首页 > 最新文献

Journal of Nucleic Acids最新文献

英文 中文
Dioxaphosphorinane-constrained nucleic Acid dinucleotides as tools for structural tuning of nucleic acids. 二磷约束的核酸二核苷酸作为核酸结构调整的工具。
IF 2.3 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2012-01-01 Epub Date: 2012-10-24 DOI: 10.1155/2012/215876
Dan-Andrei Catana, Brice-Loïc Renard, Marie Maturano, Corinne Payrastre, Nathalie Tarrat, Jean-Marc Escudier

We describe a rational approach devoted to modulate the sugar-phosphate backbone geometry of nucleic acids. Constraints were generated by connecting one oxygen of the phosphate group to a carbon of the sugar moiety. The so-called dioxaphosphorinane rings were introduced at key positions along the sugar-phosphate backbone allowing the control of the six-torsion angles α to ζ defining the polymer structure. The syntheses of all the members of the D-CNA family are described, and we emphasize the effect on secondary structure stabilization of a couple of diastereoisomers of α,β-D-CNA exhibiting wether B-type canonical values or not.

我们描述了一种合理的方法,致力于调节核酸的糖-磷酸主干几何结构。通过将磷酸基团的一个氧与糖部分的一个碳连接,产生了约束。所谓的二磷烷环被引入到糖-磷酸主链的关键位置,从而控制了确定聚合物结构的六个扭角α到ζ。本文描述了D-CNA家族所有成员的合成,并着重研究了α,β-D-CNA的两个非对映异构体对二级结构稳定性的影响,无论它们是否具有b型标准值。
{"title":"Dioxaphosphorinane-constrained nucleic Acid dinucleotides as tools for structural tuning of nucleic acids.","authors":"Dan-Andrei Catana,&nbsp;Brice-Loïc Renard,&nbsp;Marie Maturano,&nbsp;Corinne Payrastre,&nbsp;Nathalie Tarrat,&nbsp;Jean-Marc Escudier","doi":"10.1155/2012/215876","DOIUrl":"https://doi.org/10.1155/2012/215876","url":null,"abstract":"<p><p>We describe a rational approach devoted to modulate the sugar-phosphate backbone geometry of nucleic acids. Constraints were generated by connecting one oxygen of the phosphate group to a carbon of the sugar moiety. The so-called dioxaphosphorinane rings were introduced at key positions along the sugar-phosphate backbone allowing the control of the six-torsion angles α to ζ defining the polymer structure. The syntheses of all the members of the D-CNA family are described, and we emphasize the effect on secondary structure stabilization of a couple of diastereoisomers of α,β-D-CNA exhibiting wether B-type canonical values or not.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2012 ","pages":"215876"},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/215876","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31047772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Structural and Functional Characterization of RecG Helicase under Dilute and Molecular Crowding Conditions. 稀释和分子拥挤条件下RecG解旋酶的结构和功能表征。
IF 2.3 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2012-01-01 Epub Date: 2012-08-08 DOI: 10.1155/2012/392039
Sarika Saxena, Satoru Nagatoishi, Daisuke Miyoshi, Naoki Sugimoto

In an ATP-dependent reaction, the Escherichia coli RecG helicase unwinds DNA junctions in vitro. We present evidence of a unique protein conformational change in the RecG helicase from an α-helix to a β-strand upon an ATP binding under dilute conditions using circular dichroism (CD) spectroscopy. In contrast, under molecular crowding conditions, the α-helical conformation was stable even upon an ATP binding. These distinct conformational behaviors were observed to be independent of Na(+) and Mg(2+). Interestingly, CD measurements demonstrated that the spectra of a frayed duplex decreased with increasing of the RecG concentration both under dilute and molecular crowding conditions in the presence of ATP, suggesting that RecG unwound the frayed duplex. Our findings raise the possibility that the α-helix and β-strand forms of RecG are a preactive and an active structure with the helicase activity, respectively.

在atp依赖性反应中,大肠杆菌RecG解旋酶在体外解开DNA连接。我们利用圆二色性(CD)光谱技术证明了在稀释条件下ATP结合后,RecG解旋酶从α-螺旋到β-链的独特蛋白质构象变化。相反,在分子拥挤条件下,α-螺旋构象即使在ATP结合的情况下也是稳定的。这些不同的构象行为与Na(+)和Mg(2+)无关。有趣的是,CD测量表明,在ATP存在的稀释和分子拥挤条件下,随着RecG浓度的增加,磨损双相的光谱下降,这表明RecG解除了磨损双相的缠绕。我们的发现提出了α-螺旋和β-链形式的RecG分别是具有解旋酶活性的预活性结构和活性结构的可能性。
{"title":"Structural and Functional Characterization of RecG Helicase under Dilute and Molecular Crowding Conditions.","authors":"Sarika Saxena,&nbsp;Satoru Nagatoishi,&nbsp;Daisuke Miyoshi,&nbsp;Naoki Sugimoto","doi":"10.1155/2012/392039","DOIUrl":"https://doi.org/10.1155/2012/392039","url":null,"abstract":"<p><p>In an ATP-dependent reaction, the Escherichia coli RecG helicase unwinds DNA junctions in vitro. We present evidence of a unique protein conformational change in the RecG helicase from an α-helix to a β-strand upon an ATP binding under dilute conditions using circular dichroism (CD) spectroscopy. In contrast, under molecular crowding conditions, the α-helical conformation was stable even upon an ATP binding. These distinct conformational behaviors were observed to be independent of Na(+) and Mg(2+). Interestingly, CD measurements demonstrated that the spectra of a frayed duplex decreased with increasing of the RecG concentration both under dilute and molecular crowding conditions in the presence of ATP, suggesting that RecG unwound the frayed duplex. Our findings raise the possibility that the α-helix and β-strand forms of RecG are a preactive and an active structure with the helicase activity, respectively.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2012 ","pages":"392039"},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/392039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30856616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UvrD Participation in Nucleotide Excision Repair Is Required for the Recovery of DNA Synthesis following UV-Induced Damage in Escherichia coli. UvrD参与核苷酸切除修复是在紫外线诱导的大肠杆菌损伤后DNA合成恢复所必需的。
IF 2.3 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2012-01-01 Epub Date: 2012-09-27 DOI: 10.1155/2012/271453
Kelley N Newton, Charmain T Courcelle, Justin Courcelle

UvrD is a DNA helicase that participates in nucleotide excision repair and several replication-associated processes, including methyl-directed mismatch repair and recombination. UvrD is capable of displacing oligonucleotides from synthetic forked DNA structures in vitro and is essential for viability in the absence of Rep, a helicase associated with processing replication forks. These observations have led others to propose that UvrD may promote fork regression and facilitate resetting of the replication fork following arrest. However, the molecular activity of UvrD at replication forks in vivo has not been directly examined. In this study, we characterized the role UvrD has in processing and restoring replication forks following arrest by UV-induced DNA damage. We show that UvrD is required for DNA synthesis to recover. However, in the absence of UvrD, the displacement and partial degradation of the nascent DNA at the arrested fork occur normally. In addition, damage-induced replication intermediates persist and accumulate in uvrD mutants in a manner that is similar to that observed in other nucleotide excision repair mutants. These data indicate that, following arrest by DNA damage, UvrD is not required to catalyze fork regression in vivo and suggest that the failure of uvrD mutants to restore DNA synthesis following UV-induced arrest relates to its role in nucleotide excision repair.

UvrD是一种DNA解旋酶,参与核苷酸切除修复和几个复制相关过程,包括甲基定向错配修复和重组。UvrD能够在体外取代合成分叉DNA结构上的寡核苷酸,并且在缺乏Rep(一种与处理复制分叉相关的解旋酶)的情况下对生存能力至关重要。这些观察结果导致其他人提出,UvrD可能会促进分叉回归,并在捕获后促进复制分叉的重置。然而,UvrD在体内复制分叉处的分子活性尚未被直接检测。在这项研究中,我们描述了UvrD在处理和恢复被紫外线诱导的DNA损伤后的复制分叉中的作用。我们发现UvrD是DNA合成恢复所必需的。然而,在缺乏UvrD的情况下,在受阻叉处的新生DNA的位移和部分降解正常发生。此外,损伤诱导的复制中间体在uvrD突变体中持续存在并积累,其方式与在其他核苷酸切除修复突变体中观察到的相似。这些数据表明,在DNA损伤阻滞后,UvrD在体内不需要催化叉回归,并表明UvrD突变体在紫外线诱导的阻滞后恢复DNA合成的失败与其在核苷酸切除修复中的作用有关。
{"title":"UvrD Participation in Nucleotide Excision Repair Is Required for the Recovery of DNA Synthesis following UV-Induced Damage in Escherichia coli.","authors":"Kelley N Newton,&nbsp;Charmain T Courcelle,&nbsp;Justin Courcelle","doi":"10.1155/2012/271453","DOIUrl":"https://doi.org/10.1155/2012/271453","url":null,"abstract":"<p><p>UvrD is a DNA helicase that participates in nucleotide excision repair and several replication-associated processes, including methyl-directed mismatch repair and recombination. UvrD is capable of displacing oligonucleotides from synthetic forked DNA structures in vitro and is essential for viability in the absence of Rep, a helicase associated with processing replication forks. These observations have led others to propose that UvrD may promote fork regression and facilitate resetting of the replication fork following arrest. However, the molecular activity of UvrD at replication forks in vivo has not been directly examined. In this study, we characterized the role UvrD has in processing and restoring replication forks following arrest by UV-induced DNA damage. We show that UvrD is required for DNA synthesis to recover. However, in the absence of UvrD, the displacement and partial degradation of the nascent DNA at the arrested fork occur normally. In addition, damage-induced replication intermediates persist and accumulate in uvrD mutants in a manner that is similar to that observed in other nucleotide excision repair mutants. These data indicate that, following arrest by DNA damage, UvrD is not required to catalyze fork regression in vivo and suggest that the failure of uvrD mutants to restore DNA synthesis following UV-induced arrest relates to its role in nucleotide excision repair.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2012 ","pages":"271453"},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/271453","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30969648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Artificial specific binders directly recovered from chemically modified nucleic acid libraries. 直接从化学修饰核酸文库中回收的人工特异性结合剂。
IF 2.3 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2012-01-01 Epub Date: 2012-10-08 DOI: 10.1155/2012/156482
Yuuya Kasahara, Masayasu Kuwahara

Specific binders comprised of nucleic acids, that is, RNA/DNA aptamers, are attractive functional biopolymers owing to their potential broad application in medicine, food hygiene, environmental analysis, and biological research. Despite the large number of reports on selection of natural DNA/RNA aptamers, there are not many examples of direct screening of chemically modified nucleic acid aptamers. This is because of (i) the inferior efficiency and accuracy of polymerase reactions involving transcription/reverse-transcription of modified nucleotides compared with those of natural nucleotides, (ii) technical difficulties and additional time and effort required when using modified nucleic acid libraries, and (iii) ambiguous efficacies of chemical modifications in binding properties until recently; in contrast, the effects of chemical modifications on biostability are well studied using various nucleotide analogs. Although reports on the direct screening of a modified nucleic acid library remain in the minority, chemical modifications would be essential when further functional expansion of nucleic acid aptamers, in particular for medical and biological uses, is considered. This paper focuses on enzymatic production of chemically modified nucleic acids and their application to random screenings. In addition, recent advances and possible future research are also described.

由核酸(即 RNA/DNA 合体)组成的特异性粘合剂是一种极具吸引力的功能性生物聚合物,因为它们在医药、食品卫生、环境分析和生物研究领域具有广泛的应用潜力。尽管有大量关于筛选天然 DNA/RNA 合体的报道,但直接筛选化学修饰的核酸合体的例子并不多。这是因为:(i) 与天然核苷酸相比,涉及修饰核苷酸转录/反转录的聚合酶反应的效率和准确性较低;(ii) 使用修饰核酸文库时存在技术难度,需要花费额外的时间和精力;(iii) 直到最近,化学修饰对结合特性的影响还不明确;相比之下,使用各种核苷酸类似物对化学修饰对生物稳定性的影响进行了深入研究。尽管有关直接筛选修饰核酸文库的报道仍然很少,但在考虑进一步扩展核酸适配体的功能时,尤其是在医疗和生物用途方面,化学修饰是必不可少的。本文重点介绍化学修饰核酸的酶法生产及其在随机筛选中的应用。此外,还介绍了最新进展和未来可能开展的研究。
{"title":"Artificial specific binders directly recovered from chemically modified nucleic acid libraries.","authors":"Yuuya Kasahara, Masayasu Kuwahara","doi":"10.1155/2012/156482","DOIUrl":"10.1155/2012/156482","url":null,"abstract":"<p><p>Specific binders comprised of nucleic acids, that is, RNA/DNA aptamers, are attractive functional biopolymers owing to their potential broad application in medicine, food hygiene, environmental analysis, and biological research. Despite the large number of reports on selection of natural DNA/RNA aptamers, there are not many examples of direct screening of chemically modified nucleic acid aptamers. This is because of (i) the inferior efficiency and accuracy of polymerase reactions involving transcription/reverse-transcription of modified nucleotides compared with those of natural nucleotides, (ii) technical difficulties and additional time and effort required when using modified nucleic acid libraries, and (iii) ambiguous efficacies of chemical modifications in binding properties until recently; in contrast, the effects of chemical modifications on biostability are well studied using various nucleotide analogs. Although reports on the direct screening of a modified nucleic acid library remain in the minority, chemical modifications would be essential when further functional expansion of nucleic acid aptamers, in particular for medical and biological uses, is considered. This paper focuses on enzymatic production of chemically modified nucleic acids and their application to random screenings. In addition, recent advances and possible future research are also described.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2012 ","pages":"156482"},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472525/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30998752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional Annotation of Small Noncoding RNAs Target Genes Provides Evidence for a Deregulated Ubiquitin-Proteasome Pathway in Spinocerebellar Ataxia Type 1. 小非编码rna靶基因的功能注释为脊髓小脑性共济失调1型中泛素-蛋白酶体通路失调提供了证据。
IF 2.3 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2012-01-01 Epub Date: 2012-10-03 DOI: 10.1155/2012/672536
Stephan Persengiev, Ivanela Kondova, Ronald E Bontrop

Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disorder caused by the expansion of CAG repeats in the ataxin 1 (ATXN1) gene. In affected cerebellar neurons of patients, mutant ATXN1 accumulates in ubiquitin-positive nuclear inclusions, indicating that protein misfolding is involved in SCA1 pathogenesis. In this study, we functionally annotated the target genes of the small noncoding RNAs (ncRNAs) that were selectively activated in the affected brain compartments. The primary targets of these RNAs, which exhibited a significant enrichment in the cerebellum and cortex of SCA1 patients, were members of the ubiquitin-proteasome system. Thus, we identified and functionally annotated a plausible regulatory pathway that may serve as a potential target to modulate the outcome of neurodegenerative diseases.

脊髓小脑性共济失调1型(SCA1)是由ataxin 1 (ATXN1)基因CAG重复扩增引起的神经退行性疾病。在受影响的患者小脑神经元中,突变的ATXN1在泛素阳性核包涵体中积累,表明蛋白质错误折叠参与了SCA1的发病机制。在这项研究中,我们功能性地注释了在受影响的脑区室中选择性激活的小非编码rna (ncRNAs)的靶基因。这些rna的主要靶标是泛素-蛋白酶体系统的成员,它们在SCA1患者的小脑和皮层中表现出显著的富集。因此,我们确定并功能性注释了一种可能作为调节神经退行性疾病结果的潜在靶点的合理调控途径。
{"title":"Functional Annotation of Small Noncoding RNAs Target Genes Provides Evidence for a Deregulated Ubiquitin-Proteasome Pathway in Spinocerebellar Ataxia Type 1.","authors":"Stephan Persengiev,&nbsp;Ivanela Kondova,&nbsp;Ronald E Bontrop","doi":"10.1155/2012/672536","DOIUrl":"https://doi.org/10.1155/2012/672536","url":null,"abstract":"<p><p>Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disorder caused by the expansion of CAG repeats in the ataxin 1 (ATXN1) gene. In affected cerebellar neurons of patients, mutant ATXN1 accumulates in ubiquitin-positive nuclear inclusions, indicating that protein misfolding is involved in SCA1 pathogenesis. In this study, we functionally annotated the target genes of the small noncoding RNAs (ncRNAs) that were selectively activated in the affected brain compartments. The primary targets of these RNAs, which exhibited a significant enrichment in the cerebellum and cortex of SCA1 patients, were members of the ubiquitin-proteasome system. Thus, we identified and functionally annotated a plausible regulatory pathway that may serve as a potential target to modulate the outcome of neurodegenerative diseases.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2012 ","pages":"672536"},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/672536","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31000342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Expansion of the genetic alphabet: unnatural nucleobases and their applications. 基因字母表的扩展:非自然核碱基及其应用。
IF 2.3 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2012-01-01 Epub Date: 2012-12-17 DOI: 10.1155/2012/718582
Subhendu Sekhar Bag, Jennifer M Heemstra, Yoshio Saito, David M Chenoweth
Nucleic acids are essential biomolecules that encode all of the information necessary for life. Specific pairing of A with T (or U) and C with G during replication, transcription, and translation is the key to effective transmission of genetic information between generations, as well as accurate conversion of genetic information into protein sequence. Given the magnitude of the tasks orchestrated by the Watson-Crick base pairing, it is striking to consider that biological systems accomplish these tasks using only four nucleobases. Realizing the powerful nature of base-pair recognition, researchers have been inspired to ask the question of whether the genetic code can be artificially expanded to generate biological systems having novel functions. It was this question that led Alex Rich in 1962 to propose the concept of orthogonal base pairing between iso-G and iso-C and inspired Professor Steven A. Benner in the late 1980s to expand the genetic alphabet from four to six letters. Benner's early research focused on the development of new base pairs having hydrogen bonding patterns orthogonal to those in the canonical Watson-Crick base pairs. In 1994, Professor Eric T. Kool opened a new functional dimension with the creation of nonhydrogen bonding unnatural nucleobase surrogates. Expansion of the genetic alphabet has dramatically increased the functional potential of DNA, for example, by enabling site-directed oligonucleotide labeling and in vitro selections with oligonucleotides having increased chemical diversity. Translation of an expanded DNA alphabet into RNA is a challenging task, but one which has potential to give rise to semisynthetic organisms with increased biodiversity. This special issue highlights recent accomplishments at the interface of organic chemistry and molecular biology which hold promise to further expand the potential of nucleic acids having unnatural nucleobases. Specifically, the reports in this special issue focus on the synthesis of unnatural nucleobases and nucleic acid backbones, the exploration of their structure and duplex stabilizing ability, and the polymerase mediated replication and transcription of DNA containing unnatural nucleobases. T. Lonnberg and a coworker report the synthesis and study of a bis(pyrazolyl)purine ribonucleoside having increased hydrophobic surface area and the ability to form complex with metal ions. The hydrogen bonding pattern of this nucleoside makes it complementary to thymine and uridine. The authors demonstrate that the bis(pyrazolyl) nucleobase is capable of forming a Pd2+-mediated base pair with uridine in the monomeric state. When incorporated into an oligonucleotide, the bis(pyrazolyl) nucleobase stabilizes DNA duplexes when paired with thymine, but this stabilization appears to result from increased π-stacking interactions rather than metal complexation. These studies open the door to applications using unnatural nucleobases to increase the binding affinity of probes and the
{"title":"Expansion of the genetic alphabet: unnatural nucleobases and their applications.","authors":"Subhendu Sekhar Bag,&nbsp;Jennifer M Heemstra,&nbsp;Yoshio Saito,&nbsp;David M Chenoweth","doi":"10.1155/2012/718582","DOIUrl":"https://doi.org/10.1155/2012/718582","url":null,"abstract":"Nucleic acids are essential biomolecules that encode all of the information necessary for life. Specific pairing of A with T (or U) and C with G during replication, transcription, and translation is the key to effective transmission of genetic information between generations, as well as accurate conversion of genetic information into protein sequence. Given the magnitude of the tasks orchestrated by the Watson-Crick base pairing, it is striking to consider that biological systems accomplish these tasks using only four nucleobases. Realizing the powerful nature of base-pair recognition, researchers have been inspired to ask the question of whether the genetic code can be artificially expanded to generate biological systems having novel functions. It was this question that led Alex Rich in 1962 to propose the concept of orthogonal base pairing between iso-G and iso-C and inspired Professor Steven A. Benner in the late 1980s to expand the genetic alphabet from four to six letters. Benner's early research focused on the development of new base pairs having hydrogen bonding patterns orthogonal to those in the canonical Watson-Crick base pairs. In 1994, Professor Eric T. Kool opened a new functional dimension with the creation of nonhydrogen bonding unnatural nucleobase surrogates. \u0000 \u0000Expansion of the genetic alphabet has dramatically increased the functional potential of DNA, for example, by enabling site-directed oligonucleotide labeling and in vitro selections with oligonucleotides having increased chemical diversity. Translation of an expanded DNA alphabet into RNA is a challenging task, but one which has potential to give rise to semisynthetic organisms with increased biodiversity. This special issue highlights recent accomplishments at the interface of organic chemistry and molecular biology which hold promise to further expand the potential of nucleic acids having unnatural nucleobases. Specifically, the reports in this special issue focus on the synthesis of unnatural nucleobases and nucleic acid backbones, the exploration of their structure and duplex stabilizing ability, and the polymerase mediated replication and transcription of DNA containing unnatural nucleobases. \u0000 \u0000T. Lonnberg and a coworker report the synthesis and study of a bis(pyrazolyl)purine ribonucleoside having increased hydrophobic surface area and the ability to form complex with metal ions. The hydrogen bonding pattern of this nucleoside makes it complementary to thymine and uridine. The authors demonstrate that the bis(pyrazolyl) nucleobase is capable of forming a Pd2+-mediated base pair with uridine in the monomeric state. When incorporated into an oligonucleotide, the bis(pyrazolyl) nucleobase stabilizes DNA duplexes when paired with thymine, but this stabilization appears to result from increased π-stacking interactions rather than metal complexation. These studies open the door to applications using unnatural nucleobases to increase the binding affinity of probes and the","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2012 ","pages":"718582"},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/718582","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31155664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Features of "All LNA" Duplexes Showing a New Type of Nucleic Acid Geometry. 显示新型核酸几何结构的“全LNA”双链特征。
IF 2.3 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2012-01-01 Epub Date: 2012-05-14 DOI: 10.1155/2012/156035
Charlotte Förster, André Eichert, Dominik Oberthür, Christian Betzel, Reinhard Geßner, Andreas Nitsche, Jens P Fürste

"Locked nucleic acids" (LNAs) belong to the backbone-modified nucleic acid family. The 2'-O,4'-C-methylene-β-D-ribofuranose nucleotides are used for single or multiple substitutions in RNA molecules and thereby introduce enhanced bio- and thermostability. This renders LNAs powerful tools for diagnostic and therapeutic applications. RNA molecules maintain the overall canonical A-type conformation upon substitution of single or multiple residues/nucleotides by LNA monomers. The structures of "all" LNA homoduplexes, however, exhibit significant differences in their overall geometry, in particular a decreased twist, roll and propeller twist. This results in a widening of the major groove, a decrease in helical winding, and an enlarged helical pitch. Therefore, the LNA duplex structure can no longer be described as a canonical A-type RNA geometry but can rather be brought into proximity to other backbone-modified nucleic acids, like glycol nucleic acids or peptide nucleic acids. LNA-modified nucleic acids provide thus structural and functional features that may be successfully exploited for future application in biotechnology and drug discovery.

“锁定核酸”(LNAs)属于骨架修饰核酸家族。2'- o,4'- c -亚甲基-β- d -核糖呋喃糖核苷酸用于RNA分子的单次或多次取代,从而引入增强的生物和热稳定性。这使得LNAs成为诊断和治疗应用的强大工具。在RNA单体取代单个或多个残基/核苷酸后,RNA分子保持整体标准的a型构象。然而,“所有”LNA同源双工体的结构在其整体几何形状上表现出显着差异,特别是捻度,横摇和螺旋桨捻度降低。这导致主槽变宽,螺旋缠绕减少,螺旋节距增大。因此,LNA双工结构不能再被描述为典型的a型RNA几何结构,而是可以接近其他骨架修饰的核酸,如乙二醇核酸或肽核酸。因此,lnna修饰的核酸提供了结构和功能特征,可以成功地开发用于未来的生物技术和药物发现。
{"title":"Features of \"All LNA\" Duplexes Showing a New Type of Nucleic Acid Geometry.","authors":"Charlotte Förster,&nbsp;André Eichert,&nbsp;Dominik Oberthür,&nbsp;Christian Betzel,&nbsp;Reinhard Geßner,&nbsp;Andreas Nitsche,&nbsp;Jens P Fürste","doi":"10.1155/2012/156035","DOIUrl":"https://doi.org/10.1155/2012/156035","url":null,"abstract":"<p><p>\"Locked nucleic acids\" (LNAs) belong to the backbone-modified nucleic acid family. The 2'-O,4'-C-methylene-β-D-ribofuranose nucleotides are used for single or multiple substitutions in RNA molecules and thereby introduce enhanced bio- and thermostability. This renders LNAs powerful tools for diagnostic and therapeutic applications. RNA molecules maintain the overall canonical A-type conformation upon substitution of single or multiple residues/nucleotides by LNA monomers. The structures of \"all\" LNA homoduplexes, however, exhibit significant differences in their overall geometry, in particular a decreased twist, roll and propeller twist. This results in a widening of the major groove, a decrease in helical winding, and an enlarged helical pitch. Therefore, the LNA duplex structure can no longer be described as a canonical A-type RNA geometry but can rather be brought into proximity to other backbone-modified nucleic acids, like glycol nucleic acids or peptide nucleic acids. LNA-modified nucleic acids provide thus structural and functional features that may be successfully exploited for future application in biotechnology and drug discovery.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2012 ","pages":"156035"},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/156035","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30665542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Unwinding and rewinding: double faces of helicase? 解卷和复卷:解旋酶的双面?
IF 2.3 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2012-01-01 Epub Date: 2012-07-19 DOI: 10.1155/2012/140601
Yuliang Wu

Helicases are enzymes that use ATP-driven motor force to unwind double-stranded DNA or RNA. Recently, increasing evidence demonstrates that some helicases also possess rewinding activity-in other words, they can anneal two complementary single-stranded nucleic acids. All five members of the human RecQ helicase family, helicase PIF1, mitochondrial helicase TWINKLE, and helicase/nuclease Dna2 have been shown to possess strand-annealing activity. Moreover, two recently identified helicases-HARP and AH2 have only ATP-dependent rewinding activity. These findings not only enhance our understanding of helicase enzymes but also establish the presence of a new type of protein: annealing helicases. This paper discusses what is known about these helicases, focusing on their biochemical activity to zip and unzip double-stranded DNA and/or RNA, their possible regulation mechanisms, and biological functions.

解旋酶是利用atp驱动的马达力来解开双链DNA或RNA的酶。最近,越来越多的证据表明,一些解旋酶也具有倒绕活性——换句话说,它们可以退火两个互补的单链核酸。人类RecQ解旋酶家族的所有五个成员,解旋酶PIF1,线粒体解旋酶TWINKLE和解旋酶/核酸酶Dna2都具有链退火活性。此外,最近发现的两种解旋酶——harp和AH2仅具有依赖atp的倒绕活性。这些发现不仅提高了我们对解旋酶的理解,而且还建立了一种新型蛋白质的存在:退火解旋酶。本文讨论了这些解旋酶的已知情况,重点讨论了它们在压缩和解压缩双链DNA和/或RNA方面的生化活性,它们可能的调控机制和生物学功能。
{"title":"Unwinding and rewinding: double faces of helicase?","authors":"Yuliang Wu","doi":"10.1155/2012/140601","DOIUrl":"https://doi.org/10.1155/2012/140601","url":null,"abstract":"<p><p>Helicases are enzymes that use ATP-driven motor force to unwind double-stranded DNA or RNA. Recently, increasing evidence demonstrates that some helicases also possess rewinding activity-in other words, they can anneal two complementary single-stranded nucleic acids. All five members of the human RecQ helicase family, helicase PIF1, mitochondrial helicase TWINKLE, and helicase/nuclease Dna2 have been shown to possess strand-annealing activity. Moreover, two recently identified helicases-HARP and AH2 have only ATP-dependent rewinding activity. These findings not only enhance our understanding of helicase enzymes but also establish the presence of a new type of protein: annealing helicases. This paper discusses what is known about these helicases, focusing on their biochemical activity to zip and unzip double-stranded DNA and/or RNA, their possible regulation mechanisms, and biological functions.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2012 ","pages":"140601"},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/140601","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30830619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 82
Using chemical approaches to understand RNA structure and function in biology. 用化学方法了解RNA的结构和功能。
IF 2.3 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2012-01-01 Epub Date: 2012-02-16 DOI: 10.1155/2012/972575
Dmitry A Stetsenko, Arthur van Aerschot
Interest of the research community in the aspects of chemical biology of RNA has increased vastly over the last twenty years, primarily due to the discovery of RNAi, our deepened understanding of the role of miRNA in the subtle regulation of vital cellular processes, and the realization of the fact that the RNA world—the realm where RNA plays the key parties as a self-replicating molecule and a universal catalyst—is still pretty much with us today as the ribosomal RNA performs its catalytic solo in the formation of the peptide bond in the ribosome. To answer the needs of Biology, Chemistry had, in turn, multiplied and perfected its approaches to study the molecular mechanisms underlying RNA functions in living systems. So, the idea behind this special issue is to show our readership a screenshot of what could be, and has been, achieved recently by applying chemical methods to solve the problems of RNA biology. Ten articles have been carefully selected out of the bunch of those submitted to provide, we believe, a balanced view of different facets of RNA structure and function and, also, of the array of chemical tools to enable us to peek into them.
{"title":"Using chemical approaches to understand RNA structure and function in biology.","authors":"Dmitry A Stetsenko,&nbsp;Arthur van Aerschot","doi":"10.1155/2012/972575","DOIUrl":"https://doi.org/10.1155/2012/972575","url":null,"abstract":"Interest of the research community in the aspects of chemical biology of RNA has increased vastly over the last twenty years, primarily due to the discovery of RNAi, our deepened understanding of the role of miRNA in the subtle regulation of vital cellular processes, and the realization of the fact that the RNA world—the realm where RNA plays the key parties as a self-replicating molecule and a universal catalyst—is still pretty much with us today as the ribosomal RNA performs its catalytic solo in the formation of the peptide bond in the ribosome. To answer the needs of Biology, Chemistry had, in turn, multiplied and perfected its approaches to study the molecular mechanisms underlying RNA functions in living systems. So, the idea behind this special issue is to show our readership a screenshot of what could be, and has been, achieved recently by applying chemical methods to solve the problems of RNA biology. Ten articles have been carefully selected out of the bunch of those submitted to provide, we believe, a balanced view of different facets of RNA structure and function and, also, of the array of chemical tools to enable us to peek into them.","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2012 ","pages":"972575"},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/972575","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30551706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Concept for Selection of Codon-Suppressor tRNAs Based on Read-Through Ribosome Display in an In Vitro Compartmentalized Cell-Free Translation System. 体外区隔化无细胞翻译系统中基于可读核糖体展示的密码子抑制trna选择概念
IF 2.3 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2012-01-01 Epub Date: 2012-07-18 DOI: 10.1155/2012/538129
Atsushi Ogawa, Masayoshi Hayami, Shinsuke Sando, Yasuhiro Aoyama

Here is presented a concept for in vitro selection of suppressor tRNAs. It uses a pool of dsDNA templates in compartmentalized water-in-oil micelles. The template contains a transcription/translation trigger, an amber stop codon, and another transcription trigger for the anticodon- or anticodon loop-randomized gene for tRNA(Ser). Upon transcription are generated two types of RNAs, a tRNA and a translatable mRNA (mRNA-tRNA). When the tRNA suppresses the stop codon (UAG) of the mRNA, the full-length protein obtained upon translation remains attached to the mRNA (read-through ribosome display) that contains the sequence of the tRNA. In this way, the active suppressor tRNAs can be selected (amplified) and their sequences read out. The enriched anticodon (CUA) was complementary to the UAG stop codon and the enriched anticodon-loop was the same as that in the natural tRNA(Ser).

这里提出了一种体外选择抑制trna的概念。它在油包水胶束中使用了一组双链dna模板。该模板包含一个转录/翻译触发器,一个琥珀色停止密码子,以及tRNA(Ser)的反密码子或反密码子环随机基因的另一个转录触发器。转录后产生两种类型的rna, tRNA和可翻译mRNA (mRNA-tRNA)。当tRNA抑制mRNA的停止密码子(UAG)时,翻译后获得的全长蛋白仍然附着在含有tRNA序列的mRNA上(通过核糖体显示)。通过这种方式,可以选择(扩增)活性抑制trna并读出其序列。富集的反密码子(CUA)与UAG终止密码子互补,富集的反密码子环与天然tRNA(Ser)中的反密码子环相同。
{"title":"A Concept for Selection of Codon-Suppressor tRNAs Based on Read-Through Ribosome Display in an In Vitro Compartmentalized Cell-Free Translation System.","authors":"Atsushi Ogawa,&nbsp;Masayoshi Hayami,&nbsp;Shinsuke Sando,&nbsp;Yasuhiro Aoyama","doi":"10.1155/2012/538129","DOIUrl":"https://doi.org/10.1155/2012/538129","url":null,"abstract":"<p><p>Here is presented a concept for in vitro selection of suppressor tRNAs. It uses a pool of dsDNA templates in compartmentalized water-in-oil micelles. The template contains a transcription/translation trigger, an amber stop codon, and another transcription trigger for the anticodon- or anticodon loop-randomized gene for tRNA(Ser). Upon transcription are generated two types of RNAs, a tRNA and a translatable mRNA (mRNA-tRNA). When the tRNA suppresses the stop codon (UAG) of the mRNA, the full-length protein obtained upon translation remains attached to the mRNA (read-through ribosome display) that contains the sequence of the tRNA. In this way, the active suppressor tRNAs can be selected (amplified) and their sequences read out. The enriched anticodon (CUA) was complementary to the UAG stop codon and the enriched anticodon-loop was the same as that in the natural tRNA(Ser).</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2012 ","pages":"538129"},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/538129","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30863394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
Journal of Nucleic Acids
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1