Pub Date : 2024-11-01Epub Date: 2024-11-15DOI: 10.1007/s12275-024-00187-0
Meora Rajeev, Jang-Cheon Cho
Bioflocs are microbial aggregates primarily composed of heterotrophic bacteria that play essential ecological roles in maintaining animal health, gut microbiota, and water quality in biofloc aquaculture systems. Despite the global adoption of biofloc aquaculture for shrimp and fish cultivation, our understanding of biofloc microbiota-particularly the dominant bacterial members and their ecological functions-remains limited. In this study, we employed integrated metataxonomic and metagenomic approaches to demonstrate that the family Rhodobacteraceae of Alphaproteobacteria consistently dominates the biofloc microbiota and plays essential ecological roles. We first analyzed a comprehensive metataxonomic dataset consisting of 200 16S rRNA gene amplicons collected across three Asian countries: South Korea, China, and Vietnam. Taxonomic investigation identified Rhodobacteraceae as the dominant and consistent bacterial members across the datasets. The predominance of this taxon was further validated through metagenomics approaches, including read taxonomy and read recruitment analyses. To explore the ecological roles of Rhodobacteraceae, we applied genome-centric metagenomics, reconstructing 45 metagenome-assembled genomes. Functional annotation of these genomes revealed that dominant Rhodobacteraceae genera, such as Marivita, Ruegeria, Dinoroseobacter, and Aliiroseovarius, are involved in vital ecological processes, including complex carbohydrate degradation, aerobic denitrification, assimilatory nitrate reduction, ammonium assimilation, and sulfur oxidation. Overall, our study reveals that the common practice of carbohydrate addition in biofloc aquaculture systems fosters the growth of specific heterotrophic bacterial communities, particularly Rhodobacteraceae. These bacteria contribute to maintaining water quality by removing toxic nitrogen and sulfur compounds and enhance animal health by colonizing gut microbiota and exerting probiotic effects.
{"title":"Rhodobacteraceae are Prevalent and Ecologically Crucial Bacterial Members in Marine Biofloc Aquaculture.","authors":"Meora Rajeev, Jang-Cheon Cho","doi":"10.1007/s12275-024-00187-0","DOIUrl":"10.1007/s12275-024-00187-0","url":null,"abstract":"<p><p>Bioflocs are microbial aggregates primarily composed of heterotrophic bacteria that play essential ecological roles in maintaining animal health, gut microbiota, and water quality in biofloc aquaculture systems. Despite the global adoption of biofloc aquaculture for shrimp and fish cultivation, our understanding of biofloc microbiota-particularly the dominant bacterial members and their ecological functions-remains limited. In this study, we employed integrated metataxonomic and metagenomic approaches to demonstrate that the family Rhodobacteraceae of Alphaproteobacteria consistently dominates the biofloc microbiota and plays essential ecological roles. We first analyzed a comprehensive metataxonomic dataset consisting of 200 16S rRNA gene amplicons collected across three Asian countries: South Korea, China, and Vietnam. Taxonomic investigation identified Rhodobacteraceae as the dominant and consistent bacterial members across the datasets. The predominance of this taxon was further validated through metagenomics approaches, including read taxonomy and read recruitment analyses. To explore the ecological roles of Rhodobacteraceae, we applied genome-centric metagenomics, reconstructing 45 metagenome-assembled genomes. Functional annotation of these genomes revealed that dominant Rhodobacteraceae genera, such as Marivita, Ruegeria, Dinoroseobacter, and Aliiroseovarius, are involved in vital ecological processes, including complex carbohydrate degradation, aerobic denitrification, assimilatory nitrate reduction, ammonium assimilation, and sulfur oxidation. Overall, our study reveals that the common practice of carbohydrate addition in biofloc aquaculture systems fosters the growth of specific heterotrophic bacterial communities, particularly Rhodobacteraceae. These bacteria contribute to maintaining water quality by removing toxic nitrogen and sulfur compounds and enhance animal health by colonizing gut microbiota and exerting probiotic effects.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"985-997"},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-16DOI: 10.1007/s12275-024-00176-3
Gyungcheon Kim, Seongok Kim, Hayan Jung, Seohyun Kang, Gwoncheol Park, Hakdong Shin
Makgeolli, a traditional Korean liquor, contains components such as lactic acid bacteria and dietary fiber, which can induce changes in the gut microbiome. Since variations in microbiome responses may exist between enterotypes-classifications based on the dominant bacterial populations in the gut-we hypothesized that the consumption of makgeolli leads to enterotype-dependent differences in gut microbial structures among healthy participants. This study aimed to determine the effect of makgeolli consumption on gut microbial structures by stratifying all participants into two enterotype groups: Bacteroides-dominant type (B-type, n = 7) and Prevotella-dominant type (P-type, n = 4). The B-type showed an increase in alpha diversity, while no significant difference was observed in the P-type following makgeolli consumption. The composition of gut microbiota significantly changed in the B-type, whereas no noticeable alteration was observed in the P-type after makgeolli consumption. Notably, Prevotella exhibited the most significant changes only in the P-type. In line with the increased abundance of Prevotella, the genes associated with carbohydrate metabolism, including pentose/glucuronate interconversions, fructose/mannose metabolism, starch/sucrose metabolism and amino sugar/nucleotide sugar metabolism were significantly enriched following makgeolli consumption in the P-type. These findings suggest that makgeolli consumption induces enterotype-dependent alterations in gut microbial composition and metabolic pathways, highlighting the potential for personalized dietary interventions.
麦芽汁是一种传统的韩国白酒,含有乳酸菌和膳食纤维等成分,可引起肠道微生物组的变化。由于微生物组的反应在肠型之间可能存在差异--肠型是根据肠道中的主要细菌种群进行分类的,因此我们假设,食用麦芽汁会导致健康参与者肠道微生物结构的肠型依赖性差异。本研究旨在通过将所有参与者分为两个肠型组来确定食用玛奇朵对肠道微生物结构的影响:乳酸杆菌主导型(B 型,n = 7)和普雷沃特菌主导型(P 型,n = 4)。B 型肠道菌群的阿尔法多样性有所增加,而 P 型肠道菌群的阿尔法多样性在食用麦芽汁后没有明显变化。B 型肠道微生物群的组成发生了显著变化,而 P 型在食用玛琪奥利后没有观察到明显变化。值得注意的是,只有 P 型肠道微生物群中的 Prevotella 发生了最显著的变化。与普雷沃特氏菌数量增加相一致的是,与碳水化合物代谢相关的基因,包括戊糖/葡萄糖醛酸盐相互转化、果糖/甘露糖代谢、淀粉/蔗糖代谢和氨基糖/核苷酸糖代谢,在食用玛酷后在 P 型中明显富集。这些研究结果表明,食用玛奇朵后,肠道微生物组成和代谢途径会发生肠型依赖性改变,这凸显了个性化膳食干预的潜力。
{"title":"The Impact of Makgeolli Consumption on Gut Microbiota: An Enterotype-Based Preliminary Study.","authors":"Gyungcheon Kim, Seongok Kim, Hayan Jung, Seohyun Kang, Gwoncheol Park, Hakdong Shin","doi":"10.1007/s12275-024-00176-3","DOIUrl":"10.1007/s12275-024-00176-3","url":null,"abstract":"<p><p>Makgeolli, a traditional Korean liquor, contains components such as lactic acid bacteria and dietary fiber, which can induce changes in the gut microbiome. Since variations in microbiome responses may exist between enterotypes-classifications based on the dominant bacterial populations in the gut-we hypothesized that the consumption of makgeolli leads to enterotype-dependent differences in gut microbial structures among healthy participants. This study aimed to determine the effect of makgeolli consumption on gut microbial structures by stratifying all participants into two enterotype groups: Bacteroides-dominant type (B-type, n = 7) and Prevotella-dominant type (P-type, n = 4). The B-type showed an increase in alpha diversity, while no significant difference was observed in the P-type following makgeolli consumption. The composition of gut microbiota significantly changed in the B-type, whereas no noticeable alteration was observed in the P-type after makgeolli consumption. Notably, Prevotella exhibited the most significant changes only in the P-type. In line with the increased abundance of Prevotella, the genes associated with carbohydrate metabolism, including pentose/glucuronate interconversions, fructose/mannose metabolism, starch/sucrose metabolism and amino sugar/nucleotide sugar metabolism were significantly enriched following makgeolli consumption in the P-type. These findings suggest that makgeolli consumption induces enterotype-dependent alterations in gut microbial composition and metabolic pathways, highlighting the potential for personalized dietary interventions.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"965-972"},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-04DOI: 10.1007/s12275-024-00177-2
Caixin Yang, Jiajia Ma, Huimin Zhou, Jing Yang, Ji Pu, Shan Lu, Dong Jin, Liyun Liu, Kui Dong, Jianguo Xu
Two Gram-stain-positive, oxidase-negative, non-motile, facultative anaerobic, α-hemolytic, coccus-shaped bacteria (zg-86T and zg-70) were isolated from the respiratory tracts of marmots (Marmota Himalayana) on the Qinghai-Tibet Plateau of China. Phylogenetic analysis of the 16S rRNA gene and 545 core genes revealed that these two strains belong to the Streptococcus genus. These strains were most closely related to Streptococcus respiraculi HTS25T, Streptococcus cuniculi CCUG 65085T, and Streptococcus marmotae HTS5T. The average nucleotide identity (ANI) and digital DNA‒DNA hybridization (dDDH) were below the threshold for species delineation. The predominant cellular fatty acids (CFAs) in this novel species were C16:0, C18:0, and C18:1ω9c, whereas the primary polar lipids were phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and an unknown phosphoglycolipid (PGL). The optimal growth conditions for the strains were 37 °C, pH 7.0, and 0.5% (w/v) NaCl on brain-heart infusion (BHI) agar supplemented with 5% defibrinated sheep blood. Comparative genomics analyses revealed the potential pathogenicity of strain zg-86T through comparisons with suis subclade strains in terms of virulence factors, pathogen-host interactions (PHIs) and mobile genetic factors (MGEs). Based on the phenotypic characteristics and phylogenetic analyses, we propose that these two isolates represent novel species in the genus Streptococcus, for which the names Streptococcus zhangguiae sp. nov. (the type strain zg-86T=GDMCC 1.1758T=JCM 34273T) is proposed.
{"title":"Genomic Characterization and Comparative Analysis of Streptococcus zhangguiae sp. nov. Isolated from the Respiratory Tract of Marmota Himalayana.","authors":"Caixin Yang, Jiajia Ma, Huimin Zhou, Jing Yang, Ji Pu, Shan Lu, Dong Jin, Liyun Liu, Kui Dong, Jianguo Xu","doi":"10.1007/s12275-024-00177-2","DOIUrl":"10.1007/s12275-024-00177-2","url":null,"abstract":"<p><p>Two Gram-stain-positive, oxidase-negative, non-motile, facultative anaerobic, α-hemolytic, coccus-shaped bacteria (zg-86<sup>T</sup> and zg-70) were isolated from the respiratory tracts of marmots (Marmota Himalayana) on the Qinghai-Tibet Plateau of China. Phylogenetic analysis of the 16S rRNA gene and 545 core genes revealed that these two strains belong to the Streptococcus genus. These strains were most closely related to Streptococcus respiraculi HTS25<sup>T</sup>, Streptococcus cuniculi CCUG 65085<sup>T</sup>, and Streptococcus marmotae HTS5<sup>T</sup>. The average nucleotide identity (ANI) and digital DNA‒DNA hybridization (dDDH) were below the threshold for species delineation. The predominant cellular fatty acids (CFAs) in this novel species were C<sub>16:0</sub>, C<sub>18:0</sub>, and C<sub>18:1</sub>ω9c, whereas the primary polar lipids were phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and an unknown phosphoglycolipid (PGL). The optimal growth conditions for the strains were 37 °C, pH 7.0, and 0.5% (w/v) NaCl on brain-heart infusion (BHI) agar supplemented with 5% defibrinated sheep blood. Comparative genomics analyses revealed the potential pathogenicity of strain zg-86<sup>T</sup> through comparisons with suis subclade strains in terms of virulence factors, pathogen-host interactions (PHIs) and mobile genetic factors (MGEs). Based on the phenotypic characteristics and phylogenetic analyses, we propose that these two isolates represent novel species in the genus Streptococcus, for which the names Streptococcus zhangguiae sp. nov. (the type strain zg-86<sup>T</sup>=GDMCC 1.1758<sup>T</sup>=JCM 34273<sup>T</sup>) is proposed.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"951-963"},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-18DOI: 10.1007/s12275-024-00185-2
Momen Askoura, Eslam K Fahmy, Safya E Esmaeel, Wael A H Hegazy, Aliaa Abdelghafar
The increasing prevalence of multidrug-resistant bacteria imminently threatens public health and jeopardizes nearly all aspects of modern medicine. The Burkholderia cepacia complex (Bcc) comprises Burkholderia cepacia and the related species of Gram-negative bacteria. Members of the Bcc group are opportunistic pathogens responsible for various chronic illnesses, including cystic fibrosis and chronic granulomatous disease. Phage therapy is emerging as a potential solution to combat the antimicrobial resistance crisis. In this study, a temperate phage vB_BceM_CEP1 was isolated from sewage and fully characterized. Transmission electron microscopy indicated that vB_BceM_CEP1 belongs to the family Peduoviridae. The isolated phage demonstrated enhanced environmental stability and antibiofilm potential. One-step growth analysis revealed a latent period of 30 min and an average burst size of 139 plaque-forming units per cell. The genome of vB_BceM_CEP1 consists of 32,486 bp with a GC content of 62.05%. A total of 40 open reading frames were annotated in the phage genome, and none of the predicted genes was annotated as tRNA. Notably, genes associated with antibiotic resistance, host virulence factors, and toxins were absent from the vB_BceM_CEP1 genome. Based on its unique phenotype and phylogeny, the isolated phage vB_BceM_CEP1 is classified as a new temperate phage with lytic activity. The findings of this study enhance our understanding of the diversity of Bcc phages.
{"title":"Characterization and Comparative Genomic Analysis of vB_BceM_CEP1: A Novel Temperate Bacteriophage Infecting Burkholderia cepacia Complex.","authors":"Momen Askoura, Eslam K Fahmy, Safya E Esmaeel, Wael A H Hegazy, Aliaa Abdelghafar","doi":"10.1007/s12275-024-00185-2","DOIUrl":"10.1007/s12275-024-00185-2","url":null,"abstract":"<p><p>The increasing prevalence of multidrug-resistant bacteria imminently threatens public health and jeopardizes nearly all aspects of modern medicine. The Burkholderia cepacia complex (Bcc) comprises Burkholderia cepacia and the related species of Gram-negative bacteria. Members of the Bcc group are opportunistic pathogens responsible for various chronic illnesses, including cystic fibrosis and chronic granulomatous disease. Phage therapy is emerging as a potential solution to combat the antimicrobial resistance crisis. In this study, a temperate phage vB_BceM_CEP1 was isolated from sewage and fully characterized. Transmission electron microscopy indicated that vB_BceM_CEP1 belongs to the family Peduoviridae. The isolated phage demonstrated enhanced environmental stability and antibiofilm potential. One-step growth analysis revealed a latent period of 30 min and an average burst size of 139 plaque-forming units per cell. The genome of vB_BceM_CEP1 consists of 32,486 bp with a GC content of 62.05%. A total of 40 open reading frames were annotated in the phage genome, and none of the predicted genes was annotated as tRNA. Notably, genes associated with antibiotic resistance, host virulence factors, and toxins were absent from the vB_BceM_CEP1 genome. Based on its unique phenotype and phylogeny, the isolated phage vB_BceM_CEP1 is classified as a new temperate phage with lytic activity. The findings of this study enhance our understanding of the diversity of Bcc phages.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"1035-1055"},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-11DOI: 10.1007/s12275-024-00182-5
Kyeongmin Kim, Md Maidul Islam, Seunghyeok Bang, Jeongah Kim, Chung-Young Lee, Je Chul Lee, Minsang Shin
Acinetobacter baumannii is a multidrug-resistant opportunistic pathogen primarily associated with hospital-acquired infections. The bacterium can gain multidrug resistance through several mechanisms, including horizontal gene transfer. A CRISPR-Cas system including several Cas genes could restrict the horizontal gene transfer. However, the molecular mechanism of CRISPR- Cas transcriptional regulation remains unclear. We identified a type I-F CRISPR-Cas system in A. baumannii ATCC 19606T standard strain based on sequence analysis. We focused on the transcriptional regulation of Cas3, a key protein of the CRISPR-Cas system. We performed a DNA affinity chromatography-pulldown assay to identify transcriptional regulators of the Cas3 promoter. We identified several putative transcriptional factors, such as H-NS, integration host factor, and HU, that can bind to the promoter region of Cas3. We characterized AbH-NS using size exclusion chromatography and cross-linking experiments and demonstrated that the Cas3 promoter can be regulated by AbH-NS in a concentration-dependent manner via an in vitro transcription assay. CRISPR-Cas expression levels in wild-type and hns mutant strains in the early stationary phase were examined by qPCR and β-galactosidase assay. We found that H-NS can act as a repressor of Cas3. Our transformation efficiency results indicated that the hns mutation decreased the transformation efficiency, while the Cas3 mutation increased it. We report the existence and characterization of the CRISPR-Cas system in A. baumannii 19606T and demonstrate that AbH-NS is a transcriptional repressor of CRISPR-Cas-related genes in A. baumannii.
{"title":"H-NS is a Transcriptional Repressor of the CRISPR-Cas System in Acinetobacter baumannii ATCC 19606.","authors":"Kyeongmin Kim, Md Maidul Islam, Seunghyeok Bang, Jeongah Kim, Chung-Young Lee, Je Chul Lee, Minsang Shin","doi":"10.1007/s12275-024-00182-5","DOIUrl":"10.1007/s12275-024-00182-5","url":null,"abstract":"<p><p>Acinetobacter baumannii is a multidrug-resistant opportunistic pathogen primarily associated with hospital-acquired infections. The bacterium can gain multidrug resistance through several mechanisms, including horizontal gene transfer. A CRISPR-Cas system including several Cas genes could restrict the horizontal gene transfer. However, the molecular mechanism of CRISPR- Cas transcriptional regulation remains unclear. We identified a type I-F CRISPR-Cas system in A. baumannii ATCC 19606<sup>T</sup> standard strain based on sequence analysis. We focused on the transcriptional regulation of Cas3, a key protein of the CRISPR-Cas system. We performed a DNA affinity chromatography-pulldown assay to identify transcriptional regulators of the Cas3 promoter. We identified several putative transcriptional factors, such as H-NS, integration host factor, and HU, that can bind to the promoter region of Cas3. We characterized AbH-NS using size exclusion chromatography and cross-linking experiments and demonstrated that the Cas3 promoter can be regulated by AbH-NS in a concentration-dependent manner via an in vitro transcription assay. CRISPR-Cas expression levels in wild-type and hns mutant strains in the early stationary phase were examined by qPCR and β-galactosidase assay. We found that H-NS can act as a repressor of Cas3. Our transformation efficiency results indicated that the hns mutation decreased the transformation efficiency, while the Cas3 mutation increased it. We report the existence and characterization of the CRISPR-Cas system in A. baumannii 19606<sup>T</sup> and demonstrate that AbH-NS is a transcriptional repressor of CRISPR-Cas-related genes in A. baumannii.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"999-1012"},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-08DOI: 10.1007/s12275-024-00172-7
Minkyung Kim, Jaejoon Jung, Wonjae Kim, Yerim Park, Che Ok Jeon, Woojun Park
Many of the world's freshwater ecosystems suffer from cyanobacteria-mediated blooms and their toxins. However, a mechanistic understanding of why and how Microcystis aeruginosa dominates over other freshwater cyanobacteria during warmer summers is lacking. This paper utilizes comparative genomics with other cyanobacteria and literature reviews to predict the gene functions and genomic architectures of M. aeruginosa based on complete genomes. The primary aim is to understand this species' survival and competitive strategies in warmer freshwater environments. M. aeruginosa strains exhibiting a high proportion of insertion sequences (~ 11%) possess genomic structures with low synteny across different strains. This indicates the occurrence of extensive genomic rearrangements and the presence of many possible diverse genotypes that result in greater population heterogeneities than those in other cyanobacteria in order to increase survivability during rapidly changing and threatening environmental challenges. Catalase-less M. aeruginosa strains are even vulnerable to low light intensity in freshwater environments with strong ultraviolet radiation. However, they can continuously grow with the help of various defense genes (e.g., egtBD, cruA, and mysABCD) and associated bacteria. The strong defense strategies against biological threats (e.g., antagonistic bacteria, protozoa, and cyanophages) are attributed to dense exopolysaccharide (EPS)-mediated aggregate formation with efficient buoyancy and the secondary metabolites of M. aeruginosa cells. Our review with extensive genome analysis suggests that the ecological vulnerability of M. aeruginosa cells can be overcome by diverse genotypes, secondary defense metabolites, reinforced EPS, and associated bacteria.
{"title":"Extensive Genomic Rearrangement of Catalase-Less Cyanobloom-Forming Microcystis aeruginosa in Freshwater Ecosystems.","authors":"Minkyung Kim, Jaejoon Jung, Wonjae Kim, Yerim Park, Che Ok Jeon, Woojun Park","doi":"10.1007/s12275-024-00172-7","DOIUrl":"10.1007/s12275-024-00172-7","url":null,"abstract":"<p><p>Many of the world's freshwater ecosystems suffer from cyanobacteria-mediated blooms and their toxins. However, a mechanistic understanding of why and how Microcystis aeruginosa dominates over other freshwater cyanobacteria during warmer summers is lacking. This paper utilizes comparative genomics with other cyanobacteria and literature reviews to predict the gene functions and genomic architectures of M. aeruginosa based on complete genomes. The primary aim is to understand this species' survival and competitive strategies in warmer freshwater environments. M. aeruginosa strains exhibiting a high proportion of insertion sequences (~ 11%) possess genomic structures with low synteny across different strains. This indicates the occurrence of extensive genomic rearrangements and the presence of many possible diverse genotypes that result in greater population heterogeneities than those in other cyanobacteria in order to increase survivability during rapidly changing and threatening environmental challenges. Catalase-less M. aeruginosa strains are even vulnerable to low light intensity in freshwater environments with strong ultraviolet radiation. However, they can continuously grow with the help of various defense genes (e.g., egtBD, cruA, and mysABCD) and associated bacteria. The strong defense strategies against biological threats (e.g., antagonistic bacteria, protozoa, and cyanophages) are attributed to dense exopolysaccharide (EPS)-mediated aggregate formation with efficient buoyancy and the secondary metabolites of M. aeruginosa cells. Our review with extensive genome analysis suggests that the ecological vulnerability of M. aeruginosa cells can be overcome by diverse genotypes, secondary defense metabolites, reinforced EPS, and associated bacteria.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"933-950"},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We isolated three novel strains, S1T, S2T, and S5T, from human oral cavities and identified them as distinct novel species. All these strains are facultatively anaerobic, Gram-stain-positive, and non-flagellated bacteria. Their optimal growth conditions for these strains were observed in Columbia broth (CB) at 37 °C, pH 7.0, and in the absence of NaCl. Phylogenetic analyses, employing the 16S rRNA gene and whole-genome sequencing, confirmed that all three strains belong to the genus Streptococcus. The 16S rRNA gene sequences of strains S1T, S2T, and S5T showed the highest similarities to Streptococcus parasanguinis, 98.57%, 99.05%, and 99.05%, respectively, and the orthologous average nucleotide identity (OrthoANI) values between the three strains and S. parasanguinis were 93.82%, 93.67%, and 94.04%, respectively. The pairwise OrthoANI values between the novel strains were 94.37% (S1T-S2T), 95.03% (S2T-S5T), and 94.71% (S1T-S5T). All strains had C20:1 ω9c and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) as major cellular fatty acids. Additionally, diphosphatidylglycerol (DPG) and hydroxyphosphatidylethanolamine (OH-PE) were identified as major polar lipids. Menaquinone was undetected in all strains. The results from the phylogenetic, phenotypic, chemotaxonomic, and genotypic analyses collectively indicated that strains S1T, S2T, and S5T represent three distinct novel species within the genus Streptococcus, and we propose the names Streptococcus dentalis sp. nov. for strain S1T (= KCTC 21234T = JCM 36526T), Streptococcus gingivalis sp. nov. for strain S2T (= KCTC 21235T = JCM 36527T), and Streptococcus lingualis sp. nov. for strain S5T (= KCTC 21236T = JCM 36528T).
{"title":"Description of Streptococcus dentalis sp. nov., Streptococcus gingivalis sp. nov., and Streptococcus lingualis sp. nov., Isolated from Human Oral Cavities.","authors":"Beom-Jin Goo, Young-Sik Choi, Do-Hun Gim, Su-Won Jeong, Jee-Won Choi, Hojun Sung, Jae-Yun Lee, Jin-Woo Bae","doi":"10.1007/s12275-024-00178-1","DOIUrl":"10.1007/s12275-024-00178-1","url":null,"abstract":"<p><p>We isolated three novel strains, S1<sup>T</sup>, S2<sup>T</sup>, and S5<sup>T</sup>, from human oral cavities and identified them as distinct novel species. All these strains are facultatively anaerobic, Gram-stain-positive, and non-flagellated bacteria. Their optimal growth conditions for these strains were observed in Columbia broth (CB) at 37 °C, pH 7.0, and in the absence of NaCl. Phylogenetic analyses, employing the 16S rRNA gene and whole-genome sequencing, confirmed that all three strains belong to the genus Streptococcus. The 16S rRNA gene sequences of strains S1<sup>T</sup>, S2<sup>T</sup>, and S5<sup>T</sup> showed the highest similarities to Streptococcus parasanguinis, 98.57%, 99.05%, and 99.05%, respectively, and the orthologous average nucleotide identity (OrthoANI) values between the three strains and S. parasanguinis were 93.82%, 93.67%, and 94.04%, respectively. The pairwise OrthoANI values between the novel strains were 94.37% (S1<sup>T</sup>-S2<sup>T</sup>), 95.03% (S2<sup>T</sup>-S5<sup>T</sup>), and 94.71% (S1<sup>T</sup>-S5<sup>T</sup>). All strains had C<sub>20:1</sub> ω9c and summed feature 8 (C<sub>18:1</sub> ω7c and/or C<sub>18:1</sub> ω6c) as major cellular fatty acids. Additionally, diphosphatidylglycerol (DPG) and hydroxyphosphatidylethanolamine (OH-PE) were identified as major polar lipids. Menaquinone was undetected in all strains. The results from the phylogenetic, phenotypic, chemotaxonomic, and genotypic analyses collectively indicated that strains S1<sup>T</sup>, S2<sup>T</sup>, and S5<sup>T</sup> represent three distinct novel species within the genus Streptococcus, and we propose the names Streptococcus dentalis sp. nov. for strain S1<sup>T</sup> (= KCTC 21234<sup>T</sup> = JCM 36526<sup>T</sup>), Streptococcus gingivalis sp. nov. for strain S2<sup>T</sup> (= KCTC 21235<sup>T</sup> = JCM 36527<sup>T</sup>), and Streptococcus lingualis sp. nov. for strain S5<sup>T</sup> (= KCTC 21236<sup>T</sup> = JCM 36528<sup>T</sup>).</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"973-983"},"PeriodicalIF":3.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-30DOI: 10.1007/s12275-024-00165-6
Ji-Young Yoon, Somin Park, Dongwook Lee, Ok-Jin Park, WooCheol Lee, Seung Hyun Han
The demand for safe and effective endodontic medicaments to control Enterococcus faecalis biofilms, a contributor to apical periodontitis, is increasing. Recently, lipoteichoic acid (LTA) of family Lactobacillaceae has been shown to have anti-biofilm effects against various oral pathogens. Preliminary experiments showed that LTA purified from Lacticaseibacillus rhamnosus GG (Lgg.LTA) was the most effective against E. faecalis biofilms among LTAs from three Lactobacillaceae including L. rhamnosus GG, Lacticaseibacillus casei, and Lactobacillus acidophilus. Therefore, in this study, we investigated the potential of Lgg.LTA as an intracanal medicament in human root canals infected with E. faecalis. Twenty eight dentinal cylinders were prepared from extracted human teeth, where two-week-old E. faecalis biofilms were formed followed by intracanal treatment with sterile distilled water (SDW), N-2 methyl pyrrolidone (NMP), calcium hydroxide (CH), or Lgg.LTA. Bacteria and biofilms that formed in the root canals were analyzed by scanning electron microscopy and confocal laser scanning microscopy. The remaining E. faecalis cells in the root canals after intracanal medicament treatment were enumerated by culturing and counting. When applied to intracanal biofilms, Lgg.LTA effectively inhibited E. faecalis biofilm formation as much as CH, while SDW and NMP had little effect. Furthermore, Lgg.LTA reduced both live and dead bacteria within the dentinal tubules, indicating the possibility of minimal re-infection in the root canals. Collectively, intracanal application of Lgg.LTA effectively inhibited E. faecalis biofilm formation, implying that Lgg.LTA can be used as a novel endodontic medicament.
{"title":"Lipoteichoic Acid from Lacticaseibacillus rhamnosus GG as a Novel Intracanal Medicament Targeting Enterococcus faecalis Biofilm Formation.","authors":"Ji-Young Yoon, Somin Park, Dongwook Lee, Ok-Jin Park, WooCheol Lee, Seung Hyun Han","doi":"10.1007/s12275-024-00165-6","DOIUrl":"10.1007/s12275-024-00165-6","url":null,"abstract":"<p><p>The demand for safe and effective endodontic medicaments to control Enterococcus faecalis biofilms, a contributor to apical periodontitis, is increasing. Recently, lipoteichoic acid (LTA) of family Lactobacillaceae has been shown to have anti-biofilm effects against various oral pathogens. Preliminary experiments showed that LTA purified from Lacticaseibacillus rhamnosus GG (Lgg.LTA) was the most effective against E. faecalis biofilms among LTAs from three Lactobacillaceae including L. rhamnosus GG, Lacticaseibacillus casei, and Lactobacillus acidophilus. Therefore, in this study, we investigated the potential of Lgg.LTA as an intracanal medicament in human root canals infected with E. faecalis. Twenty eight dentinal cylinders were prepared from extracted human teeth, where two-week-old E. faecalis biofilms were formed followed by intracanal treatment with sterile distilled water (SDW), N-2 methyl pyrrolidone (NMP), calcium hydroxide (CH), or Lgg.LTA. Bacteria and biofilms that formed in the root canals were analyzed by scanning electron microscopy and confocal laser scanning microscopy. The remaining E. faecalis cells in the root canals after intracanal medicament treatment were enumerated by culturing and counting. When applied to intracanal biofilms, Lgg.LTA effectively inhibited E. faecalis biofilm formation as much as CH, while SDW and NMP had little effect. Furthermore, Lgg.LTA reduced both live and dead bacteria within the dentinal tubules, indicating the possibility of minimal re-infection in the root canals. Collectively, intracanal application of Lgg.LTA effectively inhibited E. faecalis biofilm formation, implying that Lgg.LTA can be used as a novel endodontic medicament.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"897-905"},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554932/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-10-08DOI: 10.1007/s12275-024-00163-8
Md Rezaul Karim, Safia Iqbal, Shahnawaz Mohammad, Jong-Hoon Kim, Li Ling, Changbao Chen, Abdus Samad, Md Anwarul Haque, Deok-Chun Yang, Yeon Ju Kim, Dong Uk Yang
In recent years, kidney cancer has become one of the most serious medical issues. Kidney cancer is treated with a variety of active compounds that trigger genes that cause cancer. We identified in our earlier research that isoquercitrin (IQ) can activate PIK3CA, IGF1R, and PTGS2. However, it has a very low bioavailability because of its lower solubility in water. So, we utilized sub-merge fermentation technology with two well-known probiotics, Lactobacillus acidophilus and Bacillus subtilis, as a microbial source and mulberry fruit extract as a substrate, which has a high IQ level to improve IQ yield. Furthermore, we compared the total phenolic, flavonoid, and antioxidant contents of fermented and non-fermented samples, and we found that the fermented samples had greater levels than non-fermented sample. In addition, the high-performance liquid chromatography (HPLC) results showed that the fermented mulberry fruit extract from B. subtilis and L. acidophilus showed higher IQ values (190.73 ± 0.004 μg/ml and 220.54 ± 0.007 μg/ml, respectively), compared to the non-fermented samples, which had IQ values (80.12 ± 0.002 μg/ml). Additionally, at 62.5 µg/ml doses of each sample, a normal kidney cell line (HEK 293) showed higher cell viability for fermented and non-fermented samples. Conversely, at the same doses, the fermented samples of L. acidophilus and B. subtilis in a kidney cancer cell line (A498) showed an inhibition of cell growth around 36% and 31%, respectively. Finally, we performed RT and qRT PCR assay, and we found a significant reduction in the expression of the PTGS2, PIK3CA, and IGF1R genes. We therefore can conclude that the fermented samples have a higher concentration of isoquercitrin, and also can inhibit the expression of the genes PTGS2, PIK3CA, and IGF1R, which in turn regulates kidney cancer and inflammation.
{"title":"Upgrading Isoquercitrin Concentration via Submerge Fermentation of Mulberry Fruit Extract with Edible Probiotics to Suppress Gene Targets for Controlling Kidney Cancer and Inflammation.","authors":"Md Rezaul Karim, Safia Iqbal, Shahnawaz Mohammad, Jong-Hoon Kim, Li Ling, Changbao Chen, Abdus Samad, Md Anwarul Haque, Deok-Chun Yang, Yeon Ju Kim, Dong Uk Yang","doi":"10.1007/s12275-024-00163-8","DOIUrl":"10.1007/s12275-024-00163-8","url":null,"abstract":"<p><p>In recent years, kidney cancer has become one of the most serious medical issues. Kidney cancer is treated with a variety of active compounds that trigger genes that cause cancer. We identified in our earlier research that isoquercitrin (IQ) can activate PIK3CA, IGF1R, and PTGS2. However, it has a very low bioavailability because of its lower solubility in water. So, we utilized sub-merge fermentation technology with two well-known probiotics, Lactobacillus acidophilus and Bacillus subtilis, as a microbial source and mulberry fruit extract as a substrate, which has a high IQ level to improve IQ yield. Furthermore, we compared the total phenolic, flavonoid, and antioxidant contents of fermented and non-fermented samples, and we found that the fermented samples had greater levels than non-fermented sample. In addition, the high-performance liquid chromatography (HPLC) results showed that the fermented mulberry fruit extract from B. subtilis and L. acidophilus showed higher IQ values (190.73 ± 0.004 μg/ml and 220.54 ± 0.007 μg/ml, respectively), compared to the non-fermented samples, which had IQ values (80.12 ± 0.002 μg/ml). Additionally, at 62.5 µg/ml doses of each sample, a normal kidney cell line (HEK 293) showed higher cell viability for fermented and non-fermented samples. Conversely, at the same doses, the fermented samples of L. acidophilus and B. subtilis in a kidney cancer cell line (A498) showed an inhibition of cell growth around 36% and 31%, respectively. Finally, we performed RT and qRT PCR assay, and we found a significant reduction in the expression of the PTGS2, PIK3CA, and IGF1R genes. We therefore can conclude that the fermented samples have a higher concentration of isoquercitrin, and also can inhibit the expression of the genes PTGS2, PIK3CA, and IGF1R, which in turn regulates kidney cancer and inflammation.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"919-927"},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-06DOI: 10.1007/s12275-024-00169-2
Marcus Carranza, Amanda Rea, Daisy Pacheco, Christian Montiel, Jin Park, Hwan Youn
The Escherichia coli cAMP receptor protein (CRP) relies on the F-helix, the recognition helix of the helix-turn-helix motif, for DNA binding. The importance of the CRP F-helix in DNA binding is well-established, yet there is little information on the roles of its non-base-contacting residues. Here, we show that a CRP F-helix position occupied by a non-base-contacting residue Val183 bears an unexpected importance in DNA binding. Codon randomization and successive in vivo screening selected six amino acids (alanine, cysteine, glycine, serine, threonine, and valine) at CRP position 183 to be compatible with DNA binding. These amino acids are quite different in their amino acid properties (polar, non-polar, hydrophobicity), but one commonality is that they are all relatively small. Larger amino acid substitutions such as histidine, methionine, and tyrosine were made site-directedly and showed to have no detectable DNA binding, further supporting the requirement of small amino acids at CRP position 183. Bioinformatics analysis revealed that small amino acids (92.15% valine and 7.75% alanine) exclusively occupy the position analogous to CRP Val183 in 1,007 core CRP homologs, consistent with our mutant data. However, in extended CRP homologs comprising 3700 proteins, larger amino acids could also occupy the position analogous to CRP Val183 albeit with low occurrence. Another bioinformatics analysis suggested that large amino acids could be tolerated by compensatory small-sized amino acids at their neighboring positions. A full understanding of the unexpected requirement of small amino acids at CRP position 183 for DNA binding entails the verification of the hypothesized compensatory change(s) in CRP.
大肠杆菌 cAMP 受体蛋白(CRP)依靠 F-螺旋(螺旋-转螺旋结构的识别螺旋)与 DNA 结合。CRP F-螺旋在 DNA 结合中的重要性已得到公认,但关于其非碱基接触残基的作用的信息却很少。在这里,我们发现非碱基接触残基 Val183 所占据的 CRP F-helix 位置在 DNA 结合中具有意想不到的重要性。通过密码子随机化和连续的体内筛选,在 CRP 第 183 位选择了六个氨基酸(丙氨酸、半胱氨酸、甘氨酸、丝氨酸、苏氨酸和缬氨酸)与 DNA 结合。这些氨基酸在氨基酸特性(极性、非极性、疏水性)方面存在很大差异,但有一个共同点,即它们都相对较小。对组氨酸、蛋氨酸和酪氨酸等较大的氨基酸进行了位点定向替换,结果显示检测不到 DNA 结合,这进一步证明了 CRP 第 183 位需要小氨基酸。生物信息学分析表明,在 1007 个核心 CRP 同源物中,小氨基酸(92.15% 缬氨酸和 7.75%丙氨酸)完全占据了与 CRP Val183 类似的位置,这与我们的突变数据一致。然而,在由 3700 个蛋白质组成的扩展 CRP 同源物中,较大的氨基酸也可能占据与 CRP Val183 类似的位置,尽管出现率较低。另一项生物信息学分析表明,大氨基酸可以被其邻近位置上的补偿性小氨基酸所容忍。要全面了解 CRP 第 183 位的小氨基酸对 DNA 结合的意外要求,就必须验证 CRP 中假设的补偿性变化。
{"title":"Unexpected Requirement of Small Amino Acids at Position 183 for DNA Binding in the Escherichia coli cAMP Receptor Protein.","authors":"Marcus Carranza, Amanda Rea, Daisy Pacheco, Christian Montiel, Jin Park, Hwan Youn","doi":"10.1007/s12275-024-00169-2","DOIUrl":"10.1007/s12275-024-00169-2","url":null,"abstract":"<p><p>The Escherichia coli cAMP receptor protein (CRP) relies on the F-helix, the recognition helix of the helix-turn-helix motif, for DNA binding. The importance of the CRP F-helix in DNA binding is well-established, yet there is little information on the roles of its non-base-contacting residues. Here, we show that a CRP F-helix position occupied by a non-base-contacting residue Val183 bears an unexpected importance in DNA binding. Codon randomization and successive in vivo screening selected six amino acids (alanine, cysteine, glycine, serine, threonine, and valine) at CRP position 183 to be compatible with DNA binding. These amino acids are quite different in their amino acid properties (polar, non-polar, hydrophobicity), but one commonality is that they are all relatively small. Larger amino acid substitutions such as histidine, methionine, and tyrosine were made site-directedly and showed to have no detectable DNA binding, further supporting the requirement of small amino acids at CRP position 183. Bioinformatics analysis revealed that small amino acids (92.15% valine and 7.75% alanine) exclusively occupy the position analogous to CRP Val183 in 1,007 core CRP homologs, consistent with our mutant data. However, in extended CRP homologs comprising 3700 proteins, larger amino acids could also occupy the position analogous to CRP Val183 albeit with low occurrence. Another bioinformatics analysis suggested that large amino acids could be tolerated by compensatory small-sized amino acids at their neighboring positions. A full understanding of the unexpected requirement of small amino acids at CRP position 183 for DNA binding entails the verification of the hypothesized compensatory change(s) in CRP.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":" ","pages":"871-882"},"PeriodicalIF":3.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}