1RA enhances NCV through mechanisms other than glucose lowering. Nonetheless, as a result of the limited population studied, further research is needed to strengthen the reliability of these findings.

以往的研究发现,胰高血糖素样肽 1 受体激动剂(GLP-1RA)除了具有抗糖尿病的特性外,还具有减肥和预防心血管疾病的功效。然而,GLP-1RA 对糖尿病周围神经病变(DPN)的影响仍不清楚。本荟萃分析旨在通过评估外周神经功能,评估 GLP-1RA 治疗对 DPN 患者的潜在益处。根据 Cochrane 协作组织和系统综述和荟萃分析首选报告项目 (PRISMA) 指南,我们对研究 GLP-1RA 治疗对 DPN 患者外周神经功能影响的临床试验进行了荟萃分析。结果通过电生理测试(包括神经传导速度(NCV)和动作电位振幅)进行测量。我们的荟萃分析包括六项研究,共有 271 名参与者。与对照组相比,GLP-1RA 治疗后神经传导速度明显改善(MD 1.74; 95% CI 1.16 to 2.33; p
{"title":"Effect of the glucagon-like peptide-1 receptor agonists on diabetic peripheral neuropathy: A meta-analysis.","authors":"Shujin Fan, Yue Qiu, Jing Liu, Tianxin Zhu, Chuan Wang, Dan Liu, Li Yan, Meng Ren","doi":"10.1111/jnc.16242","DOIUrl":"https://doi.org/10.1111/jnc.16242","url":null,"abstract":"<p><p>Previous researches found that glucagon-like peptide 1 receptor agonists (GLP-1RA) offer benefits beyond their anti-diabetic properties, including weight loss and cardiovascular disease prevention. However, the effects of GLP-1RA on diabetic peripheral neuropathy (DPN) remain unclear. This meta-analysis aims to assess the potential benefits of GLP-1RA treatment in DPN patients by evaluating peripheral neural function. Following the Cochrane Collaboration and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a meta-analysis of the clinical trials investigating the impact of GLP-1RA treatment on peripheral neural function in patients with DPN. Outcomes were measured using electrophysiological tests, including nerve conduction velocity (NCV) and action potential amplitude. Our meta-analysis included six studies with 271 participants. Following GLP-1RA treatment, NCV significantly improved compared to the control group (MD 1.74; 95% CI 1.16 to 2.33; p < 0.001) and before treatment (MD 2.16; 95% CI 1.04 to 3.27; p < 0.001). Despite the improvement in NCV, blood glucose levels did not change significantly (MD -0.20 95% CI -0.87 to 0.46, p = 0.55) indicating that GLP-1RA enhances NCV through mechanisms other than glucose lowering. Nonetheless, as a result of the limited population studied, further research is needed to strengthen the reliability of these findings.</p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zinc signaling controls astrocyte-dependent synapse modulation via the PAF receptor pathway. 锌信号通过 PAF 受体途径控制星形胶质细胞依赖性突触调节。
IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-25 DOI: 10.1111/jnc.16252
Janelle E Stanton, Sakshi Hans, Ioannis Zabetakis, Andreas M Grabrucker

Astrocytes are important regulators of neuronal development and activity. Their activation plays a key role in the response to many central nervous system (CNS) pathologies. However, reactive astrocytes are a double-edged sword as their chronic or excessive activation may negatively impact CNS physiology, for example, via abnormal modulation of synaptogenesis and synapse function. Accordingly, astrocyte activation has been linked to neurodegenerative and neurodevelopmental disorders. Therefore, the attenuation of astrocyte activation may be an important approach for preventing and treating these disorders. Since zinc deficiency has been consistently linked to increased pro-inflammatory signaling, we aimed to identify cellular zinc-dependent signaling pathways that may lead to astrocyte activation using techniques such as immunocytochemistry and protein biochemistry to detect astrocyte GFAP expression, fluorescent imaging to detect oxidative stress levels in activated astrocytes, cytokine profiling, and analysis of primary neurons subjected to astrocyte secretomes. Our results reveal a so far not well-described pathway in astrocytes, the platelet activation factor receptor (PAFR) pathway, as a critical zinc-dependent signaling pathway that is sufficient to control astrocyte reactivity. Low zinc levels activate PAFR signaling-driven crosstalk between astrocytes and neurons, which alters excitatory synapse formation during development in a PAFR-dependent manner. We conclude that zinc is a crucial signaling ion involved in astrocyte activation and an important dietary factor that controls astrocytic pro-inflammatory processes. Thus, targeting zinc homeostasis may be an important approach in several neuroinflammatory conditions.

星形胶质细胞是神经元发育和活动的重要调节器。星形胶质细胞的活化在应对许多中枢神经系统(CNS)病症中起着关键作用。然而,反应性星形胶质细胞是一把双刃剑,因为它们的长期或过度激活可能会对中枢神经系统的生理学产生负面影响,例如通过对突触生成和突触功能的异常调节。因此,星形胶质细胞的激活与神经退行性疾病和神经发育障碍有关。因此,抑制星形胶质细胞的活化可能是预防和治疗这些疾病的重要方法。由于锌缺乏一直与促炎症信号传导增加有关,我们旨在利用免疫细胞化学和蛋白质生物化学检测星形胶质细胞 GFAP 表达、荧光成像检测活化星形胶质细胞中的氧化应激水平、细胞因子谱分析以及星形胶质细胞分泌物对原代神经元的分析等技术,确定可能导致星形胶质细胞活化的细胞锌依赖信号传导途径。我们的研究结果揭示了星形胶质细胞中一个迄今为止尚未被充分描述的通路--血小板活化因子受体(PAFR)通路,它是一个关键的锌依赖信号通路,足以控制星形胶质细胞的反应性。低锌水平会激活 PAFR 信号驱动的星形胶质细胞与神经元之间的串扰,从而以 PAFR 依赖性的方式改变发育过程中兴奋性突触的形成。我们的结论是,锌是参与星形胶质细胞活化的关键信号离子,也是控制星形胶质细胞促炎过程的重要饮食因子。因此,针对锌的平衡可能是治疗多种神经炎症的重要方法。
{"title":"Zinc signaling controls astrocyte-dependent synapse modulation via the PAF receptor pathway.","authors":"Janelle E Stanton, Sakshi Hans, Ioannis Zabetakis, Andreas M Grabrucker","doi":"10.1111/jnc.16252","DOIUrl":"https://doi.org/10.1111/jnc.16252","url":null,"abstract":"<p><p>Astrocytes are important regulators of neuronal development and activity. Their activation plays a key role in the response to many central nervous system (CNS) pathologies. However, reactive astrocytes are a double-edged sword as their chronic or excessive activation may negatively impact CNS physiology, for example, via abnormal modulation of synaptogenesis and synapse function. Accordingly, astrocyte activation has been linked to neurodegenerative and neurodevelopmental disorders. Therefore, the attenuation of astrocyte activation may be an important approach for preventing and treating these disorders. Since zinc deficiency has been consistently linked to increased pro-inflammatory signaling, we aimed to identify cellular zinc-dependent signaling pathways that may lead to astrocyte activation using techniques such as immunocytochemistry and protein biochemistry to detect astrocyte GFAP expression, fluorescent imaging to detect oxidative stress levels in activated astrocytes, cytokine profiling, and analysis of primary neurons subjected to astrocyte secretomes. Our results reveal a so far not well-described pathway in astrocytes, the platelet activation factor receptor (PAFR) pathway, as a critical zinc-dependent signaling pathway that is sufficient to control astrocyte reactivity. Low zinc levels activate PAFR signaling-driven crosstalk between astrocytes and neurons, which alters excitatory synapse formation during development in a PAFR-dependent manner. We conclude that zinc is a crucial signaling ion involved in astrocyte activation and an important dietary factor that controls astrocytic pro-inflammatory processes. Thus, targeting zinc homeostasis may be an important approach in several neuroinflammatory conditions.</p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dispensable regulation of brain development and myelination by the immune-related protein Serpina3n. 免疫相关蛋白Serpina3n对大脑发育和髓鞘化的不可或缺的调节作用
IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-25 DOI: 10.1111/jnc.16250
Meina Zhu, Yan Wang, Joohyun Park, Annlin Titus, Fuzheng Guo

Serine protease inhibitor clade A member 3n (Serpina3n) or its human orthologue SERPINA3 is a secretory immune-related molecule produced primarily in the liver and brain under homeostatic conditions and up-regulated in response to system inflammation. Yet, it remains elusive regarding its cellular identity and physiological significance in the development of the postnatal brain. Here, we reported that oligodendroglial lineage cells are the major cell population expressing Serpina3n protein in the postnatal murine CNS. Using loss-of-function genetic tools, we found that Serpina3n conditional knockout (cKO) from Olig2-expressing cells does not significantly affect cognitive and motor functions in mice. Serpina3n depletion does not appear to interfere with oligodendrocyte differentiation and developmental myelination nor affects the population of other glial cells and neurons in vivo. Interestingly, Serpina3n is significantly up-regulated in response to oxidative stress and its deficiency alleviates oxidative injury and diminishes cell senescence of oligodendrocytes in vitro. Together, our data suggest that the immune-related molecule Serpina3n plays a minor role in neural cell development under homeostasis, yet it primes oligodendrocytes for CNS insults and regulates oligodendrocyte health under injured conditions. Our findings raise the interest in pursuing its functional significance in the CNS under disease/injury conditions.

丝氨酸蛋白酶抑制剂 A 族成员 3n(Serpina3n)或其人类直向同源物 SERPINA3 是一种分泌性免疫相关分子,主要在肝脏和大脑的平衡状态下产生,并在系统炎症反应时上调。然而,它在出生后大脑发育过程中的细胞特性和生理意义仍然难以确定。在这里,我们报告了少突胶质细胞系细胞是小鼠出生后中枢神经系统中表达Serpina3n蛋白的主要细胞群。利用功能缺失遗传工具,我们发现从Olig2表达细胞中条件性敲除(cKO)Serpina3n不会对小鼠的认知和运动功能产生显著影响。Serpina3n的缺失似乎不会干扰少突胶质细胞的分化和发育髓鞘化,也不会影响体内其他胶质细胞和神经元的数量。有趣的是,Serpina3n 在应对氧化应激时会显著上调,其缺乏会减轻氧化损伤,并减少体外少突胶质细胞的细胞衰老。总之,我们的数据表明,免疫相关分子Serpina3n在平衡状态下的神经细胞发育过程中发挥着微不足道的作用,但它能为少突胶质细胞应对中枢神经系统损伤做好准备,并在损伤条件下调节少突胶质细胞的健康。我们的研究结果提高了人们对其在中枢神经系统疾病/损伤条件下功能意义的兴趣。
{"title":"Dispensable regulation of brain development and myelination by the immune-related protein Serpina3n.","authors":"Meina Zhu, Yan Wang, Joohyun Park, Annlin Titus, Fuzheng Guo","doi":"10.1111/jnc.16250","DOIUrl":"10.1111/jnc.16250","url":null,"abstract":"<p><p>Serine protease inhibitor clade A member 3n (Serpina3n) or its human orthologue SERPINA3 is a secretory immune-related molecule produced primarily in the liver and brain under homeostatic conditions and up-regulated in response to system inflammation. Yet, it remains elusive regarding its cellular identity and physiological significance in the development of the postnatal brain. Here, we reported that oligodendroglial lineage cells are the major cell population expressing Serpina3n protein in the postnatal murine CNS. Using loss-of-function genetic tools, we found that Serpina3n conditional knockout (cKO) from Olig2-expressing cells does not significantly affect cognitive and motor functions in mice. Serpina3n depletion does not appear to interfere with oligodendrocyte differentiation and developmental myelination nor affects the population of other glial cells and neurons in vivo. Interestingly, Serpina3n is significantly up-regulated in response to oxidative stress and its deficiency alleviates oxidative injury and diminishes cell senescence of oligodendrocytes in vitro. Together, our data suggest that the immune-related molecule Serpina3n plays a minor role in neural cell development under homeostasis, yet it primes oligodendrocytes for CNS insults and regulates oligodendrocyte health under injured conditions. Our findings raise the interest in pursuing its functional significance in the CNS under disease/injury conditions.</p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association of serum lipidomic profiles with risk of intracranial aneurysm: A Mendelian randomization study. 血清脂质体特征与颅内动脉瘤风险的关系:孟德尔随机研究
IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-25 DOI: 10.1111/jnc.16247
Mingqin Zhang, Dongyi Yang, Jiabin Wang, Dan Wang, Jin Xu, Yibo Wang

A two-sample Mendelian randomization (MR) analysis was utilized to assess the causal relationship between lipidomic profiles and the risk of intracranial aneurysms (IAs). Genetic variants related to lipidomic profiles (227 components) and IA [IA, aneurysmal subarachnoid hemorrhage (aSAH) only, unruptured IA (uIA) only] were obtained from published genome-wide association studies (GWASs) or the IEU Open GWAS project and used as instrumental variables for MR analysis. The inverse-variance weighted method was used in the primary analyses to derive causality estimates and was expressed as odds ratio (OR) with 95% confidence interval (CI). Of these 227 lipidomic profiles, only genetically predicted high levels of cholesterol to total lipids ratio in very small very-low-density lipoproteins (VLDL) [OR = 0.629 (95% CI, 0.504-0.786)], cholesteryl esters to total lipids ratio in very small VLDL [OR = 0.637 (95% CI, 0.509-0.797)], ratio of docosahexaenoic acid to total fatty acids [OR = 0.691 (95% CI, 0.582-0.820)], and ratio of polyunsaturated fatty acids to monounsaturated fatty acids [OR = 0.630 (95% CI, 0.522-0.760)] reduced the risk of aSAH, whereas genetically predicted high ratio of monounsaturated fatty acids to total fatty acids [OR = 1.471 (95% CI, 1.215-1.781)] increased the risk of aSAH. Moreover, genetically predicted high levels of cholesterol to total lipids ratio in very small VLDL [OR = 0.657 (95% CI, 0.542-0.798)], cholesteryl esters to total lipids ratio in very small VLDL [OR = 0.663 (95% CI, 0.548-0.803)], free cholesterol to total lipids ratio in small VLDL [OR = 0.682 (95% CI, 0.560-0.832)], phospholipids to total lipids ratio in small VLDL [OR = 0.674 (95% CI, 0.548-0.830)], and ratio of polyunsaturated fatty acids to monounsaturated fatty acids [OR = 0.678 (95% CI, 0.569-0.808)] reduced the risk of IA. The results of multivariable MR demonstrated that these causal associations persisted after adjusting for systolic blood pressure and cigarettes smoked per day. The effect of serum lipids on IA and aSAH may be mainly caused by subclasses of lipids such as VLDL.

采用双样本孟德尔随机化(MR)分析法评估脂质体特征与颅内动脉瘤(IAs)风险之间的因果关系。从已发表的全基因组关联研究(GWAS)或IEU开放式GWAS项目中获得了与脂质组特征(227个成分)和IA[仅动脉瘤性蛛网膜下腔出血(aSAH),仅未破裂的IA(uIA)]相关的遗传变异,并将其作为MR分析的工具变量。主要分析采用逆方差加权法得出因果关系估计值,并以带 95% 置信区间 (CI) 的比值比 (OR) 表示。在这 227 项脂质组学特征中,只有基因预测的高水平胆固醇与极小极低密度脂蛋白(VLDL)中总脂质的比率[OR = 0.629 (95% CI, 0.504-0.786)], 胆固醇酯与极小极低密度脂蛋白中总脂质的比率[OR = 0.637 (95% CI, 0.509-0.797)], 二十二碳六烯酸与总脂肪酸的比率[OR = 0.691(95% CI,0.582-0.820)]和多不饱和脂肪酸与单不饱和脂肪酸之比[OR = 0.630(95% CI,0.522-0.760)]可降低罹患 aSAH 的风险,而基因预测的单不饱和脂肪酸与总脂肪酸之比偏高[OR = 1.471(95% CI,1.215-1.781)]则会增加罹患 aSAH 的风险。此外,遗传预测的高水平胆固醇与极小 VLDL 中总脂类的比率[OR = 0.657 (95% CI, 0.542-0.798)], 胆固醇酯与极小 VLDL 中总脂类的比率[OR = 0.663 (95% CI, 0.548-0.803)], 游离胆固醇与极小 VLDL 中总脂类的比率[OR = 0.682(95% CI,0.560-0.832)]、小 VLDL 中磷脂与总脂的比率[OR = 0.674(95% CI,0.548-0.830)]和多不饱和脂肪酸与单不饱和脂肪酸的比率[OR = 0.678(95% CI,0.569-0.808)]降低了 IA 的风险。多变量磁共振结果表明,在调整收缩压和每日吸烟量后,这些因果关系依然存在。血清脂质对IA和aSAH的影响可能主要是由VLDL等亚类脂质引起的。
{"title":"Association of serum lipidomic profiles with risk of intracranial aneurysm: A Mendelian randomization study.","authors":"Mingqin Zhang, Dongyi Yang, Jiabin Wang, Dan Wang, Jin Xu, Yibo Wang","doi":"10.1111/jnc.16247","DOIUrl":"https://doi.org/10.1111/jnc.16247","url":null,"abstract":"<p><p>A two-sample Mendelian randomization (MR) analysis was utilized to assess the causal relationship between lipidomic profiles and the risk of intracranial aneurysms (IAs). Genetic variants related to lipidomic profiles (227 components) and IA [IA, aneurysmal subarachnoid hemorrhage (aSAH) only, unruptured IA (uIA) only] were obtained from published genome-wide association studies (GWASs) or the IEU Open GWAS project and used as instrumental variables for MR analysis. The inverse-variance weighted method was used in the primary analyses to derive causality estimates and was expressed as odds ratio (OR) with 95% confidence interval (CI). Of these 227 lipidomic profiles, only genetically predicted high levels of cholesterol to total lipids ratio in very small very-low-density lipoproteins (VLDL) [OR = 0.629 (95% CI, 0.504-0.786)], cholesteryl esters to total lipids ratio in very small VLDL [OR = 0.637 (95% CI, 0.509-0.797)], ratio of docosahexaenoic acid to total fatty acids [OR = 0.691 (95% CI, 0.582-0.820)], and ratio of polyunsaturated fatty acids to monounsaturated fatty acids [OR = 0.630 (95% CI, 0.522-0.760)] reduced the risk of aSAH, whereas genetically predicted high ratio of monounsaturated fatty acids to total fatty acids [OR = 1.471 (95% CI, 1.215-1.781)] increased the risk of aSAH. Moreover, genetically predicted high levels of cholesterol to total lipids ratio in very small VLDL [OR = 0.657 (95% CI, 0.542-0.798)], cholesteryl esters to total lipids ratio in very small VLDL [OR = 0.663 (95% CI, 0.548-0.803)], free cholesterol to total lipids ratio in small VLDL [OR = 0.682 (95% CI, 0.560-0.832)], phospholipids to total lipids ratio in small VLDL [OR = 0.674 (95% CI, 0.548-0.830)], and ratio of polyunsaturated fatty acids to monounsaturated fatty acids [OR = 0.678 (95% CI, 0.569-0.808)] reduced the risk of IA. The results of multivariable MR demonstrated that these causal associations persisted after adjusting for systolic blood pressure and cigarettes smoked per day. The effect of serum lipids on IA and aSAH may be mainly caused by subclasses of lipids such as VLDL.</p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex- and age-dependent impacts of nicotine and ethanol binge drinking on the brain: Insights from preclinical research. 尼古丁和乙醇暴饮对大脑的影响与性别和年龄有关:临床前研究的启示。
IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-24 DOI: 10.1111/jnc.16249
Stella J Farias Cardozo, Andrew J Lawrence, Roberta Goncalves Anversa

Electronic cigarette use among adolescents is a growing concern, not only due to the high incidence of co-use with other substances, such as alcohol, but also due to the fact brain is still maturing during this period. Combined exposure to alcohol and nicotine leads to plastic adaptation of crucial circuits in the brain, which can contribute to the development of addiction. It is well established that nicotine exposure can facilitate alcohol binge drinking, and vice-versa, in a sex-, age- and exposure-dependent manner. Nonetheless, the central mechanisms underlying the synergistic relationship between these two substances and the emergence of differential behavioural traits dependent on these factors remain underexplored. Preclinical studies continue to provide valuable insights into such mechanisms. Here, we discuss recent preclinical findings that report behavioural changes characteristic of addiction following nicotine consumption, primarily in models of vaping and alcohol use; and insights into the neural mechanisms impacted by intake of these two substances, with a focus on the adolescent brain.

青少年使用电子香烟的问题日益受到关注,这不仅是因为青少年与酒精等其他物质同时使用电子香烟的比例很高,还因为在这一时期大脑仍在发育成熟。同时接触酒精和尼古丁会导致大脑关键回路的可塑性适应,从而导致成瘾的产生。众所周知,尼古丁接触会促进酒精暴饮,反之亦然,这与性别、年龄和接触方式有关。然而,这两种物质之间的协同关系以及依赖于这些因素而出现的不同行为特征的核心机制仍未得到充分探索。临床前研究继续为这些机制提供有价值的见解。在此,我们将讨论最近的临床前研究结果,这些结果报告了尼古丁摄入后成瘾所特有的行为变化,主要是在吸食和使用酒精的模型中;以及对摄入这两种物质所影响的神经机制的见解,重点是青少年大脑。
{"title":"Sex- and age-dependent impacts of nicotine and ethanol binge drinking on the brain: Insights from preclinical research.","authors":"Stella J Farias Cardozo, Andrew J Lawrence, Roberta Goncalves Anversa","doi":"10.1111/jnc.16249","DOIUrl":"https://doi.org/10.1111/jnc.16249","url":null,"abstract":"<p><p>Electronic cigarette use among adolescents is a growing concern, not only due to the high incidence of co-use with other substances, such as alcohol, but also due to the fact brain is still maturing during this period. Combined exposure to alcohol and nicotine leads to plastic adaptation of crucial circuits in the brain, which can contribute to the development of addiction. It is well established that nicotine exposure can facilitate alcohol binge drinking, and vice-versa, in a sex-, age- and exposure-dependent manner. Nonetheless, the central mechanisms underlying the synergistic relationship between these two substances and the emergence of differential behavioural traits dependent on these factors remain underexplored. Preclinical studies continue to provide valuable insights into such mechanisms. Here, we discuss recent preclinical findings that report behavioural changes characteristic of addiction following nicotine consumption, primarily in models of vaping and alcohol use; and insights into the neural mechanisms impacted by intake of these two substances, with a focus on the adolescent brain.</p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The characteristics of T-cell receptor repertoire in relation to systemic immune response of patients with ischemic stroke. 与缺血性脑卒中患者全身免疫反应有关的 T 细胞受体谱系特征。
IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-22 DOI: 10.1111/jnc.16246
Yan Zong, Yuanyuan Liu, Junyang Wang, Yousef Rastegar-Kashkooli, Peiji Fu, Shuai Chen, Qianlin Zhang, Maosen Huang, Junmin Wang, Jiewen Zhang, Jian Wang, Chao Jiang

T lymphocytes play a vital role in the immune-inflammatory response following a stroke. However, the specific mechanisms behind the contrasting functions of T cells in the brain and peripheral tissues after a stroke remain unclear and require further investigation. T-cell receptors (TCRs) are essential in controlling how T lymphocytes develop and become active. This study aims to gain a deeper understanding of the biological function of T lymphocytes by analyzing the TCR repertoire in patients who have experienced an acute ischemic stroke (AIS). High-throughput TCR sequencing was conducted on peripheral blood samples from 25 AIS patients and 10 healthy controls. We compared the percentage of T cells and the characteristics of the TCR repertoire, specifically focusing on the recombination of V(D)J gene fragments and the diversity of the complementarity determining region 3 (CDR3) of the Vβ gene. Additionally, this study analyzed the potential biological significance of the skewed TCR repertoire in AIS patients. In patients with AIS, the proportion of circulating lymphocytes (LY%) decreased while the systemic immune-inflammatory index (SII) increased compared to healthy controls. The average number of TCR read pairs decreased, corresponding with the presence of lymphopenia. However, the recombination of V(D)J gene fragments, the number of CDR3 clonotypes, and the diversity of CDR3 was elevated in the peripheral blood of AIS patients. Furthermore, the increased number of CDR3 amino acid or nucleotide clonotypes was negatively correlated with neurologic deficits but positively correlated with AIS patients' systemic immune condition and functional outcomes. Our findings suggest that both immunosuppression and enhanced antigen-specific T-cell response may exist in the periphery of the AIS patients. Further investigation into the mechanisms underlying these opposing changes may lead to the discovery of novel targets to reverse immunosuppression or mitigate the detrimental effects of T cells in the lesioned brain of AIS patients.

T 淋巴细胞在中风后的免疫炎症反应中起着至关重要的作用。然而,脑卒中后大脑和外周组织中的 T 细胞功能截然不同,其背后的具体机制仍不清楚,需要进一步研究。T细胞受体(TCR)对控制T淋巴细胞的发育和活跃至关重要。本研究旨在通过分析急性缺血性脑卒中(AIS)患者体内的 TCR 重排来深入了解 T 淋巴细胞的生物功能。我们对 25 名 AIS 患者和 10 名健康对照者的外周血样本进行了高通量 TCR 测序。我们比较了 T 细胞的百分比和 TCR 重排的特征,特别关注 V(D)J 基因片段的重组和 Vβ 基因互补决定区 3 (CDR3) 的多样性。此外,本研究还分析了 AIS 患者 TCR 反应谱偏斜的潜在生物学意义。与健康对照组相比,AIS 患者的循环淋巴细胞比例(LY%)下降,而全身免疫炎症指数(SII)上升。TCR读数对的平均数量减少,这与淋巴细胞减少症的存在相对应。然而,在 AIS 患者的外周血中,V(D)J 基因片段的重组、CDR3 克隆型的数量和 CDR3 的多样性都有所增加。此外,CDR3 氨基酸或核苷酸克隆型数量的增加与神经功能缺损呈负相关,但与 AIS 患者的全身免疫状况和功能预后呈正相关。我们的研究结果表明,AIS 患者的外周可能同时存在免疫抑制和抗原特异性 T 细胞反应增强。进一步研究这些对立变化的机制可能会发现新的靶点,以逆转免疫抑制或减轻 T 细胞对 AIS 患者病变脑部的有害影响。
{"title":"The characteristics of T-cell receptor repertoire in relation to systemic immune response of patients with ischemic stroke.","authors":"Yan Zong, Yuanyuan Liu, Junyang Wang, Yousef Rastegar-Kashkooli, Peiji Fu, Shuai Chen, Qianlin Zhang, Maosen Huang, Junmin Wang, Jiewen Zhang, Jian Wang, Chao Jiang","doi":"10.1111/jnc.16246","DOIUrl":"https://doi.org/10.1111/jnc.16246","url":null,"abstract":"<p><p>T lymphocytes play a vital role in the immune-inflammatory response following a stroke. However, the specific mechanisms behind the contrasting functions of T cells in the brain and peripheral tissues after a stroke remain unclear and require further investigation. T-cell receptors (TCRs) are essential in controlling how T lymphocytes develop and become active. This study aims to gain a deeper understanding of the biological function of T lymphocytes by analyzing the TCR repertoire in patients who have experienced an acute ischemic stroke (AIS). High-throughput TCR sequencing was conducted on peripheral blood samples from 25 AIS patients and 10 healthy controls. We compared the percentage of T cells and the characteristics of the TCR repertoire, specifically focusing on the recombination of V(D)J gene fragments and the diversity of the complementarity determining region 3 (CDR3) of the Vβ gene. Additionally, this study analyzed the potential biological significance of the skewed TCR repertoire in AIS patients. In patients with AIS, the proportion of circulating lymphocytes (LY%) decreased while the systemic immune-inflammatory index (SII) increased compared to healthy controls. The average number of TCR read pairs decreased, corresponding with the presence of lymphopenia. However, the recombination of V(D)J gene fragments, the number of CDR3 clonotypes, and the diversity of CDR3 was elevated in the peripheral blood of AIS patients. Furthermore, the increased number of CDR3 amino acid or nucleotide clonotypes was negatively correlated with neurologic deficits but positively correlated with AIS patients' systemic immune condition and functional outcomes. Our findings suggest that both immunosuppression and enhanced antigen-specific T-cell response may exist in the periphery of the AIS patients. Further investigation into the mechanisms underlying these opposing changes may lead to the discovery of novel targets to reverse immunosuppression or mitigate the detrimental effects of T cells in the lesioned brain of AIS patients.</p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The isoflavone puerarin promotes generation of human iPSC-derived pre-oligodendrocytes and enhances endogenous remyelination in rodent models. 异黄酮葛根素能促进人类iPSC衍生前橄榄枝胶质细胞的生成,并增强啮齿动物模型的内源性髓鞘再形成。
IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-18 DOI: 10.1111/jnc.16245
Hao Xu, Huiyuan Zhang, Nona Pop, Joe Hall, Ibrahim Shazlee, Moritz Wagner-Tsukamoto, Zhiguo Chen, Yuchun Gu, Chao Zhao, Dan Ma

Puerarin, a natural isoflavone, is commonly used as a Chinese herbal medicine for the treatment of various cardiovascular and neurological disorders. It has been found to be neuroprotective via TrK-PI3K/Akt pathway, which is associated with anti-inflammatory and antioxidant effects. Myelin damage in diseases such as multiple sclerosis (MS) and ischemia induces activation of endogenous oligodendrocyte progenitor cells (OPC) and subsequent remyelination by newly formed oligodendrocytes. It has been shown that human-induced pluripotent stem cells (hiPSC)-derived OPCs promote remyelination when transplanted to the brains of disease models. Here, we ask whether and how puerarin is beneficial to the generation of hiPSC-derived OPCs and oligodendrocytes, and to the endogenous remyelination in mouse demyelination model. Our results show that puerarin increases the proportion of O4+ pre-oligodendrocytes differentiated from iPSC-derived neural stem cells. In vitro, puerarin increases proliferation of rat OPCs and enhances mitochondrial activity. Treatment of puerarin at progenitor stage increases the yielding of differentiated oligodendrocytes. In rat organotypic brain slice culture, puerarin promotes both myelination and remyelination. In vivo, puerarin increases oligodendrocyte repopulation during remyelination in mouse spinal cord following lysolethicin-induced demyelination. Our findings suggest that puerarin promotes oligodendrocyte lineage progression and myelin repair, with a potential to be developed into therapeutic agent for neurological diseases associated with myelin damage.

葛根素是一种天然异黄酮,是治疗各种心血管和神经系统疾病的常用中药。研究发现,葛根素能通过 TrK-PI3K/Akt 通路保护神经,而 TrK-PI3K/Akt 通路具有抗炎和抗氧化作用。多发性硬化症(MS)和缺血等疾病造成的髓鞘损伤会诱导内源性少突胶质祖细胞(OPC)的活化,随后由新形成的少突胶质细胞进行再髓鞘化。有研究表明,人类诱导多能干细胞(hiPSC)衍生的OPC移植到疾病模型的大脑后可促进髓鞘再形成。在此,我们想知道葛根素是否以及如何有益于产生hiPSC衍生的OPCs和少突胶质细胞,并有益于小鼠脱髓鞘模型中的内源性再髓鞘化。我们的研究结果表明,葛根素能提高从iPSC衍生的神经干细胞分化出的O4+前少突胶质细胞的比例。在体外,葛根素能增加大鼠 OPCs 的增殖并增强线粒体活性。在祖细胞阶段使用葛根素可提高分化少突胶质细胞的产量。在大鼠器官型脑片培养中,葛根素可促进髓鞘化和再髓鞘化。在体内,葛根素能在溶血素诱导脱髓鞘后的小鼠脊髓再髓鞘化过程中增加少突胶质细胞的再填充。我们的研究结果表明,葛根素能促进少突胶质细胞系的发展和髓鞘的修复,有望开发成治疗与髓鞘损伤相关的神经系统疾病的药物。
{"title":"The isoflavone puerarin promotes generation of human iPSC-derived pre-oligodendrocytes and enhances endogenous remyelination in rodent models.","authors":"Hao Xu, Huiyuan Zhang, Nona Pop, Joe Hall, Ibrahim Shazlee, Moritz Wagner-Tsukamoto, Zhiguo Chen, Yuchun Gu, Chao Zhao, Dan Ma","doi":"10.1111/jnc.16245","DOIUrl":"https://doi.org/10.1111/jnc.16245","url":null,"abstract":"<p><p>Puerarin, a natural isoflavone, is commonly used as a Chinese herbal medicine for the treatment of various cardiovascular and neurological disorders. It has been found to be neuroprotective via TrK-PI3K/Akt pathway, which is associated with anti-inflammatory and antioxidant effects. Myelin damage in diseases such as multiple sclerosis (MS) and ischemia induces activation of endogenous oligodendrocyte progenitor cells (OPC) and subsequent remyelination by newly formed oligodendrocytes. It has been shown that human-induced pluripotent stem cells (hiPSC)-derived OPCs promote remyelination when transplanted to the brains of disease models. Here, we ask whether and how puerarin is beneficial to the generation of hiPSC-derived OPCs and oligodendrocytes, and to the endogenous remyelination in mouse demyelination model. Our results show that puerarin increases the proportion of O4+ pre-oligodendrocytes differentiated from iPSC-derived neural stem cells. In vitro, puerarin increases proliferation of rat OPCs and enhances mitochondrial activity. Treatment of puerarin at progenitor stage increases the yielding of differentiated oligodendrocytes. In rat organotypic brain slice culture, puerarin promotes both myelination and remyelination. In vivo, puerarin increases oligodendrocyte repopulation during remyelination in mouse spinal cord following lysolethicin-induced demyelination. Our findings suggest that puerarin promotes oligodendrocyte lineage progression and myelin repair, with a potential to be developed into therapeutic agent for neurological diseases associated with myelin damage.</p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Neurochemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1