Objective. The instability of the EEG acquisition devices may lead to information loss in the channels or frequency bands of the collected EEG. This phenomenon may be ignored in available models, which leads to the overfitting and low generalization of the model. Approach. Multiple self-supervised learning tasks are introduced in the proposed model to enhance the generalization of EEG emotion recognition and reduce the overfitting problem to some extent. Firstly, channel masking and frequency masking are introduced to simulate the information loss in certain channels and frequency bands resulting from the instability of EEG, and two self-supervised learning-based feature reconstruction tasks combining masked graph autoencoders (GAE) are constructed to enhance the generalization of the shared encoder. Secondly, to take full advantage of the complementary information contained in these two self-supervised learning tasks to ensure the reliability of feature reconstruction, a weight sharing (WS) mechanism is introduced between the two graph decoders. Thirdly, an adaptive weight multi-task loss (AWML) strategy based on homoscedastic uncertainty is adopted to combine the supervised learning loss and the two self-supervised learning losses to enhance the performance further. Main results. Experimental results on SEED, SEED-V, and DEAP datasets demonstrate that: (i) Generally, the proposed model achieves higher averaged emotion classification accuracy than various baselines included in both subject-dependent and subject-independent scenarios. (ii) Each key module contributes to the performance enhancement of the proposed model. (iii) It achieves higher training efficiency, and significantly lower model size and computational complexity than the state-of-the-art (SOTA) multi-task-based model. (iv) The performances of the proposed model are less influenced by the key parameters. Significance. The introduction of the self-supervised learning task helps to enhance the generalization of the EEG emotion recognition model and eliminate overfitting to some extent, which can be modified to be applied in other EEG-based classification tasks.
{"title":"MSLTE: multiple self-supervised learning tasks for enhancing EEG emotion recognition","authors":"Guangqiang Li, Ning Chen, Yixiang Niu, Zhangyong Xu, Yuxuan Dong, Jing Jin, Hongqin Zhu","doi":"10.1088/1741-2552/ad3c28","DOIUrl":"https://doi.org/10.1088/1741-2552/ad3c28","url":null,"abstract":"<italic toggle=\"yes\">Objective</italic>. The instability of the EEG acquisition devices may lead to information loss in the channels or frequency bands of the collected EEG. This phenomenon may be ignored in available models, which leads to the overfitting and low generalization of the model. <italic toggle=\"yes\">Approach</italic>. Multiple self-supervised learning tasks are introduced in the proposed model to enhance the generalization of EEG emotion recognition and reduce the overfitting problem to some extent. Firstly, channel masking and frequency masking are introduced to simulate the information loss in certain channels and frequency bands resulting from the instability of EEG, and two self-supervised learning-based feature reconstruction tasks combining masked graph autoencoders (GAE) are constructed to enhance the generalization of the shared encoder. Secondly, to take full advantage of the complementary information contained in these two self-supervised learning tasks to ensure the reliability of feature reconstruction, a weight sharing (WS) mechanism is introduced between the two graph decoders. Thirdly, an adaptive weight multi-task loss (AWML) strategy based on homoscedastic uncertainty is adopted to combine the supervised learning loss and the two self-supervised learning losses to enhance the performance further. <italic toggle=\"yes\">Main results</italic>. Experimental results on SEED, SEED-V, and DEAP datasets demonstrate that: (i) Generally, the proposed model achieves higher averaged emotion classification accuracy than various baselines included in both subject-dependent and subject-independent scenarios. (ii) Each key module contributes to the performance enhancement of the proposed model. (iii) It achieves higher training efficiency, and significantly lower model size and computational complexity than the state-of-the-art (SOTA) multi-task-based model. (iv) The performances of the proposed model are less influenced by the key parameters. <italic toggle=\"yes\">Significance</italic>. The introduction of the self-supervised learning task helps to enhance the generalization of the EEG emotion recognition model and eliminate overfitting to some extent, which can be modified to be applied in other EEG-based classification tasks.","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":"48 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-17DOI: 10.1088/1741-2552/ad3b6c
Tom F Su, Jack D Hamilton, Yiru Guo, Jason R Potas, Mohit N Shivdasani, Gila Moalem-Taylor, Gene Y Fridman, Felix P Aplin
Objective. Electrical neuromodulation is an established non-pharmacological treatment for chronic pain. However, existing devices using pulsatile stimulation typically inhibit pain pathways indirectly and are not suitable for all types of chronic pain. Direct current (DC) stimulation is a recently developed technology which affects small-diameter fibres more strongly than pulsatile stimulation. Since nociceptors are predominantly small-diameter Aδ and C fibres, we investigated if this property could be applied to preferentially reduce nociceptive signalling. Approach. We applied a DC waveform to the sciatic nerve in rats of both sexes and recorded multi-unit spinal activity evoked at the hindpaw using various natural stimuli corresponding to different sensory modalities rather than broad-spectrum electrical stimulus. To determine if DC neuromodulation is effective across different types of chronic pain, tests were performed in models of neuropathic and inflammatory pain. Main results. We found that in both pain models tested, DC application reduced responses evoked by noxious stimuli, as well as tactile-evoked responses which we suggest may be involved in allodynia. Different spinal activity of different modalities were reduced in naïve animals compared to the pain models, indicating that physiological changes such as those mediated by disease states could play a larger role than previously thought in determining neuromodulation outcomes. Significance. Our findings support the continued development of DC neuromodulation as a method for reduction of nociceptive signalling, and suggests that it may be effective at treating a broader range of aberrant pain conditions than existing devices.
目的。电神经调控是治疗慢性疼痛的一种成熟的非药物疗法。然而,现有的脉冲刺激设备通常会间接抑制疼痛通路,并不适用于所有类型的慢性疼痛。直流电(DC)刺激是最近开发的一种技术,它对小直径纤维的影响比脉冲刺激更强。由于痛觉感受器主要是小直径的 Aδ 和 C 纤维,我们研究了能否利用这一特性来优先减少痛觉信号。研究方法我们将直流电波形应用于雌雄大鼠的坐骨神经,并使用与不同感觉模式相对应的各种自然刺激而不是广谱电刺激记录后爪诱发的多单位脊髓活动。为了确定直流电神经调控对不同类型的慢性疼痛是否有效,在神经病理性疼痛和炎症性疼痛模型中进行了测试。主要结果。我们发现,在测试的两种疼痛模型中,直流电的应用都能减少有害刺激引起的反应以及触觉引起的反应,我们认为触觉引起的反应可能与异感症有关。与疼痛模型相比,天真动物不同模式的脊髓活动均有所减少,这表明生理变化(如疾病状态介导的生理变化)在决定神经调控结果方面的作用可能比以前认为的更大。意义重大。我们的研究结果支持直流电神经调控作为一种减少痛觉信号的方法的持续发展,并表明与现有设备相比,直流电神经调控可有效治疗更广泛的异常疼痛病症。
{"title":"Peripheral direct current reduces naturally evoked nociceptive activity at the spinal cord in rodent models of pain","authors":"Tom F Su, Jack D Hamilton, Yiru Guo, Jason R Potas, Mohit N Shivdasani, Gila Moalem-Taylor, Gene Y Fridman, Felix P Aplin","doi":"10.1088/1741-2552/ad3b6c","DOIUrl":"https://doi.org/10.1088/1741-2552/ad3b6c","url":null,"abstract":"<italic toggle=\"yes\">Objective.</italic> Electrical neuromodulation is an established non-pharmacological treatment for chronic pain. However, existing devices using pulsatile stimulation typically inhibit pain pathways indirectly and are not suitable for all types of chronic pain. Direct current (DC) stimulation is a recently developed technology which affects small-diameter fibres more strongly than pulsatile stimulation. Since nociceptors are predominantly small-diameter A<italic toggle=\"yes\">δ</italic> and C fibres, we investigated if this property could be applied to preferentially reduce nociceptive signalling. <italic toggle=\"yes\">Approach.</italic> We applied a DC waveform to the sciatic nerve in rats of both sexes and recorded multi-unit spinal activity evoked at the hindpaw using various natural stimuli corresponding to different sensory modalities rather than broad-spectrum electrical stimulus. To determine if DC neuromodulation is effective across different types of chronic pain, tests were performed in models of neuropathic and inflammatory pain. <italic toggle=\"yes\">Main results.</italic> We found that in both pain models tested, DC application reduced responses evoked by noxious stimuli, as well as tactile-evoked responses which we suggest may be involved in allodynia. Different spinal activity of different modalities were reduced in naïve animals compared to the pain models, indicating that physiological changes such as those mediated by disease states could play a larger role than previously thought in determining neuromodulation outcomes. <italic toggle=\"yes\">Significance.</italic> Our findings support the continued development of DC neuromodulation as a method for reduction of nociceptive signalling, and suggests that it may be effective at treating a broader range of aberrant pain conditions than existing devices.","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":"33 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-17DOI: 10.1088/1741-2552/ad3b6b
Anna Sergeeva, Christian Bech Christensen, Preben Kidmose
Objective. The auditory steady-state response (ASSR) allows estimation of hearing thresholds. The ASSR can be estimated from electroencephalography (EEG) recordings from electrodes positioned on both the scalp and within the ear (ear-EEG). Ear-EEG can potentially be integrated into hearing aids, which would enable automatic fitting of the hearing device in daily life. The conventional stimuli for ASSR-based hearing assessment, such as pure tones and chirps, are monotonous and tiresome, making them inconvenient for repeated use in everyday situations. In this study we investigate the use of natural speech sounds for ASSR estimation. Approach. EEG was recorded from 22 normal hearing subjects from both scalp and ear electrodes. Subjects were stimulated monaurally with 180 min of speech stimulus modified by applying a 40 Hz amplitude modulation (AM) to an octave frequency sub-band centered at 1 kHz. Each 50 ms sub-interval in the AM sub-band was scaled to match one of 10 pre-defined levels (0–45 dB sensation level, 5 dB steps). The apparent latency for the ASSR was estimated as the maximum average cross-correlation between the envelope of the AM sub-band and the recorded EEG and was used to align the EEG signal with the audio signal. The EEG was then split up into sub-epochs of 50 ms length and sorted according to the stimulation level. ASSR was estimated for each level for both scalp- and ear-EEG. Main results. Significant ASSRs with increasing amplitude as a function of presentation level were recorded from both scalp and ear electrode configurations. Significance. Utilizing natural sounds in ASSR estimation offers the potential for electrophysiological hearing assessment that are more comfortable and less fatiguing compared to existing ASSR methods. Combined with ear-EEG, this approach may allow convenient hearing threshold estimation in everyday life, utilizing ambient sounds. Additionally, it may facilitate both initial fitting and subsequent adjustments of hearing aids outside of clinical settings.
{"title":"Towards ASSR-based hearing assessment using natural sounds","authors":"Anna Sergeeva, Christian Bech Christensen, Preben Kidmose","doi":"10.1088/1741-2552/ad3b6b","DOIUrl":"https://doi.org/10.1088/1741-2552/ad3b6b","url":null,"abstract":"<italic toggle=\"yes\">Objective</italic>. The auditory steady-state response (ASSR) allows estimation of hearing thresholds. The ASSR can be estimated from electroencephalography (EEG) recordings from electrodes positioned on both the scalp and within the ear (ear-EEG). Ear-EEG can potentially be integrated into hearing aids, which would enable automatic fitting of the hearing device in daily life. The conventional stimuli for ASSR-based hearing assessment, such as pure tones and chirps, are monotonous and tiresome, making them inconvenient for repeated use in everyday situations. In this study we investigate the use of natural speech sounds for ASSR estimation. <italic toggle=\"yes\">Approach.</italic> EEG was recorded from 22 normal hearing subjects from both scalp and ear electrodes. Subjects were stimulated monaurally with 180 min of speech stimulus modified by applying a 40 Hz amplitude modulation (AM) to an octave frequency sub-band centered at 1 kHz. Each 50 ms sub-interval in the AM sub-band was scaled to match one of 10 pre-defined levels (0–45 dB sensation level, 5 dB steps). The apparent latency for the ASSR was estimated as the maximum average cross-correlation between the envelope of the AM sub-band and the recorded EEG and was used to align the EEG signal with the audio signal. The EEG was then split up into sub-epochs of 50 ms length and sorted according to the stimulation level. ASSR was estimated for each level for both scalp- and ear-EEG. <italic toggle=\"yes\">Main results</italic>. Significant ASSRs with increasing amplitude as a function of presentation level were recorded from both scalp and ear electrode configurations. <italic toggle=\"yes\">Significance</italic>. Utilizing natural sounds in ASSR estimation offers the potential for electrophysiological hearing assessment that are more comfortable and less fatiguing compared to existing ASSR methods. Combined with ear-EEG, this approach may allow convenient hearing threshold estimation in everyday life, utilizing ambient sounds. Additionally, it may facilitate both initial fitting and subsequent adjustments of hearing aids outside of clinical settings.","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":"13 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective. The study of emotion recognition through electroencephalography (EEG) has garnered significant attention recently. Integrating EEG with other peripheral physiological signals may greatly enhance performance in emotion recognition. Nonetheless, existing approaches still suffer from two predominant challenges: modality heterogeneity, stemming from the diverse mechanisms across modalities, and fusion credibility, which arises when one or multiple modalities fail to provide highly credible signals. Approach. In this paper, we introduce a novel multimodal physiological signal fusion model that incorporates both intra-inter modality reconstruction and sequential pattern consistency, thereby ensuring a computable and credible EEG-based multimodal emotion recognition. For the modality heterogeneity issue, we first implement a local self-attention transformer to obtain intra-modal features for each respective modality. Subsequently, we devise a pairwise cross-attention transformer to reveal the inter-modal correlations among different modalities, thereby rendering different modalities compatible and diminishing the heterogeneity concern. For the fusion credibility issue, we introduce the concept of sequential pattern consistency to measure whether different modalities evolve in a consistent way. Specifically, we propose to measure the varying trends of different modalities, and compute the inter-modality consistency scores to ascertain fusion credibility. Main results. We conduct extensive experiments on two benchmarked datasets (DEAP and MAHNOB-HCI) with the subject-dependent paradigm. For the DEAP dataset, our method improves the accuracy by 4.58%, and the F1 score by 0.63%, compared to the state-of-the-art baseline. Similarly, for the MAHNOB-HCI dataset, our method improves the accuracy by 3.97%, and the F1 score by 4.21%. In addition, we gain much insight into the proposed framework through significance test, ablation experiments, confusion matrices and hyperparameter analysis. Consequently, we demonstrate the effectiveness of the proposed credibility modelling through statistical analysis and carefully designed experiments. Significance. All experimental results demonstrate the effectiveness of our proposed architecture and indicate that credibility modelling is essential for multimodal emotion recognition.
目的。通过脑电图(EEG)进行情绪识别的研究近来备受关注。将脑电图与其他外周生理信号整合可大大提高情绪识别的性能。然而,现有的方法仍然面临两个主要挑战:一是模态异质性,这源于不同模态之间的不同机制;二是融合可信度,当一种或多种模态无法提供高度可信的信号时,就会产生融合可信度问题。方法。在本文中,我们介绍了一种新型的多模态生理信号融合模型,该模型结合了模态内重建和序列模式一致性,从而确保了基于脑电图的多模态情绪识别的可计算性和可信度。针对模态异质性问题,我们首先实施了局部自注意变换器,以获得各模态的模态内特征。随后,我们设计了一个成对交叉注意变换器,以揭示不同模态之间的模态间相关性,从而使不同模态相互兼容,减少异质性问题。针对融合可信度问题,我们引入了序列模式一致性的概念,以衡量不同模态是否以一致的方式发展。具体来说,我们建议测量不同模态的变化趋势,并计算模态间的一致性得分,以确定融合可信度。主要结果。我们在两个基准数据集(DEAP 和 MAHNOB-HCI)上使用主体依赖范式进行了大量实验。在 DEAP 数据集上,与最先进的基线相比,我们的方法提高了 4.58% 的准确率和 0.63% 的 F1 分数。同样,对于 MAHNOB-HCI 数据集,我们的方法提高了 3.97% 的准确率和 4.21% 的 F1 分数。此外,通过显著性测试、消融实验、混淆矩阵和超参数分析,我们对所提出的框架有了更深入的了解。因此,我们通过统计分析和精心设计的实验证明了所提出的可信度建模的有效性。意义重大。所有实验结果都证明了我们提出的架构的有效性,并表明可信度建模对于多模态情感识别至关重要。
{"title":"Cross-modal credibility modelling for EEG-based multimodal emotion recognition","authors":"Yuzhe Zhang, Huan Liu, Di Wang, Dalin Zhang, Tianyu Lou, Qinghua Zheng, Chai Quek","doi":"10.1088/1741-2552/ad3987","DOIUrl":"https://doi.org/10.1088/1741-2552/ad3987","url":null,"abstract":"<italic toggle=\"yes\">Objective.</italic> The study of emotion recognition through electroencephalography (EEG) has garnered significant attention recently. Integrating EEG with other peripheral physiological signals may greatly enhance performance in emotion recognition. Nonetheless, existing approaches still suffer from two predominant challenges: modality heterogeneity, stemming from the diverse mechanisms across modalities, and fusion credibility, which arises when one or multiple modalities fail to provide highly credible signals. <italic toggle=\"yes\">Approach.</italic> In this paper, we introduce a novel multimodal physiological signal fusion model that incorporates both intra-inter modality reconstruction and sequential pattern consistency, thereby ensuring a computable and credible EEG-based multimodal emotion recognition. For the modality heterogeneity issue, we first implement a local self-attention transformer to obtain intra-modal features for each respective modality. Subsequently, we devise a pairwise cross-attention transformer to reveal the inter-modal correlations among different modalities, thereby rendering different modalities compatible and diminishing the heterogeneity concern. For the fusion credibility issue, we introduce the concept of sequential pattern consistency to measure whether different modalities evolve in a consistent way. Specifically, we propose to measure the varying trends of different modalities, and compute the inter-modality consistency scores to ascertain fusion credibility. <italic toggle=\"yes\">Main results.</italic> We conduct extensive experiments on two benchmarked datasets (DEAP and MAHNOB-HCI) with the subject-dependent paradigm. For the DEAP dataset, our method improves the accuracy by 4.58%, and the F1 score by 0.63%, compared to the state-of-the-art baseline. Similarly, for the MAHNOB-HCI dataset, our method improves the accuracy by 3.97%, and the F1 score by 4.21%. In addition, we gain much insight into the proposed framework through significance test, ablation experiments, confusion matrices and hyperparameter analysis. Consequently, we demonstrate the effectiveness of the proposed credibility modelling through statistical analysis and carefully designed experiments. <italic toggle=\"yes\">Significance.</italic> All experimental results demonstrate the effectiveness of our proposed architecture and indicate that credibility modelling is essential for multimodal emotion recognition.","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":"221 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-11DOI: 10.1088/1741-2552/ad39a6
Zhengyuan Lv, Jingming Li, Li Yao, Xiaojuan Guo
Objective. Understanding the intricate relationship between structural connectivity (SC) and functional connectivity (FC) is pivotal for understanding the complexities of the human brain. To explore this relationship, the heat diffusion model (HDM) was utilized to predict FC from SC. However, previous studies using the HDM have typically predicted FC at a critical time scale in the heat kernel equation, overlooking the dynamic nature of the diffusion process and providing an incomplete representation of the predicted FC. Approach. In this study, we propose an alternative approach based on the HDM. First, we introduced a multiple-timescale fusion method to capture the dynamic features of the diffusion process. Additionally, to enhance the smoothness of the predicted FC values, we employed the Wavelet reconstruction method to maintain local consistency and remove noise. Moreover, to provide a more accurate representation of the relationship between SC and FC, we calculated the linear transformation between the smoothed FC and the empirical FC. Main results. We conducted extensive experiments in two independent datasets. By fusing different time scales in the diffusion process for predicting FC, the proposed method demonstrated higher predictive correlation compared with method considering only critical time points (Singlescale). Furthermore, compared with other existing methods, the proposed method achieved the highest predictive correlations of 0.6939