Pub Date : 2024-12-01Epub Date: 2024-12-06DOI: 10.1007/s12275-024-00179-0
Jingyang Chang, Yining Zhou, Miaomiao Zhang, Xue Li, Nan Zhang, Xi Luo, Bin Ni, Haisheng Wu, Renfei Lu, Yiquan Zhang
Vibrio parahaemolyticus has two flagellar systems, the polar flagellum and lateral flagella, which are both intricately regulated by a multitude of factors. CalR, a LysR-type transcriptional regulator, is sensitive to calcium (Ca) and plays a crucial role in regulating the virulence and swarming motility of V. parahaemolyticus. In this study, we have demonstrated that the deletion of calR significantly enhances the swimming motility of V. parahaemolyticus under low Ca conditions but not under high Ca conditions or in the absence of Ca. CalR binds to the regulatory DNA regions of flgM, flgA, and flgB, which are located within the polar flagellar gene loci, with the purpose of repressing their transcription. Additionally, it exerts an indirect negative control over the transcription of flgK. The overexpression of CalR in Escherichia coli resulted in a reduction in the expression levels of flgM, flgA, and flgB, while having no impact on the expression of flgK. In summary, this research demonstrates that the negative regulation of V. parahaemolyticus swimming motility by CalR under low Ca conditions is achieved through its regulation on the transcription of polar flagellar genes.
{"title":"CalR Inhibits the Swimming Motility and Polar Flagellar Gene Expression in Vibrio parahaemolyticus.","authors":"Jingyang Chang, Yining Zhou, Miaomiao Zhang, Xue Li, Nan Zhang, Xi Luo, Bin Ni, Haisheng Wu, Renfei Lu, Yiquan Zhang","doi":"10.1007/s12275-024-00179-0","DOIUrl":"10.1007/s12275-024-00179-0","url":null,"abstract":"<p><p>Vibrio parahaemolyticus has two flagellar systems, the polar flagellum and lateral flagella, which are both intricately regulated by a multitude of factors. CalR, a LysR-type transcriptional regulator, is sensitive to calcium (Ca) and plays a crucial role in regulating the virulence and swarming motility of V. parahaemolyticus. In this study, we have demonstrated that the deletion of calR significantly enhances the swimming motility of V. parahaemolyticus under low Ca conditions but not under high Ca conditions or in the absence of Ca. CalR binds to the regulatory DNA regions of flgM, flgA, and flgB, which are located within the polar flagellar gene loci, with the purpose of repressing their transcription. Additionally, it exerts an indirect negative control over the transcription of flgK. The overexpression of CalR in Escherichia coli resulted in a reduction in the expression levels of flgM, flgA, and flgB, while having no impact on the expression of flgK. In summary, this research demonstrates that the negative regulation of V. parahaemolyticus swimming motility by CalR under low Ca conditions is achieved through its regulation on the transcription of polar flagellar genes.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"1125-1132"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142791863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-12-10DOI: 10.1007/s12275-024-00180-7
Bokyung Kim, Shukho Kim, Yoon-Jung Choi, Minsang Shin, Jungmin Kim
Klebsiella pneumoniae, a Gram-negative opportunistic pathogen, is increasingly resistant to carbapenems in clinical settings. This growing problem necessitates the development of alternative antibiotics, with phage therapy being one promising option. In this study, we investigated novel phages targeting carbapenem-resistant Klebsiella pneumoniae (CRKP) and evaluated their lytic capacity against clinical isolates of CRKP. First, 23 CRKP clinical isolates were characterized using Multi-Locus Sequence Typing (MLST), carbapenemase test, string test, and capsule typing. MLST classified the 23 K. pneumoniae isolates into 10 sequence types (STs), with the capsule types divided into nine known and one unknown type. From sewage samples collected from a tertiary hospital, 38 phages were isolated. Phenotypic and genotypic characterization of these phages was performed using Random Amplification of Polymorphic DNA-PCR (RAPD-PCR), transmission electron microscopy (TEM), and whole genome sequencing (WGS) analysis. Host spectrum analysis revealed that each phage selectively lysed strains sharing the same STs as their hosts, indicating ST-specific activity. These phages were subtyped based on their host spectrum and RAPD-PCR, identifying nine and five groups, respectively. Fourteen phages were selected for further analysis using TEM and WGS, revealing 13 Myoviruses and one Podovirus. Genomic analysis grouped the phages into three clusters: one closely related to Alcyoneusvirus, one to Autographiviridae, and others to Straboviridae. Our results showed that the host spectrum of K. pneumoniae-specific phages corresponds to the STs of the host strain. These 14 novel phages also hold promise as valuable resources for phage therapy against CRKP.
{"title":"Characterization of Newly Isolated Bacteriophages Targeting Carbapenem-Resistant Klebsiella pneumoniae.","authors":"Bokyung Kim, Shukho Kim, Yoon-Jung Choi, Minsang Shin, Jungmin Kim","doi":"10.1007/s12275-024-00180-7","DOIUrl":"10.1007/s12275-024-00180-7","url":null,"abstract":"<p><p>Klebsiella pneumoniae, a Gram-negative opportunistic pathogen, is increasingly resistant to carbapenems in clinical settings. This growing problem necessitates the development of alternative antibiotics, with phage therapy being one promising option. In this study, we investigated novel phages targeting carbapenem-resistant Klebsiella pneumoniae (CRKP) and evaluated their lytic capacity against clinical isolates of CRKP. First, 23 CRKP clinical isolates were characterized using Multi-Locus Sequence Typing (MLST), carbapenemase test, string test, and capsule typing. MLST classified the 23 K. pneumoniae isolates into 10 sequence types (STs), with the capsule types divided into nine known and one unknown type. From sewage samples collected from a tertiary hospital, 38 phages were isolated. Phenotypic and genotypic characterization of these phages was performed using Random Amplification of Polymorphic DNA-PCR (RAPD-PCR), transmission electron microscopy (TEM), and whole genome sequencing (WGS) analysis. Host spectrum analysis revealed that each phage selectively lysed strains sharing the same STs as their hosts, indicating ST-specific activity. These phages were subtyped based on their host spectrum and RAPD-PCR, identifying nine and five groups, respectively. Fourteen phages were selected for further analysis using TEM and WGS, revealing 13 Myoviruses and one Podovirus. Genomic analysis grouped the phages into three clusters: one closely related to Alcyoneusvirus, one to Autographiviridae, and others to Straboviridae. Our results showed that the host spectrum of K. pneumoniae-specific phages corresponds to the STs of the host strain. These 14 novel phages also hold promise as valuable resources for phage therapy against CRKP.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"1133-1153"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The emerging drug resistance and lack of safer and more potent antifungal agents make Candida infections another hot topic in the healthcare system. At the same time, the potential of plant products in developing novel antifungal drugs is also in the limelight. Considering these facts, we have investigated the different extracts of the flowers of Hibiscus rosa-sinensis of the Malvaceae family for their antifungal efficacy against five different pathogenic Candida strains. Among the various extracts, the chloroform extract showed the maximum zone of inhibition (26.6 ± 0.5 mm) against the Candida albicans strain. Furthermore, the chloroform fraction was isolated, and a sterol compound was identified as β-sitosterol. Mechanistic studies were conducted to understand the mechanism of action, and the results showed that β-sitosterol has significant antifungal activity and is capable of interrupting biofilm formation and acts by inhibiting ergosterol biosynthesis in Candida albicans cells. Microscopic and molecular docking studies confirmed these findings. Overall, the study validates the antifungal efficacy of Candida albicans due to the presence of β-sitosterol which can act as an effective constituent for antifungal drug development individually or in combination.
{"title":"Inhibition of Virulence Associated Traits by β-Sitosterol Isolated from Hibiscus rosa-sinensis Flowers Against Candida albicans: Mechanistic Insight and Molecular Docking Studies.","authors":"Pallvi Mohana, Atamjit Singh, Farhana Rashid, Sharabjit Singh, Kirandeep Kaur, Rupali Rana, Preet Mohinder Singh Bedi, Neena Bedi, Rajinder Kaur, Saroj Arora","doi":"10.1007/s12275-024-00174-5","DOIUrl":"10.1007/s12275-024-00174-5","url":null,"abstract":"<p><p>The emerging drug resistance and lack of safer and more potent antifungal agents make Candida infections another hot topic in the healthcare system. At the same time, the potential of plant products in developing novel antifungal drugs is also in the limelight. Considering these facts, we have investigated the different extracts of the flowers of Hibiscus rosa-sinensis of the Malvaceae family for their antifungal efficacy against five different pathogenic Candida strains. Among the various extracts, the chloroform extract showed the maximum zone of inhibition (26.6 ± 0.5 mm) against the Candida albicans strain. Furthermore, the chloroform fraction was isolated, and a sterol compound was identified as β-sitosterol. Mechanistic studies were conducted to understand the mechanism of action, and the results showed that β-sitosterol has significant antifungal activity and is capable of interrupting biofilm formation and acts by inhibiting ergosterol biosynthesis in Candida albicans cells. Microscopic and molecular docking studies confirmed these findings. Overall, the study validates the antifungal efficacy of Candida albicans due to the presence of β-sitosterol which can act as an effective constituent for antifungal drug development individually or in combination.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"1165-1175"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1007/s12275-024-00189-y
Marcus Carranza, Amanda Rea, Daisy Pacheco, Christian Montiel, Jin Park, Hwan Youn
{"title":"Erratum: Unexpected Requirement of Small Amino Acids at Position 183 for DNA Binding in the Escherichia coli cAMP Receptor Protein.","authors":"Marcus Carranza, Amanda Rea, Daisy Pacheco, Christian Montiel, Jin Park, Hwan Youn","doi":"10.1007/s12275-024-00189-y","DOIUrl":"10.1007/s12275-024-00189-y","url":null,"abstract":"","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"1177"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-12-10DOI: 10.1007/s12275-024-00191-4
Jina Lee, Seung-Hui Song, Kira Moon, Nakyeong Lee, Sangdon Ryu, Hye Seon Song, Sung Moon Lee, Yun Ji Kim, Se Won Chun, Kyung-Min Choi, Aslan Hwanhwi Lee
Two novel bacterial strains, 273M-4T and Sam97T, were isolated from seawater in the Yellow Sea, Muan-gun, South Korea, and identified as members of the genus Thalassotalea. Both strains were Gram-stain-negative, aerobic, rod-shaped, non-motile, non-flagellated, and oxidase- and catalase-positive. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains 273M-4T and Sam97T were most closely related to Thalassotalea ponticola KCTC 42155T, with sequence similarities of 97.5% and 98.3%, respectively. Optimal growth for strain 273M-4T occurred at 25-30 °C, pH 7.0, and 2% NaCl, while strain Sam97T grew optimally at 30 °C, pH 8.0, and 2% NaCl. Genome sizes of strains 273M-4T and Sam97T were 3.37 and 3.31 Mb, with DNA G + C contents of 41.0 mol% and 42.9 mol%, respectively. The orthologous average nucleotide identity (OrthoANI) and digital DNA-DNA hybridization (dDDH) values between the two strains were 71.6% and 24.4%, respectively, indicating that they are distinct species. Further genomic analyses of these two strains revealed OrthoANI values of < 73.5% and dDDH values of < 26.7% within the genus Thalassotalea, suggesting their distinctiveness from other Thalassotalea species. The predominate fatty acids of strains 273M-4T and Sam97T were summed feature 3 (consisting of C16:1 ω7c/C16:1 ω6c) and C16:0. All strains contained phosphatidylethanolamine and phosphatidylglycerol as the major polar lipids and ubiquinone-8 (Q-8) as the primary respiratory quinone. Based on phenotypic, phylogenetic, genotypic, and chemotaxonomic data, strains 273M-4T (= KCTC 8644T = LMG 33695T) and Sam97T (= KCTC 8645T = LMG 33694T) represent novel species of the genus Thalassotalea, named Thalassotalea aquiviva sp. nov. and Thalassotalea maritima sp. nov..
{"title":"Thalassotalea aquiviva sp. nov., and Thalassotalea maritima sp. nov., Isolated from Seawater of the Coast in South Korea.","authors":"Jina Lee, Seung-Hui Song, Kira Moon, Nakyeong Lee, Sangdon Ryu, Hye Seon Song, Sung Moon Lee, Yun Ji Kim, Se Won Chun, Kyung-Min Choi, Aslan Hwanhwi Lee","doi":"10.1007/s12275-024-00191-4","DOIUrl":"10.1007/s12275-024-00191-4","url":null,"abstract":"<p><p>Two novel bacterial strains, 273M-4<sup>T</sup> and Sam97<sup>T</sup>, were isolated from seawater in the Yellow Sea, Muan-gun, South Korea, and identified as members of the genus Thalassotalea. Both strains were Gram-stain-negative, aerobic, rod-shaped, non-motile, non-flagellated, and oxidase- and catalase-positive. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains 273M-4<sup>T</sup> and Sam97<sup>T</sup> were most closely related to Thalassotalea ponticola KCTC 42155<sup>T</sup>, with sequence similarities of 97.5% and 98.3%, respectively. Optimal growth for strain 273M-4<sup>T</sup> occurred at 25-30 °C, pH 7.0, and 2% NaCl, while strain Sam97<sup>T</sup> grew optimally at 30 °C, pH 8.0, and 2% NaCl. Genome sizes of strains 273M-4<sup>T</sup> and Sam97<sup>T</sup> were 3.37 and 3.31 Mb, with DNA G + C contents of 41.0 mol% and 42.9 mol%, respectively. The orthologous average nucleotide identity (OrthoANI) and digital DNA-DNA hybridization (dDDH) values between the two strains were 71.6% and 24.4%, respectively, indicating that they are distinct species. Further genomic analyses of these two strains revealed OrthoANI values of < 73.5% and dDDH values of < 26.7% within the genus Thalassotalea, suggesting their distinctiveness from other Thalassotalea species. The predominate fatty acids of strains 273M-4<sup>T</sup> and Sam97<sup>T</sup> were summed feature 3 (consisting of C<sub>16:1</sub> ω7c/C<sub>16:1</sub> ω6c) and C<sub>16:0</sub>. All strains contained phosphatidylethanolamine and phosphatidylglycerol as the major polar lipids and ubiquinone-8 (Q-8) as the primary respiratory quinone. Based on phenotypic, phylogenetic, genotypic, and chemotaxonomic data, strains 273M-4<sup>T</sup> (= KCTC 8644<sup>T</sup> = LMG 33695<sup>T</sup>) and Sam97<sup>T</sup> (= KCTC 8645<sup>T</sup> = LMG 33694<sup>T</sup>) represent novel species of the genus Thalassotalea, named Thalassotalea aquiviva sp. nov. and Thalassotalea maritima sp. nov..</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"1099-1111"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-25DOI: 10.1007/s12275-024-00186-1
Tae-Yang Eom, Yehui Gang, Youngdeuk Lee, Yoon-Hyeok Kang, Eunyoung Jo, Svini Dileepa Marasinghe, Heung Sik Park, Gun-Hoo Park, Chulhong Oh
The production of recombinant proteins in Escherichia coli is often challenged by cytoplasmic expression due to proteolytic degradation and inclusion body formation. Extracellular expression can overcome these problems by simplifying downstream processing and improving protein yields. This study aims to compare the efficiency of two Bacillus subtilis chitosanase signal peptides in mediating extracellular secretion in E. coli. We identified a naturally occurring mutant signal peptide (mCsn2-SP) from B. subtilis CH2 chitosanase (CH2CSN), which is characterized by a deletion of six amino acids in the N-region relative to the signal peptide (Csn1-SP) from B. subtilis CH1 chitosanase (CH1CSN). The CH1CSN and CH2CSN genes were cloned into the pET-11a vector and protein secretion was evaluated in E. coli BL21(DE3) host cells. Expression was induced with 0.1 mM and 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) at 30 °C for one and three days. CH2CSN showed higher secretion levels compared to CH1CSN under all experimental conditions, especially with 0.1 mM IPTG induction for 3 days, which resulted in a 2.37-fold increase in secretion. Furthermore, it was demonstrated that mCsn2-SP is capable of secreting human Cu,Zn-superoxide dismutase (hSOD) in E. coli BL21(DE3) and successfully translocating it to the periplasmic region. This study represents the inaugural investigation into the utilisation of a naturally modified signal peptide, thereby corroborating the assertion that signal peptide deletion variants can influence protein secretion efficiency. Furthermore, the findings substantiate the proposition that such variants can serve as a viable alternative for the secretion of heterologous proteins in E. coli.
{"title":"Comparative Secretory Efficiency of Two Chitosanase Signal Peptides from Bacillus subtilis in Escherichia coli.","authors":"Tae-Yang Eom, Yehui Gang, Youngdeuk Lee, Yoon-Hyeok Kang, Eunyoung Jo, Svini Dileepa Marasinghe, Heung Sik Park, Gun-Hoo Park, Chulhong Oh","doi":"10.1007/s12275-024-00186-1","DOIUrl":"10.1007/s12275-024-00186-1","url":null,"abstract":"<p><p>The production of recombinant proteins in Escherichia coli is often challenged by cytoplasmic expression due to proteolytic degradation and inclusion body formation. Extracellular expression can overcome these problems by simplifying downstream processing and improving protein yields. This study aims to compare the efficiency of two Bacillus subtilis chitosanase signal peptides in mediating extracellular secretion in E. coli. We identified a naturally occurring mutant signal peptide (mCsn2-SP) from B. subtilis CH2 chitosanase (CH2CSN), which is characterized by a deletion of six amino acids in the N-region relative to the signal peptide (Csn1-SP) from B. subtilis CH1 chitosanase (CH1CSN). The CH1CSN and CH2CSN genes were cloned into the pET-11a vector and protein secretion was evaluated in E. coli BL21(DE3) host cells. Expression was induced with 0.1 mM and 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) at 30 °C for one and three days. CH2CSN showed higher secretion levels compared to CH1CSN under all experimental conditions, especially with 0.1 mM IPTG induction for 3 days, which resulted in a 2.37-fold increase in secretion. Furthermore, it was demonstrated that mCsn2-SP is capable of secreting human Cu,Zn-superoxide dismutase (hSOD) in E. coli BL21(DE3) and successfully translocating it to the periplasmic region. This study represents the inaugural investigation into the utilisation of a naturally modified signal peptide, thereby corroborating the assertion that signal peptide deletion variants can influence protein secretion efficiency. Furthermore, the findings substantiate the proposition that such variants can serve as a viable alternative for the secretion of heterologous proteins in E. coli.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"1155-1164"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652591/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-18DOI: 10.1007/s12275-024-00184-3
Jee Young Lee, Yehwon Kim, Jiyoun Kim, Jiyeun Kate Kim
Over the past two decades, as the importance of gut microbiota to human health has become widely known, attempts have been made to treat diseases by correcting dysbiosis of gut microbiota through fecal microbiota transplantation (FMT). Apart from current knowledge of gut microbiota, FMT to treat disease has a long history, from the treatment of food poisoning in the fourth century to the treatment of Clostridioides difficile infections in the twentieth century. In 2013, FMT was recognized as a standard treatment for recurrent C. difficile because it consistently showed high efficacy. Though recurrent C. difficile is the only disease internationally recognized for FMT efficacy, FMT has been tested for other diseases and shown some promising preliminary results. Different FMT methods have been developed using various formulations and administration routes. Despite advances in FMT, some issues remain to be resolved, such as donor screening, manufacturing protocols, and unknown components in the fecal microbiota. In this review, we discuss the mechanisms, clinical indications, methods, and challenges of current FMT. We also discuss the development of alternative therapies to overcome the challenges of FMT.
{"title":"Fecal Microbiota Transplantation: Indications, Methods, and Challenges.","authors":"Jee Young Lee, Yehwon Kim, Jiyoun Kim, Jiyeun Kate Kim","doi":"10.1007/s12275-024-00184-3","DOIUrl":"10.1007/s12275-024-00184-3","url":null,"abstract":"<p><p>Over the past two decades, as the importance of gut microbiota to human health has become widely known, attempts have been made to treat diseases by correcting dysbiosis of gut microbiota through fecal microbiota transplantation (FMT). Apart from current knowledge of gut microbiota, FMT to treat disease has a long history, from the treatment of food poisoning in the fourth century to the treatment of Clostridioides difficile infections in the twentieth century. In 2013, FMT was recognized as a standard treatment for recurrent C. difficile because it consistently showed high efficacy. Though recurrent C. difficile is the only disease internationally recognized for FMT efficacy, FMT has been tested for other diseases and shown some promising preliminary results. Different FMT methods have been developed using various formulations and administration routes. Despite advances in FMT, some issues remain to be resolved, such as donor screening, manufacturing protocols, and unknown components in the fecal microbiota. In this review, we discuss the mechanisms, clinical indications, methods, and challenges of current FMT. We also discuss the development of alternative therapies to overcome the challenges of FMT.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"1057-1074"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-12-02DOI: 10.1007/s12275-024-00188-z
Subin Kim, Se Hee Lee, Ki Hyun Kim, Misun Yun
Two Gram-stain-positive, facultatively anaerobic, non-hemolytic, coccoid-shaped bacterial strains, designated MS01T and MS02, were isolated from cabbage watery kimchi in the Republic of Korea. Cellular growth occurred at 5-25 ℃ (optimum, 20 ℃), pH 5-8 (optimum, pH 7) and in the presence of 0-5% (w/v) NaCl (optimum, 1%). Results of 16S rRNA gene-based phylogenetic analyses showed that strains MS01T and MS02 shared identical sequences, clustered within the Leuconostoc clade in phylogenetic trees, and were most closely related to Leuconostoc inhae IH003T and Leuconostoc gasicomitatum LMG 18811T with sequence similarities of 98.74%. The complete whole-genome sequences of strains MS01T and MS02 measured 2.04-2.06 Mbp and harbored a 50.6 kb plasmid, with DNA G + C contents of 37.7% for both. Based on average nucleotide identities (ANI) and digital DNA-DNA hybridization (dDDH) values, both strains were confirmed to belong to the same species but showed ≤ 85.9% ANI and ≤ 29.9% dDDH values to other Leuconostoc species, indicating that they represent a novel species. Metabolic pathway reconstruction revealed that both strains perform heterolactic acid fermentation, producing lactate, acetate, and ethanol. Chemotaxonomic analyses, including cellular fatty acids, polar lipids, and peptidoglycan amino acid, confirmed the inclusion of both strains within the genus Leuconostoc. Based on the phylogenetic, genomic, and phenotypic characterization, strains MS01T and MS02 were considered to represent a novel species within the genus Leuconostoc, for which the name Leuconostoc aquikimchii sp. nov. is proposed with MS01T (= KACC 23748T = JCM 37028T) as the type strain.
从韩国产的白菜水泡菜中分离到两株革兰氏染色阳性、兼性厌氧、非溶血性球形菌株MS01T和MS02。在5-25℃(最适,20℃)、pH 5-8(最适,pH 7)和0-5% (w/v) NaCl(最适,1%)存在的条件下,细胞生长良好。基于16S rRNA基因的系统发育分析结果表明,菌株MS01T和MS02具有相同的序列,在系统发育树上聚集在Leuconostoc分支中,与Leuconostoc hae IH003T和Leuconostoc gasicomitatum LMG 18811T亲缘关系最密切,序列相似性为98.74%。菌株MS01T和MS02的全基因组序列长度为2.04 ~ 2.06 Mbp,质粒长度为50.6 kb, DNA G + C含量为37.7%。根据平均核苷酸同源性(ANI)和数字DNA-DNA杂交(dDDH)值,证实两株菌株属于同一种,但与其他Leuconostoc种的ANI值≤85.9%,dDDH值≤29.9%,表明它们代表一个新种。代谢途径重建显示,这两种菌株都进行异乳酸发酵,产生乳酸、乙酸和乙醇。化学分类分析,包括细胞脂肪酸、极性脂质和肽聚糖氨基酸,证实了这两种菌株都属于Leuconostoc属。基于系统发育、基因组学和表型分析,认为菌株MS01T和MS02代表了Leuconostoc属的一个新种,并以MS01T (= KACC 23748T = JCM 37028T)为型菌株命名为Leuconostoc aquikimchii sp. nov。
{"title":"Leuconostoc aquikimchii sp. nov., a Lactic Acid Bacterium Isolated from Cabbage Watery Kimchi.","authors":"Subin Kim, Se Hee Lee, Ki Hyun Kim, Misun Yun","doi":"10.1007/s12275-024-00188-z","DOIUrl":"10.1007/s12275-024-00188-z","url":null,"abstract":"<p><p>Two Gram-stain-positive, facultatively anaerobic, non-hemolytic, coccoid-shaped bacterial strains, designated MS01<sup>T</sup> and MS02, were isolated from cabbage watery kimchi in the Republic of Korea. Cellular growth occurred at 5-25 ℃ (optimum, 20 ℃), pH 5-8 (optimum, pH 7) and in the presence of 0-5% (w/v) NaCl (optimum, 1%). Results of 16S rRNA gene-based phylogenetic analyses showed that strains MS01<sup>T</sup> and MS02 shared identical sequences, clustered within the Leuconostoc clade in phylogenetic trees, and were most closely related to Leuconostoc inhae IH003<sup>T</sup> and Leuconostoc gasicomitatum LMG 18811<sup>T</sup> with sequence similarities of 98.74%. The complete whole-genome sequences of strains MS01<sup>T</sup> and MS02 measured 2.04-2.06 Mbp and harbored a 50.6 kb plasmid, with DNA G + C contents of 37.7% for both. Based on average nucleotide identities (ANI) and digital DNA-DNA hybridization (dDDH) values, both strains were confirmed to belong to the same species but showed ≤ 85.9% ANI and ≤ 29.9% dDDH values to other Leuconostoc species, indicating that they represent a novel species. Metabolic pathway reconstruction revealed that both strains perform heterolactic acid fermentation, producing lactate, acetate, and ethanol. Chemotaxonomic analyses, including cellular fatty acids, polar lipids, and peptidoglycan amino acid, confirmed the inclusion of both strains within the genus Leuconostoc. Based on the phylogenetic, genomic, and phenotypic characterization, strains MS01<sup>T</sup> and MS02 were considered to represent a novel species within the genus Leuconostoc, for which the name Leuconostoc aquikimchii sp. nov. is proposed with MS01<sup>T</sup> (= KACC 23748<sup>T</sup> = JCM 37028<sup>T</sup>) as the type strain.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"1089-1097"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-15DOI: 10.1007/s12275-024-00183-4
Sinyeon Kim, Yong Heon Lee
The envE gene of Salmonella enterica serovar Typhimurium is encoded within Salmonella Pathogenicity Island-11 (SPI-11) and is located immediately upstream of the virulence gene msgA (macrophage survival gene A) in the same transcriptional orientation. To date, the characteristics and roles of envE remain largely unexplored. In this study, we show that EnvE, a predicted lipoprotein, is localized on the outer membrane using sucrose gradient ultracentrifugation. Under oxidative stress conditions, envE transcription is suppressed, while msgA transcription is induced, indicating an inverse correlation between the mRNA levels of the two neighboring genes. Importantly, inactivation of envE leads to constitutive transcription of msgA regardless of the presence of oxidative stress. Moreover, trans-complementation of the envE mutant with a plasmid-borne envE fails to prevent the induction of msgA transcription, suggesting that envE functions as a cis-regulatory element rather than a trans-acting factor. We further show that both inactivation and complementation of envE confer wild-type levels of resistance to oxidative stress by ensuring the expression of msgA. Our data suggest that the S. enterica envE gene encodes an outer membrane lipoprotein, and its transcription represses msgA expression in a cis-acting manner, probably by transcriptional interference, although the exact molecular details are yet unclear.
{"title":"The Salmonella enterica EnvE is an Outer Membrane Lipoprotein and Its Gene Expression Leads to Transcriptional Repression of the Virulence Gene msgA.","authors":"Sinyeon Kim, Yong Heon Lee","doi":"10.1007/s12275-024-00183-4","DOIUrl":"10.1007/s12275-024-00183-4","url":null,"abstract":"<p><p>The envE gene of Salmonella enterica serovar Typhimurium is encoded within Salmonella Pathogenicity Island-11 (SPI-11) and is located immediately upstream of the virulence gene msgA (macrophage survival gene A) in the same transcriptional orientation. To date, the characteristics and roles of envE remain largely unexplored. In this study, we show that EnvE, a predicted lipoprotein, is localized on the outer membrane using sucrose gradient ultracentrifugation. Under oxidative stress conditions, envE transcription is suppressed, while msgA transcription is induced, indicating an inverse correlation between the mRNA levels of the two neighboring genes. Importantly, inactivation of envE leads to constitutive transcription of msgA regardless of the presence of oxidative stress. Moreover, trans-complementation of the envE mutant with a plasmid-borne envE fails to prevent the induction of msgA transcription, suggesting that envE functions as a cis-regulatory element rather than a trans-acting factor. We further show that both inactivation and complementation of envE confer wild-type levels of resistance to oxidative stress by ensuring the expression of msgA. Our data suggest that the S. enterica envE gene encodes an outer membrane lipoprotein, and its transcription represses msgA expression in a cis-acting manner, probably by transcriptional interference, although the exact molecular details are yet unclear.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"1013-1022"},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-28DOI: 10.1007/s12275-024-00175-4
Jungyeon Kim, Ye-Bin Kim, Ju-Young Kim, Min-Ju Seo, Soo-Jin Yeom, Bong Hyun Sung
Amid rising environmental concerns, attempts have been made to produce glycolic acid (GA) using microbial processes with renewable carbon resources instead of using chemicals. The Dahms pathway for GA production uses xylose as a substrate and consists of relatively simple enzymatic steps. However, employing it leads to a decrease in cell growth and GA productivity. Systematically identifying and addressing metabolic bottlenecks in the Dahms pathway are essential for efficient glycolic acid (GA) production have not yet been performed. Through metabolic flux balance analysis, we found that insufficient aldehyde dehydrogenase (AldA) activity lowers GA production and negatively affects cell growth due to reduced energy production. Thus, we discovered a novel AldA isolated from Buttiauxella agrestis (BaAldA) demonstrated a 1.69-fold lower KM and a 1.49-fold higher turnover rate (kcat/KM) than AldA from Escherichia coli (EcAldA). GA production in E. coli harboring BaAldA was 1.59 times higher than in the original strain. Fed-batch fermentation of E. coli harboring BaAldA produced 22.70 g/L GA with a yield of 0.497 g/gxylose (98.2% of the theoretical maximum yield in the Dahms pathway), showing a higher final yield for GA than previously reported in E. coli. Our novel BaAldA enzyme shows great potential for the production of GA using microorganisms or enzymes. Furthermore, our approach to identifying metabolic bottlenecks using flux balance analysis could be utilized to enhance the microbial production of various desirable products in future studies.
在环境问题日益受到关注的情况下,人们开始尝试利用可再生碳资源的微生物工艺来生产乙醇酸(GA),而不是使用化学品。生产 GA 的 Dahms 途径使用木糖作为底物,由相对简单的酶解步骤组成。然而,采用这种方法会导致细胞生长和 GA 生产率下降。目前尚未系统地识别和解决达姆斯途径中对高效生产乙醇酸(GA)至关重要的代谢瓶颈。通过代谢通量平衡分析,我们发现醛脱氢酶(AldA)活性不足会降低 GA 产量,并因能量生成减少而对细胞生长产生负面影响。因此,我们发现了一种从布氏菌(Buttiauxella agrestis)中分离出来的新型 AldA(BaAldA),与大肠杆菌中的 AldA(EcAldA)相比,其 KM 值低 1.69 倍,周转率(kcat/KM)高 1.49 倍。含有 BaAldA 的大肠杆菌的 GA 产量是原菌株的 1.59 倍。对含有 BaAldA 的大肠杆菌进行饲料批量发酵,可产生 22.70 克/升的 GA,产量为 0.497 克/木糖(达姆斯途径理论最高产量的 98.2%),这表明 GA 的最终产量高于之前在大肠杆菌中报道的产量。我们的新型 BaAldA 酶显示出利用微生物或酶生产 GA 的巨大潜力。此外,在未来的研究中,我们利用通量平衡分析确定代谢瓶颈的方法可用于提高各种理想产品的微生物产量。
{"title":"Investigation of Bottleneck Enzyme Through Flux Balance Analysis to Improve Glycolic Acid Production in Escherichia coli.","authors":"Jungyeon Kim, Ye-Bin Kim, Ju-Young Kim, Min-Ju Seo, Soo-Jin Yeom, Bong Hyun Sung","doi":"10.1007/s12275-024-00175-4","DOIUrl":"10.1007/s12275-024-00175-4","url":null,"abstract":"<p><p>Amid rising environmental concerns, attempts have been made to produce glycolic acid (GA) using microbial processes with renewable carbon resources instead of using chemicals. The Dahms pathway for GA production uses xylose as a substrate and consists of relatively simple enzymatic steps. However, employing it leads to a decrease in cell growth and GA productivity. Systematically identifying and addressing metabolic bottlenecks in the Dahms pathway are essential for efficient glycolic acid (GA) production have not yet been performed. Through metabolic flux balance analysis, we found that insufficient aldehyde dehydrogenase (AldA) activity lowers GA production and negatively affects cell growth due to reduced energy production. Thus, we discovered a novel AldA isolated from Buttiauxella agrestis (BaAldA) demonstrated a 1.69-fold lower K<sub>M</sub> and a 1.49-fold higher turnover rate (k<sub>cat</sub>/K<sub>M</sub>) than AldA from Escherichia coli (EcAldA). GA production in E. coli harboring BaAldA was 1.59 times higher than in the original strain. Fed-batch fermentation of E. coli harboring BaAldA produced 22.70 g/L GA with a yield of 0.497 g/g<sub>xylose</sub> (98.2% of the theoretical maximum yield in the Dahms pathway), showing a higher final yield for GA than previously reported in E. coli. Our novel BaAldA enzyme shows great potential for the production of GA using microorganisms or enzymes. Furthermore, our approach to identifying metabolic bottlenecks using flux balance analysis could be utilized to enhance the microbial production of various desirable products in future studies.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"1023-1033"},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}