首页 > 最新文献

Journal of Nano-and electronic Physics最新文献

英文 中文
Effect of Idealization Models on Deflection of Functionally Graded Material (FGM) Plate 理想化模型对功能梯度材料(FGM)板挠度的影响
Q3 Physics and Astronomy Pub Date : 2023-01-01 DOI: 10.21272/jnep.15(1).01022
B. Rebai, K. Mansouri, M. Chitour, A. Berkia, T. Messas, F. Khadraoui, B. Litouche
{"title":"Effect of Idealization Models on Deflection of Functionally Graded Material (FGM) Plate","authors":"B. Rebai, K. Mansouri, M. Chitour, A. Berkia, T. Messas, F. Khadraoui, B. Litouche","doi":"10.21272/jnep.15(1).01022","DOIUrl":"https://doi.org/10.21272/jnep.15(1).01022","url":null,"abstract":"","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68044985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Inverted Matchstick Slotted Rectangular Patch (IMSRP) Antenna for Dual-Band (28/38GHZ) 5G - MM Wave Applications 用于双频(28/38GHZ) 5G -毫米波应用的倒火柴棒开槽矩形贴片(IMSRP)天线
Q3 Physics and Astronomy Pub Date : 2023-01-01 DOI: 10.21272/jnep.15(3).03022
K. Jayanthi, A. Kalpana, D. Kumutha, M. Jeyabharathi, P. Sharmila, V. Devi Priya
The fifth generation (5G) of telecommunication is a promising technology that is yet to become globalized for the effective and fastest mode of communication. This wireless communications system has an extended entail for different Multiple Input Multiple Output (MIMO) antenna systems, focusing on low and high, and less gain, also at millimeter frequency. The frequency ranges have more capability varying from 28 GHz to 150 GHz with the easiest generation of 5G for higher data rates. A mono-element antenna working over the two different 5G mm-Wave frequency bands [n257 (28 GHz) and n260 (38 GHz) bands] is proposed to obtain. The prototype is built upon Duroid-5880 substrate having a permittivity of 2.3 and Loss tangent value of 0.00092. The prototype resonates at 28 GHz and 38GHz of the spectrum to yield better return loss than conventional. The proposed antenna-Inverted Matchstick Slotted Rectangular Patch (IMSRP) is implemented to be 9.84 dBi at 28 GHz band and 1.1195 dBi at 38 GHz by dual band for 5G. The overall designed parameters of the antenna are 16.5  20  0.508 mm, also does not have any defective in the ground portion made to resonate for dual bands of millimeter wave frequency band of 5G communication.
第五代(5G)电信是一项有前途的技术,但尚未成为全球化的有效和最快的通信方式。该无线通信系统对不同的多输入多输出(MIMO)天线系统进行了扩展,重点是低和高,以及较小的增益,也适用于毫米频率。频率范围更大,从28 GHz到150 GHz不等,最容易产生5G以实现更高的数据速率。提出了在两个不同的5G毫米波频段[n257 (28 GHz)和n260 (38 GHz)频段]上工作的单元件天线。原型建立在Duroid-5880衬底上,其介电常数为2.3,损耗正切值为0.00092。原型在28 GHz和38GHz的频谱上共振,产生比传统的更好的回波损耗。所提出的天线-倒置火柴棒开槽矩形贴片(IMSRP)在28 GHz频段实现为9.84 dBi,在38 GHz双频段实现为1.1195 dBi。天线总体设计参数为16.5200.508 mm,为5G通信毫米波频段双频段谐振而制作的接地部分也不存在任何缺陷。
{"title":"Inverted Matchstick Slotted Rectangular Patch (IMSRP) Antenna for Dual-Band (28/38GHZ) 5G - MM Wave Applications","authors":"K. Jayanthi, A. Kalpana, D. Kumutha, M. Jeyabharathi, P. Sharmila, V. Devi Priya","doi":"10.21272/jnep.15(3).03022","DOIUrl":"https://doi.org/10.21272/jnep.15(3).03022","url":null,"abstract":"The fifth generation (5G) of telecommunication is a promising technology that is yet to become globalized for the effective and fastest mode of communication. This wireless communications system has an extended entail for different Multiple Input Multiple Output (MIMO) antenna systems, focusing on low and high, and less gain, also at millimeter frequency. The frequency ranges have more capability varying from 28 GHz to 150 GHz with the easiest generation of 5G for higher data rates. A mono-element antenna working over the two different 5G mm-Wave frequency bands [n257 (28 GHz) and n260 (38 GHz) bands] is proposed to obtain. The prototype is built upon Duroid-5880 substrate having a permittivity of 2.3 and Loss tangent value of 0.00092. The prototype resonates at 28 GHz and 38GHz of the spectrum to yield better return loss than conventional. The proposed antenna-Inverted Matchstick Slotted Rectangular Patch (IMSRP) is implemented to be 9.84 dBi at 28 GHz band and 1.1195 dBi at 38 GHz by dual band for 5G. The overall designed parameters of the antenna are 16.5  20  0.508 mm, also does not have any defective in the ground portion made to resonate for dual bands of millimeter wave frequency band of 5G communication.","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68046319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sol-gel Synthesis of Titania Nanoparticles for Photonic and Transformer Applications 溶胶-凝胶法合成用于光子和变压器的二氧化钛纳米粒子
Q3 Physics and Astronomy Pub Date : 2023-01-01 DOI: 10.21272/jnep.15(3).03025
Venkatesh Yepuri, Addala Satyanarayana, P. Ramachandramurthy
Titania nanoparticles have several industrial applications, including cosmetics, optical, photonic, and electrical devices. However, industrial production of these particles is difficult, complicated, and dependent on a variety of physical characteristics such as temperature and infrastructure availability. This research describes an instant industrial method for producing titania nanoparticles using a wet chemical sol-gel synthesis. X-ray diffractogram (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis of as-synthesized titania nanoparticles revealed a strong diffraction peak at Bragg angle 25  , which can be attributed to the titania anatase phase, and vibration bonds at 463 cm – 1 , which confirms the presence of titania. The morphology of these titania nanoparticles was examined using a field emission scanning electron microscope (FESEM), which determined the particle size to be around 37 nm. Using diffuse reflectance spectroscopy (DRS), the optical properties of the as-synthesized nanoparticles were studied, and their band gap was determined to be 3.37 eV. At room temperature, the dielectric constant and loss of titania nanoparticles were measured as a function of frequency. Additionally, titania particles were mixed into transformer oil to assess its dielectric breakdown strength for better insulating properties.
二氧化钛纳米粒子有许多工业应用,包括化妆品、光学、光子和电子设备。然而,这些颗粒的工业生产是困难的,复杂的,并且依赖于各种物理特性,如温度和基础设施的可用性。本研究描述了一种使用湿化学溶胶-凝胶合成法生产二氧化钛纳米颗粒的即时工业方法。通过x射线衍射(XRD)和傅里叶变换红外光谱(FTIR)对合成的二氧化钛纳米粒子进行分析,发现在Bragg角25阶处有很强的衍射峰,这可以归因于锐钛矿相,并且在463 cm - 1处有振动键,证实了二氧化钛的存在。利用场发射扫描电子显微镜(FESEM)检测了这些二氧化钛纳米颗粒的形貌,确定了颗粒尺寸约为37 nm。利用漫反射光谱(DRS)研究了合成的纳米粒子的光学性质,确定了其带隙为3.37 eV。在室温下,测量了纳米二氧化钛的介电常数和损耗随频率的变化。此外,将二氧化钛颗粒混合到变压器油中,以评估其介电击穿强度,以获得更好的绝缘性能。
{"title":"Sol-gel Synthesis of Titania Nanoparticles for Photonic and Transformer Applications","authors":"Venkatesh Yepuri, Addala Satyanarayana, P. Ramachandramurthy","doi":"10.21272/jnep.15(3).03025","DOIUrl":"https://doi.org/10.21272/jnep.15(3).03025","url":null,"abstract":"Titania nanoparticles have several industrial applications, including cosmetics, optical, photonic, and electrical devices. However, industrial production of these particles is difficult, complicated, and dependent on a variety of physical characteristics such as temperature and infrastructure availability. This research describes an instant industrial method for producing titania nanoparticles using a wet chemical sol-gel synthesis. X-ray diffractogram (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis of as-synthesized titania nanoparticles revealed a strong diffraction peak at Bragg angle 25  , which can be attributed to the titania anatase phase, and vibration bonds at 463 cm – 1 , which confirms the presence of titania. The morphology of these titania nanoparticles was examined using a field emission scanning electron microscope (FESEM), which determined the particle size to be around 37 nm. Using diffuse reflectance spectroscopy (DRS), the optical properties of the as-synthesized nanoparticles were studied, and their band gap was determined to be 3.37 eV. At room temperature, the dielectric constant and loss of titania nanoparticles were measured as a function of frequency. Additionally, titania particles were mixed into transformer oil to assess its dielectric breakdown strength for better insulating properties.","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68046465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of an Integrated mm-Wave and Sub 6GHz Antenna for 5G Mobile Devices 5G移动设备毫米波与Sub - 6GHz集成天线设计
Q3 Physics and Astronomy Pub Date : 2023-01-01 DOI: 10.21272/jnep.15(4).04027
R. M. Gomathi, M. Jeyabharathi, Tanvir Islam, D. Kumutha, K. Jayanthi, R. Delshi Howsalya Devi, V. Devipriya
In 5G applications, the antenna system plays a vital role to maintain the efficiency of the signal coverage during transmission. The millimeter-wave (mm-wave) and sub-6 GHz bands are integrated into the new antenna system which is suggested for the 5G handheld devices. The suggested antenna is a single antenna system that covers a 32.4 GHz bandwidth from 5.8 GHz to 38.2 GHz. The intended antenna structure has been obtained by introducing T-Shaped slots in the patch along with presence of parasitic elements on either side. The antenna's FR-4 substrate is developed with dimensions of 30  28  1.6 mm 2 . The gain varies be-tween 5 and 32 dBi across the operating frequency. The parasitic components are designed and connected with the patch to support the patch's ability to radiate with multiple resonances over a wide operating band. The optimal antenna includes six resonant frequencies 11 GHz, 18.2 GHz, 20.3 GHz, 21.7 GHz, 23.2 GHz, and 27 GHz. During the entire working frequency, the Voltage Standing Wave Ratio (VSWR) is obtained below 2, which signifies well impedance matching. The antenna maintains an efficiency of at least 65 % throughout, making it a strong candidate for 5G devices. The novel antenna geometry with compact size, wide operating band with multiple fruitful resonant frequencies, high gain, good radiation efficiency, omni-directional stable radiation patterns are the major findings reported in this article.
{"title":"Design of an Integrated mm-Wave and Sub 6GHz Antenna for 5G Mobile Devices","authors":"R. M. Gomathi, M. Jeyabharathi, Tanvir Islam, D. Kumutha, K. Jayanthi, R. Delshi Howsalya Devi, V. Devipriya","doi":"10.21272/jnep.15(4).04027","DOIUrl":"https://doi.org/10.21272/jnep.15(4).04027","url":null,"abstract":"In 5G applications, the antenna system plays a vital role to maintain the efficiency of the signal coverage during transmission. The millimeter-wave (mm-wave) and sub-6 GHz bands are integrated into the new antenna system which is suggested for the 5G handheld devices. The suggested antenna is a single antenna system that covers a 32.4 GHz bandwidth from 5.8 GHz to 38.2 GHz. The intended antenna structure has been obtained by introducing T-Shaped slots in the patch along with presence of parasitic elements on either side. The antenna's FR-4 substrate is developed with dimensions of 30  28  1.6 mm 2 . The gain varies be-tween 5 and 32 dBi across the operating frequency. The parasitic components are designed and connected with the patch to support the patch's ability to radiate with multiple resonances over a wide operating band. The optimal antenna includes six resonant frequencies 11 GHz, 18.2 GHz, 20.3 GHz, 21.7 GHz, 23.2 GHz, and 27 GHz. During the entire working frequency, the Voltage Standing Wave Ratio (VSWR) is obtained below 2, which signifies well impedance matching. The antenna maintains an efficiency of at least 65 % throughout, making it a strong candidate for 5G devices. The novel antenna geometry with compact size, wide operating band with multiple fruitful resonant frequencies, high gain, good radiation efficiency, omni-directional stable radiation patterns are the major findings reported in this article.","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135698828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extract of Biomaterial as Admixture for Internal Curing Agent for Concrete 生物材料提取物作为混凝土内固化剂外加剂的研究
Q3 Physics and Astronomy Pub Date : 2023-01-01 DOI: 10.21272/jnep.15(4).04026
Anant Dhole, Tushar Shende
The demand for concrete in the construction sector is growing gradually due to its strength and durability. Concrete's interior relative humidity influences its strength and longevity. In the process of internal curing concrete along with the surface moisture, extra internal moisture is provided so that self-desiccation or dehydration can be avoided. In this paper, biomaterial extract is used to examine the performance of internally cured concrete and is compared with the performance of air-cured and conventionally cured concrete. The dosages of biomaterial extract used as internal curing agents are 0.0 %, 0.20 %, 0.40 %, 0.60 %, 0.80 %, and 1.0 % by weight of cement. This manuscript focuses on the compressive power of M-20 grade concrete and using Biomaterial extract as an internal curing agent determined for 3, 7, and 28 days and compared with air-cured and traditional cured cement concrete respectively. From the experimental test results and observations, the compressive potency of M-20 grade tangible enhances with a boost in dosages of extract of biomaterial up to 0.60% by weight of cement, if the dosage increased more than 0.60 % compressive strength decreases. The results are optimistic in bio-self-cured concrete which is environmentally friendly and low-cost and also improves the level of hydration.
{"title":"Extract of Biomaterial as Admixture for Internal Curing Agent for Concrete","authors":"Anant Dhole, Tushar Shende","doi":"10.21272/jnep.15(4).04026","DOIUrl":"https://doi.org/10.21272/jnep.15(4).04026","url":null,"abstract":"The demand for concrete in the construction sector is growing gradually due to its strength and durability. Concrete's interior relative humidity influences its strength and longevity. In the process of internal curing concrete along with the surface moisture, extra internal moisture is provided so that self-desiccation or dehydration can be avoided. In this paper, biomaterial extract is used to examine the performance of internally cured concrete and is compared with the performance of air-cured and conventionally cured concrete. The dosages of biomaterial extract used as internal curing agents are 0.0 %, 0.20 %, 0.40 %, 0.60 %, 0.80 %, and 1.0 % by weight of cement. This manuscript focuses on the compressive power of M-20 grade concrete and using Biomaterial extract as an internal curing agent determined for 3, 7, and 28 days and compared with air-cured and traditional cured cement concrete respectively. From the experimental test results and observations, the compressive potency of M-20 grade tangible enhances with a boost in dosages of extract of biomaterial up to 0.60% by weight of cement, if the dosage increased more than 0.60 % compressive strength decreases. The results are optimistic in bio-self-cured concrete which is environmentally friendly and low-cost and also improves the level of hydration.","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135699109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Properties of Radioelectronic Elements in the Form of Piezoceramic Cylinders with Internal Screens 带内屏的压电陶瓷圆柱体中放射性电子元件的动态特性
Q3 Physics and Astronomy Pub Date : 2023-01-01 DOI: 10.21272/jnep.15(4).04036
O. H. Leiko, A. V. Derepa, O. V. Bogdanov, V. V. Kolesnyk
Analytical relations describing the electric fields of a radio-electronic element made in the form of a piezoceramic cylindrical shell with an internal acoustic screen and an elastic medium in the cavity between them are obtained by the method of coupled fields in multiply connected regions. A comparative analysis of the results of a numerical experiment carried out according to the frequency characteristics of the electric current of the element excitation, depending on the parameters of the design of constituents of the element, made it possible to establish a number of subtle effects in the formation of fields that are important for matching the element with the electronic generator that excites it. Possible ways to control the dynamic properties of the electric field of the transducer are determined for different compositions of the piezoceramic material of its shell and different distances between the screen and the shell. The ways of controlling the properties of the electric field of the transducer are determined, which include changes in the composition of the piezoceramic material of its shell, the dimensions of the inner screen and the distance between the screen and the shell. The results obtained make it possible to support the requirements for generator devices to ensure the energy efficiency of the corresponding radiating paths.
{"title":"Dynamic Properties of Radioelectronic Elements in the Form of Piezoceramic Cylinders with Internal Screens","authors":"O. H. Leiko, A. V. Derepa, O. V. Bogdanov, V. V. Kolesnyk","doi":"10.21272/jnep.15(4).04036","DOIUrl":"https://doi.org/10.21272/jnep.15(4).04036","url":null,"abstract":"Analytical relations describing the electric fields of a radio-electronic element made in the form of a piezoceramic cylindrical shell with an internal acoustic screen and an elastic medium in the cavity between them are obtained by the method of coupled fields in multiply connected regions. A comparative analysis of the results of a numerical experiment carried out according to the frequency characteristics of the electric current of the element excitation, depending on the parameters of the design of constituents of the element, made it possible to establish a number of subtle effects in the formation of fields that are important for matching the element with the electronic generator that excites it. Possible ways to control the dynamic properties of the electric field of the transducer are determined for different compositions of the piezoceramic material of its shell and different distances between the screen and the shell. The ways of controlling the properties of the electric field of the transducer are determined, which include changes in the composition of the piezoceramic material of its shell, the dimensions of the inner screen and the distance between the screen and the shell. The results obtained make it possible to support the requirements for generator devices to ensure the energy efficiency of the corresponding radiating paths.","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135699119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of Thin Films Based on Silver Sulfide in Air at Atmospheric Pressure in a Gas Discharge 常压气体放电下空气中硫化银薄膜的合成
Q3 Physics and Astronomy Pub Date : 2023-01-01 DOI: 10.21272/jnep.15(1).01010
O. Shuaibov, O. Y. Mynia, O. Malinin, R. Hrytsak, A. Malinina, A. Pogodin, Z. Homoki
The characteristics of an overvoltage high-voltage nanosecond discharge in air at atmospheric pressure between polycrystalline electrodes made of a superionic conductor, silver sulfide (Ag 2 S), are given. In the process of microexplosions of inhomogeneities on the working surfaces of the electrodes in a strong electric field, vapors of the Ag 2 S compound and its dissociation products in the plasma are introduced into the interelectrode space due to the formation of ectons. This creates prerequisites for the synthesis of thin films from this material, which have the properties of superionic conductors and photovoltaic compounds and can be deposited on a dielectric substrate installed in a discharge gap. Spatial and electrical properties of nanosecond overvoltage discharges and Raman scattering spectra of synthesized thin films and their surfaces were investigated. Discharge plasma parameters were modeled in a mixture of Ag 2 S superionic conductor vapor and air. Numerical calculations were performed using a program that solves the Boltzmann equation for the electron energy distribution function. The transport characteristics of discharge electrons and rate constants of electronic processes were calculated depending on the values of the E / N parameter in the experimental range of 1-1000 Td of the study of discharge properties. Raman light scattering spectra of thin films synthesized from electrode
本文给出了由超离子导体硫化银(ag2s)制成的多晶电极在常压下的过压高压纳秒放电特性。在强电场作用下,电极工作表面的不均匀性微爆炸过程中,等离子体中Ag 2s化合物及其解离产物的蒸气由于电子子的形成被引入电极间空间。这为从这种材料合成薄膜创造了先决条件,这种薄膜具有超离子导体和光伏化合物的特性,并且可以沉积在安装在放电间隙中的介电衬底上。研究了纳秒过电压放电的空间和电学性质,以及合成薄膜及其表面的拉曼散射光谱。建立了银硫超导导体蒸汽与空气混合放电等离子体参数的模型。数值计算采用了一个程序,解决了玻尔兹曼方程的电子能量分布函数。根据放电特性研究实验范围1 ~ 1000 Td内E / N参数的取值,计算了放电电子的输运特性和电子过程的速率常数。电极合成薄膜的拉曼散射光谱
{"title":"Synthesis of Thin Films Based on Silver Sulfide in Air at Atmospheric Pressure in a Gas Discharge","authors":"O. Shuaibov, O. Y. Mynia, O. Malinin, R. Hrytsak, A. Malinina, A. Pogodin, Z. Homoki","doi":"10.21272/jnep.15(1).01010","DOIUrl":"https://doi.org/10.21272/jnep.15(1).01010","url":null,"abstract":"The characteristics of an overvoltage high-voltage nanosecond discharge in air at atmospheric pressure between polycrystalline electrodes made of a superionic conductor, silver sulfide (Ag 2 S), are given. In the process of microexplosions of inhomogeneities on the working surfaces of the electrodes in a strong electric field, vapors of the Ag 2 S compound and its dissociation products in the plasma are introduced into the interelectrode space due to the formation of ectons. This creates prerequisites for the synthesis of thin films from this material, which have the properties of superionic conductors and photovoltaic compounds and can be deposited on a dielectric substrate installed in a discharge gap. Spatial and electrical properties of nanosecond overvoltage discharges and Raman scattering spectra of synthesized thin films and their surfaces were investigated. Discharge plasma parameters were modeled in a mixture of Ag 2 S superionic conductor vapor and air. Numerical calculations were performed using a program that solves the Boltzmann equation for the electron energy distribution function. The transport characteristics of discharge electrons and rate constants of electronic processes were calculated depending on the values of the E / N parameter in the experimental range of 1-1000 Td of the study of discharge properties. Raman light scattering spectra of thin films synthesized from electrode","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68043458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Thermodynamic Study of Portland Cement Containing Multi-walled Carbon Nanotubes (MWCNT) 含多壁碳纳米管硅酸盐水泥的热力学研究
Q3 Physics and Astronomy Pub Date : 2023-01-01 DOI: 10.21272/jnep.15(2).02002
Y. Naoui, Slimane Chala, T. Dorbani, M. C. Bouleklab, N. Barama, R. Bacha, M. Bdirina, S. Revo, S. Hamamda
{"title":"Thermodynamic Study of Portland Cement Containing Multi-walled Carbon Nanotubes (MWCNT)","authors":"Y. Naoui, Slimane Chala, T. Dorbani, M. C. Bouleklab, N. Barama, R. Bacha, M. Bdirina, S. Revo, S. Hamamda","doi":"10.21272/jnep.15(2).02002","DOIUrl":"https://doi.org/10.21272/jnep.15(2).02002","url":null,"abstract":"","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68045186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Super Wideband (26-70 GHz) Microstrip Patch Antenna for 5G Mobile Communication Applications 用于5G移动通信应用的超宽带(26-70 GHz)微带贴片天线
Q3 Physics and Astronomy Pub Date : 2023-01-01 DOI: 10.21272/jnep.15(3).03013
Heidi M. Mohammed, W. Ali, D. Mohamed
In this paper, a novel wide band monopole antenna is designed to operate at the millimetric wave (mmW) frequency band with impedance bandwidth of 26-70 GHz for 5G wireless communication applications. First of all a conventional antenna is designed on full ground then it designed on partial ground with size 5mm x 10mm but both designs didn’t achieve bandwidth of 50 GHz-55 GHz, The conventional antenna is a simple rectangular patch antenna with compact size 5 mm  6.5 mm. In order to generate the wideband width of 26-70 GHz a proposed antenna is designed. The design composed of rectangular patch antenna with edge-cut technique (making slots at the corner of the patch) and introduced on partial ground plane for an improved impedance matching. The suggested microstrip antenna (proposed antenna) has been designed and examined on Rogers RT5880 substrate with dimensions 10 mm  10 mm with dielectric constant 2.2, loss tangent 0.0009 and thickness of 1.57 mm using computer simulation tool (CST) software 2019. The results reveal that the antenna shows a return loss under – 10 dB over a range from 26-70 GHz and resonated at multiple frequencies 29 GHz, 32.8 GHz, 42 GHz, 47 GHz, 56.6 GHz, and 66 GHz. The gain varies from 6 dBi to 11.9 dBi with maximum obtained value at the frequency of 70 GHz, the antenna exhibits a broadside radiation pattern at both resonant frequencies 32.8 GHz and 56.6 GHz and realized gain are 7.24 dBi and 8.72 dBi at both frequencies respectively therefore the simulated outcomes of return loss, gain , radiation pattern and realized gain show the ability of the super wideband antenna to suit 5G mmW applications.
本文设计了一种新型宽带单极天线,工作在毫米波(mmW)频段,阻抗带宽为26-70 GHz,用于5G无线通信应用。传统天线首先在全地面上设计,然后在部分地面上设计,尺寸为5mm x 10mm,但两种设计都没有达到50 GHz-55 GHz的带宽,传统天线是一个简单的矩形贴片天线,紧凑尺寸为5mm6.5 mm。为了产生26 ~ 70ghz的宽带宽度,设计了一种新型天线。该设计由矩形贴片天线组成,采用边缘切割技术(在贴片的角上开槽),并在部分地平面上引入,以改善阻抗匹配。采用计算机仿真工具(CST)软件2019,在尺寸为10 mm10 mm、介电常数为2.2、损耗正切为0.0009、厚度为1.57 mm的Rogers RT5880衬底上设计并测试了所建议的微带天线(拟议天线)。结果表明,该天线在26-70 GHz范围内回波损耗低于- 10 dB,可在29 GHz、32.8 GHz、42 GHz、47 GHz、56.6 GHz和66 GHz多个频率下谐振。增益范围为6dbi ~ 11.9 dBi,在70 GHz频率处获得最大值,天线在32.8 GHz和56.6 GHz谐振频率处呈现宽频辐射方向图,实现增益分别为7.24 dBi和8.72 dBi,因此回波损耗、增益、辐射方向图和实现增益的模拟结果表明,该超宽带天线能够适应5G毫米波应用。
{"title":"A Super Wideband (26-70 GHz) Microstrip Patch Antenna for 5G Mobile Communication Applications","authors":"Heidi M. Mohammed, W. Ali, D. Mohamed","doi":"10.21272/jnep.15(3).03013","DOIUrl":"https://doi.org/10.21272/jnep.15(3).03013","url":null,"abstract":"In this paper, a novel wide band monopole antenna is designed to operate at the millimetric wave (mmW) frequency band with impedance bandwidth of 26-70 GHz for 5G wireless communication applications. First of all a conventional antenna is designed on full ground then it designed on partial ground with size 5mm x 10mm but both designs didn’t achieve bandwidth of 50 GHz-55 GHz, The conventional antenna is a simple rectangular patch antenna with compact size 5 mm  6.5 mm. In order to generate the wideband width of 26-70 GHz a proposed antenna is designed. The design composed of rectangular patch antenna with edge-cut technique (making slots at the corner of the patch) and introduced on partial ground plane for an improved impedance matching. The suggested microstrip antenna (proposed antenna) has been designed and examined on Rogers RT5880 substrate with dimensions 10 mm  10 mm with dielectric constant 2.2, loss tangent 0.0009 and thickness of 1.57 mm using computer simulation tool (CST) software 2019. The results reveal that the antenna shows a return loss under – 10 dB over a range from 26-70 GHz and resonated at multiple frequencies 29 GHz, 32.8 GHz, 42 GHz, 47 GHz, 56.6 GHz, and 66 GHz. The gain varies from 6 dBi to 11.9 dBi with maximum obtained value at the frequency of 70 GHz, the antenna exhibits a broadside radiation pattern at both resonant frequencies 32.8 GHz and 56.6 GHz and realized gain are 7.24 dBi and 8.72 dBi at both frequencies respectively therefore the simulated outcomes of return loss, gain , radiation pattern and realized gain show the ability of the super wideband antenna to suit 5G mmW applications.","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68045595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Temperature Effects on the Static Performance of 14 nm TG SOI N FinFET 高温对14nm TG SOI N FinFET静态性能的影响
Q3 Physics and Astronomy Pub Date : 2023-01-01 DOI: 10.21272/jnep.15(2).02005
A. Lazzaz, K. Bousbahi, M. Ghamnia
{"title":"High Temperature Effects on the Static Performance of 14 nm TG SOI N FinFET","authors":"A. Lazzaz, K. Bousbahi, M. Ghamnia","doi":"10.21272/jnep.15(2).02005","DOIUrl":"https://doi.org/10.21272/jnep.15(2).02005","url":null,"abstract":"","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68044619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Nano-and electronic Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1