{"title":"Mechanistic Chronopharmacology: Preclinical Modeling of an SGLT2 Inhibitor in Preventing Painful Diabetic Neuropathy.","authors":"Andrea Cignarella, Cristina D Peterson","doi":"10.1124/jpet.124.002150","DOIUrl":"10.1124/jpet.124.002150","url":null,"abstract":"","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"390 2","pages":"174-176"},"PeriodicalIF":3.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dalila Andrade Pereira, Fabiano Beraldi Calmasini, Fernando Ferreira Costa, Arthur L Burnett, Fábio Henrique Silva
Patients with sickle cell disease (SCD) display priapism, a prolonged penile erection in the absence of sexual arousal. The current pharmacological treatments for SCD-associated priapism are limited and focused on acute interventions rather than prevention. Thus, there is an urgent need for new drug targets and preventive pharmacological therapies for this condition. This review focuses on the molecular mechanisms linked to the dysfunction of the NO-cyclic guanosine monophosphate (cGMP)-phosphodiesterase type 5 (PDE5) pathway implicated in SCD-associated priapism. In murine models of SCD, reduced nitric oxide (NO)-cGMP bioavailability in the corpus cavernosum is associated with elevated plasma hemoglobin levels, increased reactive oxygen species levels that inactive NO, and testosterone deficiency that leads to endothelial nitric oxide synthase downregulation. We discuss the consequences of the reduced cGMP-dependent PDE5 activity in response to these molecular changes, highlighting it as the primary pathophysiological mechanism leading to excessive corpus cavernosum relaxation, culminating in priapism. We also further discuss the impact of intravascular hemolysis on therapeutic approaches, present current pharmacological strategies targeting the NO-cGMP-PDE5 pathway in the penis, and identify potential pharmacological targets for future priapism therapies. In men with SCD and priapism, PDE5 inhibitor therapy and testosterone replacement have shown promising results. Recent preclinical research reported the beneficial effect of treatment with haptoglobin and NO donors. SIGNIFICANCE STATEMENT: This review discusses the molecular changes that reduce NO-cGMP bioavailability in the penis in SCD and highlights pharmacological targets and therapeutic strategies for the treatment of priapism, including PDE5 inhibitors, hormonal modulators, NO donors, hydroxyurea, soluble guanylate cyclase stimulators, haptoglobin, hemopexin, and antioxidants.
{"title":"Nitric Oxide Resistance in Priapism Associated with Sickle Cell Disease: Mechanisms, Therapeutic Challenges, and Future Directions.","authors":"Dalila Andrade Pereira, Fabiano Beraldi Calmasini, Fernando Ferreira Costa, Arthur L Burnett, Fábio Henrique Silva","doi":"10.1124/jpet.123.001962","DOIUrl":"10.1124/jpet.123.001962","url":null,"abstract":"<p><p>Patients with sickle cell disease (SCD) display priapism, a prolonged penile erection in the absence of sexual arousal. The current pharmacological treatments for SCD-associated priapism are limited and focused on acute interventions rather than prevention. Thus, there is an urgent need for new drug targets and preventive pharmacological therapies for this condition. This review focuses on the molecular mechanisms linked to the dysfunction of the NO-cyclic guanosine monophosphate (cGMP)-phosphodiesterase type 5 (PDE5) pathway implicated in SCD-associated priapism. In murine models of SCD, reduced nitric oxide (NO)-cGMP bioavailability in the corpus cavernosum is associated with elevated plasma hemoglobin levels, increased reactive oxygen species levels that inactive NO, and testosterone deficiency that leads to endothelial nitric oxide synthase downregulation. We discuss the consequences of the reduced cGMP-dependent PDE5 activity in response to these molecular changes, highlighting it as the primary pathophysiological mechanism leading to excessive corpus cavernosum relaxation, culminating in priapism. We also further discuss the impact of intravascular hemolysis on therapeutic approaches, present current pharmacological strategies targeting the NO-cGMP-PDE5 pathway in the penis, and identify potential pharmacological targets for future priapism therapies. In men with SCD and priapism, PDE5 inhibitor therapy and testosterone replacement have shown promising results. Recent preclinical research reported the beneficial effect of treatment with haptoglobin and NO donors. SIGNIFICANCE STATEMENT: This review discusses the molecular changes that reduce NO-cGMP bioavailability in the penis in SCD and highlights pharmacological targets and therapeutic strategies for the treatment of priapism, including PDE5 inhibitors, hormonal modulators, NO donors, hydroxyurea, soluble guanylate cyclase stimulators, haptoglobin, hemopexin, and antioxidants.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":" ","pages":"203-212"},"PeriodicalIF":3.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139542555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sneha Rathi, Ju-Hee Oh, Wenjuan Zhang, Ann C Mladek, Darwin A Garcia, Zhiyi Xue, Danielle M Burgenske, Wenqiu Zhang, Jiayan Le, Wei Zhong, Jann N Sarkaria, William F Elmquist
Radiation therapy, a standard treatment option for many cancer patients, induces DNA double-strand breaks (DSBs), leading to cell death. Ataxia telangiectasia mutated (ATM) kinase is a key regulator of DSB repair, and ATM inhibitors are being explored as radiosensitizers for various tumors, including primary and metastatic brain tumors. Efficacy of radiosensitizers for brain tumors may be influenced by a lack of effective drug delivery across the blood-brain barrier. The objective of this study was to evaluate the systemic pharmacokinetics and mechanisms that influence the central nervous system (CNS) distribution of WSD0628, a novel and potent ATM inhibitor, in the mouse. Further, we have used these observations to form the basis of predicting effective exposures for clinical application. We observed a greater than dose proportional increase in exposure, likely due to saturation of clearance processes. Our results show that WSD0628 is orally bioavailable and CNS penetrant, with unbound partitioning in CNS (i.e., unbound tissue partition coefficient) between 0.15 and 0.3. CNS distribution is not limited by the efflux transporters P-glycoprotein and breast cancer resistant protein. WSD0628 is distributed uniformly among different brain regions. Thus, WSD0628 has favorable pharmacokinetic properties and potential for further exploration to determine the pharmacodynamics-pharmacokinetics efficacy relationship in CNS tumors. This approach will provide critical insights for the clinical translation of WSD0628 for the treatment of primary and secondary brain tumors. SIGNIFICANCE STATEMENT: This study evaluates the preclinical systemic pharmacokinetics, dose proportionality, and mechanisms influencing CNS distribution of WSD0628, a novel ATM inhibitor for the treatment of brain tumors. Results indicate that WSD0628 is orally bioavailable and CNS penetrant without efflux transporter liability. We also observed a greater than dose proportional increase in exposure in both the plasma and brain. These favorable pharmacokinetic properties indicate WSD0628 has potential for further exploration for use as a radiosensitizer in the treatment of brain tumors.
{"title":"Preclinical Systemic Pharmacokinetics, Dose Proportionality, and Central Nervous System Distribution of the ATM Inhibitor WSD0628, a Novel Radiosensitizer for the Treatment of Brain Tumors.","authors":"Sneha Rathi, Ju-Hee Oh, Wenjuan Zhang, Ann C Mladek, Darwin A Garcia, Zhiyi Xue, Danielle M Burgenske, Wenqiu Zhang, Jiayan Le, Wei Zhong, Jann N Sarkaria, William F Elmquist","doi":"10.1124/jpet.123.001971","DOIUrl":"10.1124/jpet.123.001971","url":null,"abstract":"<p><p>Radiation therapy, a standard treatment option for many cancer patients, induces DNA double-strand breaks (DSBs), leading to cell death. Ataxia telangiectasia mutated (ATM) kinase is a key regulator of DSB repair, and ATM inhibitors are being explored as radiosensitizers for various tumors, including primary and metastatic brain tumors. Efficacy of radiosensitizers for brain tumors may be influenced by a lack of effective drug delivery across the blood-brain barrier. The objective of this study was to evaluate the systemic pharmacokinetics and mechanisms that influence the central nervous system (CNS) distribution of WSD0628, a novel and potent ATM inhibitor, in the mouse. Further, we have used these observations to form the basis of predicting effective exposures for clinical application. We observed a greater than dose proportional increase in exposure, likely due to saturation of clearance processes. Our results show that WSD0628 is orally bioavailable and CNS penetrant, with unbound partitioning in CNS (i.e., unbound tissue partition coefficient) between 0.15 and 0.3. CNS distribution is not limited by the efflux transporters P-glycoprotein and breast cancer resistant protein. WSD0628 is distributed uniformly among different brain regions. Thus, WSD0628 has favorable pharmacokinetic properties and potential for further exploration to determine the pharmacodynamics-pharmacokinetics efficacy relationship in CNS tumors. This approach will provide critical insights for the clinical translation of WSD0628 for the treatment of primary and secondary brain tumors. SIGNIFICANCE STATEMENT: This study evaluates the preclinical systemic pharmacokinetics, dose proportionality, and mechanisms influencing CNS distribution of WSD0628, a novel ATM inhibitor for the treatment of brain tumors. Results indicate that WSD0628 is orally bioavailable and CNS penetrant without efflux transporter liability. We also observed a greater than dose proportional increase in exposure in both the plasma and brain. These favorable pharmacokinetic properties indicate WSD0628 has potential for further exploration for use as a radiosensitizer in the treatment of brain tumors.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":" ","pages":"260-275"},"PeriodicalIF":3.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264258/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MAP4K4 is a serine/threonine protein kinase belonging to the germinal center kinase subgroup of sterile 20 protein family of kinases. MAP4K4 has been involved in regulating multiple biologic processes and a plethora of pathologies, including systemic inflammation, cardiovascular diseases, cancers, and metabolic and hepatic diseases. Recently, multiple reports have indicated the upregulation of MAP4K4 expression and signaling in hyperglycemia and liver diseases. This review provides an overview of our current knowledge of MAP4K4 structure and expression, as well as its regulation and signaling, specifically in metabolic and hepatic diseases. Reviewing these promising studies will enrich our understanding of MAP4K4 signaling pathways and, in the future, will help us design innovative therapeutic interventions against metabolic and liver diseases using MAP4K4 as a target. SIGNIFICANCE STATEMENT: Although most studies on the involvement of MAP4K4 in human pathologies are related to cancers, only recently its role in liver and other metabolic diseases is beginning to unravel. This mini review discusses recent advancements in MAP4K4 biology within the context of metabolic dysfunction and comprehensively characterizes MAP4K4 as a clinically relevant therapeutic target against liver and metabolic diseases.
{"title":"Role of Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 Signaling in Liver and Metabolic Diseases.","authors":"Felix Ampadu, Vibhudutta Awasthi, Aditya D Joshi","doi":"10.1124/jpet.124.002065","DOIUrl":"10.1124/jpet.124.002065","url":null,"abstract":"<p><p>MAP4K4 is a serine/threonine protein kinase belonging to the germinal center kinase subgroup of sterile 20 protein family of kinases. MAP4K4 has been involved in regulating multiple biologic processes and a plethora of pathologies, including systemic inflammation, cardiovascular diseases, cancers, and metabolic and hepatic diseases. Recently, multiple reports have indicated the upregulation of MAP4K4 expression and signaling in hyperglycemia and liver diseases. This review provides an overview of our current knowledge of MAP4K4 structure and expression, as well as its regulation and signaling, specifically in metabolic and hepatic diseases. Reviewing these promising studies will enrich our understanding of MAP4K4 signaling pathways and, in the future, will help us design innovative therapeutic interventions against metabolic and liver diseases using MAP4K4 as a target. SIGNIFICANCE STATEMENT: Although most studies on the involvement of MAP4K4 in human pathologies are related to cancers, only recently its role in liver and other metabolic diseases is beginning to unravel. This mini review discusses recent advancements in MAP4K4 biology within the context of metabolic dysfunction and comprehensively characterizes MAP4K4 as a clinically relevant therapeutic target against liver and metabolic diseases.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":" ","pages":"233-239"},"PeriodicalIF":3.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264251/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alex J Roy, Jeffrey R Leipprandt, Joseph R Patterson, Anna C Stoll, Christopher J Kemp, Zaipo-Tcheisian D Oula, Tyler Mola, Ana R Batista, Caryl E Sortwell, Miguel Sena-Esteves, Richard R Neubig
Mutations in the GNAO1 gene, which encodes the abundant brain G-protein Gαo, result in neurologic disorders characterized by developmental delay, epilepsy, and movement abnormalities. There are over 50 mutant alleles associated with GNAO1 disorders; the R209H mutation results in dystonia, choreoathetosis, and developmental delay without seizures. Mice heterozygous for the human mutant allele (Gnao1+/R209H) exhibit hyperactivity in open field tests but no seizures. We developed self-complementary adeno-associated virus serotype 9 (scAAV9) vectors expressing two splice variants of human GNAO1 Gαo isoforms 1 (GoA, GNAO1.1) and 2 (GoB, GNAO1.2). Bilateral intrastriatal injections of either scAAV9-GNAO1.1 or scAAV9-GNAO1.2 significantly reversed mutation-associated hyperactivity in open field tests. GNAO1 overexpression did not increase seizure susceptibility, a potential side effect of GNAO1 vector treatment. This represents the first report of successful preclinical gene therapy for GNAO1 encephalopathy applied in vivo. Further studies are needed to uncover the molecular mechanism that results in behavior improvements after scAAV9-mediated Gαo expression and to refine the vector design. SIGNIFICANCE STATEMENT: GNAO1 mutations cause a spectrum of developmental, epilepsy, and movement disorders. Here we show that intrastriatal delivery of scAAV9-GNAO1 to express the wild-type Gαo protein reduces the hyperactivity of the Gnao1+/R209H mouse model, which carries one of the most common movement disorder-associated mutations. This is the first report of a gene therapy for GNAO1 encephalopathy applied in vivo on a patient-allele model.
{"title":"AAV9-Mediated Intrastriatal Delivery of <i>GNAO1</i> Reduces Hyperlocomotion in <i>Gnao1</i> Heterozygous R209H Mutant Mice.","authors":"Alex J Roy, Jeffrey R Leipprandt, Joseph R Patterson, Anna C Stoll, Christopher J Kemp, Zaipo-Tcheisian D Oula, Tyler Mola, Ana R Batista, Caryl E Sortwell, Miguel Sena-Esteves, Richard R Neubig","doi":"10.1124/jpet.124.002117","DOIUrl":"10.1124/jpet.124.002117","url":null,"abstract":"<p><p>Mutations in the <i>GNAO1</i> gene, which encodes the abundant brain G-protein G<i>α</i> <sub>o</sub>, result in neurologic disorders characterized by developmental delay, epilepsy, and movement abnormalities. There are over 50 mutant alleles associated with <i>GNAO1</i> disorders; the R209H mutation results in dystonia, choreoathetosis, and developmental delay without seizures. Mice heterozygous for the human mutant allele (<i>Gnao1</i> <sup>+/R209H</sup>) exhibit hyperactivity in open field tests but no seizures. We developed self-complementary adeno-associated virus serotype 9 (scAAV9) vectors expressing two splice variants of human <i>GNAO1</i> G<i>α</i> <sub>o</sub> isoforms 1 (G<sub>o</sub>A, <i>GNAO1.1</i>) and 2 (G<sub>o</sub>B, <i>GNAO1.2</i>). Bilateral intrastriatal injections of either scAAV9-<i>GNAO1.1</i> or scAAV9-<i>GNAO1.2</i> significantly reversed mutation-associated hyperactivity in open field tests. <i>GNAO1</i> overexpression did not increase seizure susceptibility, a potential side effect of <i>GNAO1</i> vector treatment. This represents the first report of successful preclinical gene therapy for <i>GNAO1</i> encephalopathy applied in vivo. Further studies are needed to uncover the molecular mechanism that results in behavior improvements after scAAV9-mediated G<i>α</i> <sub>o</sub> expression and to refine the vector design. SIGNIFICANCE STATEMENT: <i>GNAO1</i> mutations cause a spectrum of developmental, epilepsy, and movement disorders. Here we show that intrastriatal delivery of scAAV9-<i>GNAO1</i> to express the wild-type G<i>α</i> <sub>o</sub> protein reduces the hyperactivity of the <i>Gnao1</i> <sup>+/R209H</sup> mouse model, which carries one of the most common movement disorder-associated mutations. This is the first report of a gene therapy for <i>GNAO1</i> encephalopathy applied in vivo on a patient-allele model.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":" ","pages":"250-259"},"PeriodicalIF":3.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141310856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gastroesophageal reflux disease (GERD) is associated with an incompetent lower esophageal sphincter (LES), resulting in the reflux of gastric contents into the esophagus. U46619, a thromboxane A2 (TXA2) receptor agonist, induces contractions in various smooth muscles. Therefore, this study aimed to investigate the effects and mechanisms of action of U46619 on the porcine LES. To achieve this, contractions of the clasp and sling strips of the porcine LES, induced by U46619, were measured using isometric transducers. Furthermore, the contractile mechanism of U46619 in the porcine LES was investigated by pretreating the strips with atropine (a muscarinic receptor antagonist), tetrodotoxin (a neuronal sodium channel blocker), nifedipine (a calcium channel blocker), and Ca2+-free Krebs-Henseleit solution. Additionally, reverse transcription polymerase chain reaction (PCR) and immunohistochemistry (IHC) were performed to determine the presence of the TXA2 receptor in porcine LES. The results of this study demonstrated that U46619 caused marked concentration-dependent contractions in both porcine sling and clasp strips. The mechanism of U46619-induced contraction of the porcine LES was found to be related to calcium channels. Furthermore, the reverse transcription PCR analysis and IHC revealed that the TXA2 receptor was expressed in the clasp and sling fibers of porcine LES. Consequently, this study suggests that U46619 mediates the contraction of porcine LES through calcium channels and has potential as a therapeutic approach for treating GERD. SIGNIFICANCE STATEMENT: This study establishes that U46619 induces concentration-dependent contractions in porcine LES, primarily mediated by calcium channels. The presence of the TXA2 receptor in LES clasp and sling fibers is confirmed. These findings highlight U46619's potential as a GERD therapeutic by targeting calcium channels for LES contraction modulation.
胃食管反流病(GERD)与食管下括约肌(LES)功能不全有关,导致胃内容物反流入食管。U46619 是一种血栓素 A2(TXA2)受体激动剂,可诱导各种平滑肌收缩。因此,本研究旨在探讨 U46619 对猪 LES 的影响和作用机制。为此,研究人员使用等距传感器测量了 U46619 诱导的猪 LES 扣带和吊带的收缩。此外,还用阿托品(毒蕈碱受体拮抗剂)、河豚毒素(神经元钠通道阻滞剂)、硝苯地平(钙通道阻滞剂)和无 Ca2+ 的克雷布斯-亨斯利特溶液预处理猪 LES,以研究 U46619 在猪 LES 中的收缩机制。此外,还进行了反转录聚合酶链反应和免疫组化(IHC),以确定猪 LES 中是否存在 TXA2 受体。研究结果表明,U46619 可引起猪吊带和扣带明显的浓度依赖性收缩。研究发现,U46619 诱导猪 LES 收缩的机制与钙通道有关。此外,反转录 PCR 分析和 IHC 显示,TXA2 受体在猪 LES 的扣带和吊带纤维中均有表达。因此,本研究表明 U46619 可通过钙通道介导猪 LES 的收缩,具有治疗胃食管反流病的潜力。意义声明 本研究证实,U46619 主要通过钙通道介导猪 LES 发生浓度依赖性收缩。证实了 LES 扣带和吊带纤维中 TXA2 受体的存在。这些发现凸显了 U46619 通过靶向钙通道调节 LES 收缩而作为胃食管反流治疗药物的潜力。
{"title":"Investigating the Mechanisms Underlying U46619-Induced Contraction on Porcine Lower Esophageal Sphincter.","authors":"Ho-Poh Kek, Yu-Tsun Su, Kai-Jen Lin, Ming-Chun Yang, Li-Ching Chang, Yung-Ning Yang, Ching-Chung Tsai","doi":"10.1124/jpet.123.001902","DOIUrl":"10.1124/jpet.123.001902","url":null,"abstract":"<p><p>Gastroesophageal reflux disease (GERD) is associated with an incompetent lower esophageal sphincter (LES), resulting in the reflux of gastric contents into the esophagus. U46619, a thromboxane A2 (TXA2) receptor agonist, induces contractions in various smooth muscles. Therefore, this study aimed to investigate the effects and mechanisms of action of U46619 on the porcine LES. To achieve this, contractions of the clasp and sling strips of the porcine LES, induced by U46619, were measured using isometric transducers. Furthermore, the contractile mechanism of U46619 in the porcine LES was investigated by pretreating the strips with atropine (a muscarinic receptor antagonist), tetrodotoxin (a neuronal sodium channel blocker), nifedipine (a calcium channel blocker), and Ca<sup>2+</sup>-free Krebs-Henseleit solution. Additionally, reverse transcription polymerase chain reaction (PCR) and immunohistochemistry (IHC) were performed to determine the presence of the TXA2 receptor in porcine LES. The results of this study demonstrated that U46619 caused marked concentration-dependent contractions in both porcine sling and clasp strips. The mechanism of U46619-induced contraction of the porcine LES was found to be related to calcium channels. Furthermore, the reverse transcription PCR analysis and IHC revealed that the TXA2 receptor was expressed in the clasp and sling fibers of porcine LES. Consequently, this study suggests that U46619 mediates the contraction of porcine LES through calcium channels and has potential as a therapeutic approach for treating GERD. SIGNIFICANCE STATEMENT: This study establishes that U46619 induces concentration-dependent contractions in porcine LES, primarily mediated by calcium channels. The presence of the TXA2 receptor in LES clasp and sling fibers is confirmed. These findings highlight U46619's potential as a GERD therapeutic by targeting calcium channels for LES contraction modulation.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":" ","pages":"188-195"},"PeriodicalIF":3.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138885266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Special Section on Therapeutic Approaches to Treat Disorders of the Urinary and Gastrointestinal Tracts-Editorial.","authors":"Anna P Malykhina, Luke Grundy","doi":"10.1124/jpet.124.002317","DOIUrl":"https://doi.org/10.1124/jpet.124.002317","url":null,"abstract":"","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"390 2","pages":"186-187"},"PeriodicalIF":3.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ai Sato, Sai Yasukochi, Naho Iwanaka, Tomoaki Yamauchi, Akito Tsuruta, Satoru Koyanagi, Shigehiro Ohdo
A problem for patients with diabetes is the rise of complications, such as peripheral neuropathy, nephropathy, and retinopathy. Among them, peripheral neuropathy, characterized by numbness and/or hypersensitivity to pain in the extremities, is likely to develop in the early stages of diabetes. Empagliflozin (EMPA), a sodium-glucose cotransporter-2 inhibitor, exerts hypoglycemic effects by preventing glucose reabsorption in proximal tubular cells. EMPA can improve cardiovascular and renal outcomes in diabetic patients, but its suppressive effect on the development of diabetic neuropathy remains unclear. In this study, we demonstrated that optimizing the dosing schedule of EMPA suppressed the development of pain hypersensitivity in streptozotocin (STZ)-induced diabetic model mice maintained under standardized light/dark cycle conditions. A single intraperitoneal administration of STZ to mice induced hyperglycemia accompanied by pain hypersensitivity. Although EMPA did not exert anti-hypersensitivity effect on STZ-induced diabetic mice after the establishment of neuropathic pain, the development of pain hypersensitivity in the diabetic mice was significantly suppressed by daily oral administration of EMPA at the beginning of the dark phase. On the other hand, the suppressive effect was not observed when EMPA was administered at the beginning of the light phase. The hypoglycemic effect of EMPA and its stimulatory effect on urinary glucose excretion were also enhanced by the administration of the drug at the beginning of the dark phase. Nocturnal mice consumed their food mainly during the dark phase. Our results support the notion that morning administration of EMPA may be effective in suppressing the development of peripheral neuropathy in diabetic patients. SIGNIFICANCE STATEMENT: Empagliflozin, a sodium-glucose cotransporter-2 inhibitor suppressed the development of neuropathic pain hypersensitivity in streptozotocin-induced diabetic model mice in a dosing time-dependent manner.
{"title":"Dosing Time-Dependent Difference in the Suppressive Effect of Empagliflozin on the Development of Mechanical Pain Hypersensitivity in Diabetic Mice.","authors":"Ai Sato, Sai Yasukochi, Naho Iwanaka, Tomoaki Yamauchi, Akito Tsuruta, Satoru Koyanagi, Shigehiro Ohdo","doi":"10.1124/jpet.123.001856","DOIUrl":"10.1124/jpet.123.001856","url":null,"abstract":"<p><p>A problem for patients with diabetes is the rise of complications, such as peripheral neuropathy, nephropathy, and retinopathy. Among them, peripheral neuropathy, characterized by numbness and/or hypersensitivity to pain in the extremities, is likely to develop in the early stages of diabetes. Empagliflozin (EMPA), a sodium-glucose cotransporter-2 inhibitor, exerts hypoglycemic effects by preventing glucose reabsorption in proximal tubular cells. EMPA can improve cardiovascular and renal outcomes in diabetic patients, but its suppressive effect on the development of diabetic neuropathy remains unclear. In this study, we demonstrated that optimizing the dosing schedule of EMPA suppressed the development of pain hypersensitivity in streptozotocin (STZ)-induced diabetic model mice maintained under standardized light/dark cycle conditions. A single intraperitoneal administration of STZ to mice induced hyperglycemia accompanied by pain hypersensitivity. Although EMPA did not exert anti-hypersensitivity effect on STZ-induced diabetic mice after the establishment of neuropathic pain, the development of pain hypersensitivity in the diabetic mice was significantly suppressed by daily oral administration of EMPA at the beginning of the dark phase. On the other hand, the suppressive effect was not observed when EMPA was administered at the beginning of the light phase. The hypoglycemic effect of EMPA and its stimulatory effect on urinary glucose excretion were also enhanced by the administration of the drug at the beginning of the dark phase. Nocturnal mice consumed their food mainly during the dark phase. Our results support the notion that morning administration of EMPA may be effective in suppressing the development of peripheral neuropathy in diabetic patients. SIGNIFICANCE STATEMENT: Empagliflozin, a sodium-glucose cotransporter-2 inhibitor suppressed the development of neuropathic pain hypersensitivity in streptozotocin-induced diabetic model mice in a dosing time-dependent manner.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":" ","pages":"177-185"},"PeriodicalIF":3.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140065381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hong Shen, Runlan Huo, Yueping Zhang, Linna Wang, Nian Tong, Weiqi Chen, Andrew J Paris, Kofi Mensah, Min Chen, Yongjun Xue, Wenying Li, Michael Sinz
We recently showed that riboflavin is a selected substrate of breast cancer resistance protein (BCRP) over P-glycoprotein (P-gp) and demonstrated its prediction performance in preclinical drug-drug interaction (DDI) studies. The aim of this study was to investigate the suitability of riboflavin to assess BCRP inhibition in humans. First, we assessed the substrate potential of riboflavin toward other major drug transporters using established transfected cell systems. Riboflavin is a substrate for organic anion transporter (OAT)1, OAT3, and multidrug and toxin extrusion protein (MATE)2-K, with uptake ratios ranging from 2.69 to 11.6, but riboflavin is not a substrate of organic anion-transporting polypeptide (OATP)1B1, OATP1B3, organic cation transporter (OCT)2, and MATE1. The effects of BMS-986371, a potent in vitro inhibitor of BCRP (IC50 0.40 μM), on the pharmacokinetics of riboflavin, isobutyryl carnitine, and arginine were then examined in healthy male adults (N = 14 or 16) after oral administration of methotrexate (MTX) (7.5 mg) and enteric-coated (EC) sulfasalazine (SSZ) (1000 mg) alone or in combination with BMS-986371 (150 mg). Oral administration of BMS-986371 increased the area under the plasma concentration-time curves (AUCs) of rosuvastatin and immediate-release (IR) SSZ to 1.38- and 1.51-fold, respectively, and significantly increased AUC(0-4h), AUC(0-24h), and Cmax of riboflavin by 1.25-, 1.14-, and 1.11-fold (P-values of 0.003, 0.009, and 0.025, respectively) compared with the MTX/SSZ EC alone group. In contrast, BMS-986371 did not significantly influence the AUC(0-24h) and Cmax values of isobutyryl carnitine and arginine (0.96- to 1.07-fold, respectively; P > 0.05). Overall, these data indicate that plasma riboflavin is a promising biomarker of BCRP that may offer a possibility to assess drug candidate as a BCRP modulator in early drug development. SIGNIFICANCE STATEMENT: Endogenous compounds that serve as biomarkers for clinical inhibition of breast cancer resistance protein (BCRP) are not currently available. This study provides the initial evidence that riboflavin is a promising BCRP biomarker in humans. For the first time, the value of leveraging the substrate of BCRP with acceptable prediction performance in clinical studies is shown. Additional clinical investigations with known BCRP inhibitors are needed to fully validate and showcase the utility of this biomarker.
{"title":"A Pilot Study To Assess the Suitability of Riboflavin As a Surrogate Marker of Breast Cancer Resistance Protein in Healthy Participants.","authors":"Hong Shen, Runlan Huo, Yueping Zhang, Linna Wang, Nian Tong, Weiqi Chen, Andrew J Paris, Kofi Mensah, Min Chen, Yongjun Xue, Wenying Li, Michael Sinz","doi":"10.1124/jpet.123.002015","DOIUrl":"10.1124/jpet.123.002015","url":null,"abstract":"<p><p>We recently showed that riboflavin is a selected substrate of breast cancer resistance protein (BCRP) over P-glycoprotein (P-gp) and demonstrated its prediction performance in preclinical drug-drug interaction (DDI) studies. The aim of this study was to investigate the suitability of riboflavin to assess BCRP inhibition in humans. First, we assessed the substrate potential of riboflavin toward other major drug transporters using established transfected cell systems. Riboflavin is a substrate for organic anion transporter (OAT)1, OAT3, and multidrug and toxin extrusion protein (MATE)2-K, with uptake ratios ranging from 2.69 to 11.6, but riboflavin is not a substrate of organic anion-transporting polypeptide (OATP)1B1, OATP1B3, organic cation transporter (OCT)2, and MATE1. The effects of BMS-986371, a potent in vitro inhibitor of BCRP (<i>IC</i> <sub>50</sub> 0.40 <i>μ</i>M), on the pharmacokinetics of riboflavin, isobutyryl carnitine, and arginine were then examined in healthy male adults (<i>N</i> = 14 or 16) after oral administration of methotrexate (MTX) (7.5 mg) and enteric-coated (EC) sulfasalazine (SSZ) (1000 mg) alone or in combination with BMS-986371 (150 mg). Oral administration of BMS-986371 increased the area under the plasma concentration-time curves (<i>AUC</i>s) of rosuvastatin and immediate-release (IR) SSZ to 1.38- and 1.51-fold, respectively, and significantly increased <i>AUC</i>(0-4h), <i>AUC</i>(0-24h), and <i>C</i> <sub>max</sub> of riboflavin by 1.25-, 1.14-, and 1.11-fold (<i>P</i>-values of 0.003, 0.009, and 0.025, respectively) compared with the MTX/SSZ EC alone group. In contrast, BMS-986371 did not significantly influence the <i>AUC</i>(0-24h) and <i>C</i> <sub>max</sub> values of isobutyryl carnitine and arginine (0.96- to 1.07-fold, respectively; <i>P</i> > 0.05). Overall, these data indicate that plasma riboflavin is a promising biomarker of BCRP that may offer a possibility to assess drug candidate as a BCRP modulator in early drug development. SIGNIFICANCE STATEMENT: Endogenous compounds that serve as biomarkers for clinical inhibition of breast cancer resistance protein (BCRP) are not currently available. This study provides the initial evidence that riboflavin is a promising BCRP biomarker in humans. For the first time, the value of leveraging the substrate of BCRP with acceptable prediction performance in clinical studies is shown. Additional clinical investigations with known BCRP inhibitors are needed to fully validate and showcase the utility of this biomarker.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":" ","pages":"162-173"},"PeriodicalIF":3.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Yin, Ye Wang, Weizhong Han, Weili Ge, Qingxia Yu, Yanyan Jing, Wenju Yan, Qian Liu, Liping Gong, Suhua Yan, Shuanglian Wang, Xiaolu Li, Yan Li, Hesheng Hu
Sympathetic hyperinnervation is the leading cause of fatal ventricular arrhythmia (VA) after myocardial infarction (MI). Cardiac mast cells cause arrhythmias directly through degranulation. However, the role and mechanism of mast cell degranulation in sympathetic remodeling remain unknown. We investigated the role of oxytocin (OT) in stabilizing cardiac mast cells and improving sympathetic innervation in rats. MI was induced by coronary artery ligation. Western blotting, immunofluorescence, and toluidine staining of mast cells were performed to determine the expression and location of target protein. Mast cells accumulated significantly in peri-infarcted tissues and were present in a degranulated state. They expressed OT receptor (OTR), and OT infusion reduced the number of degranulated cardiac mast cells post-MI. Sympathetic hyperinnervation was attenuated as assessed by immunofluorescence for tyrosine hydroxylase (TH). Seven days post-MI, the arrhythmia score of programmed electrical stimulation was higher in vehicle-treated rats with MI than in rats treated with OT. An in vitro study showed that OT stabilized mast cells via the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. Further in vivo studies on OTR-deficient mice showed worsening mast cell degranulation and worsening sympathetic innervation. OT pretreatment inhibited cardiac mast cell degranulation post-MI and prevented sympathetic hyperinnervation, along with mast cell stabilization via the PI3K/Akt pathway. SIGNIFICANCE STATEMENT: This is the first study to elucidate the role and mechanism of oxytocin (OT) in inflammatory-sympathetic communication mediated sympathetic hyperinnervation after myocardial infarction (MI), providing new approaches to prevent fatal arrhythmias.
交感神经过度支配是心肌梗塞(MI)后致命性室性心律失常(VA)的主要原因。心脏肥大细胞通过脱颗粒直接导致心律失常。然而,肥大细胞脱颗粒在交感神经重塑中的作用和机制仍不清楚。我们研究了催产素(OT)在稳定心脏肥大细胞和改善大鼠交感神经支配中的作用。冠状动脉结扎诱发心肌梗死。对肥大细胞进行Western印迹、免疫荧光和甲苯胺染色,以确定靶蛋白的表达和位置。肥大细胞在梗死周围组织中大量聚集,并以脱颗粒状态存在。它们表达OT受体(OTR),输注OT可减少心肌梗死后心脏肥大细胞脱颗粒的数量。通过酪氨酸羟化酶(TH)免疫荧光评估,交感神经过度支配的情况有所缓解。心肌梗死后七天,用药物治疗的心肌梗死大鼠在程序性电刺激下的心律失常评分高于用 OT 治疗的大鼠。体外研究表明,OT 可通过 PI3K/AKT 信号通路稳定肥大细胞。对缺乏 OTR 的小鼠进行的进一步体内研究显示,肥大细胞脱颗粒现象恶化,交感神经支配恶化。OT预处理可抑制心肌梗死后心脏肥大细胞脱颗粒,并防止交感神经过度支配,同时通过PI3K/AKT途径稳定肥大细胞。 意义声明 1.我们证实了催产素(OT)在稳定心脏肥大细胞中的作用和机制。2.这是首次阐明催产素(OT)介导的心肌梗死(MI)后交感神经过度支配机制的研究。
{"title":"Oxytocin Attenuates Sympathetic Innervation with Inhibition of Cardiac Mast Cell Degranulation in Rats after Myocardial Infarction.","authors":"Jie Yin, Ye Wang, Weizhong Han, Weili Ge, Qingxia Yu, Yanyan Jing, Wenju Yan, Qian Liu, Liping Gong, Suhua Yan, Shuanglian Wang, Xiaolu Li, Yan Li, Hesheng Hu","doi":"10.1124/jpet.124.002064","DOIUrl":"10.1124/jpet.124.002064","url":null,"abstract":"<p><p>Sympathetic hyperinnervation is the leading cause of fatal ventricular arrhythmia (VA) after myocardial infarction (MI). Cardiac mast cells cause arrhythmias directly through degranulation. However, the role and mechanism of mast cell degranulation in sympathetic remodeling remain unknown. We investigated the role of oxytocin (OT) in stabilizing cardiac mast cells and improving sympathetic innervation in rats. MI was induced by coronary artery ligation. Western blotting, immunofluorescence, and toluidine staining of mast cells were performed to determine the expression and location of target protein. Mast cells accumulated significantly in peri-infarcted tissues and were present in a degranulated state. They expressed OT receptor (OTR), and OT infusion reduced the number of degranulated cardiac mast cells post-MI. Sympathetic hyperinnervation was attenuated as assessed by immunofluorescence for tyrosine hydroxylase (TH). Seven days post-MI, the arrhythmia score of programmed electrical stimulation was higher in vehicle-treated rats with MI than in rats treated with OT. An in vitro study showed that OT stabilized mast cells via the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. Further in vivo studies on OTR-deficient mice showed worsening mast cell degranulation and worsening sympathetic innervation. OT pretreatment inhibited cardiac mast cell degranulation post-MI and prevented sympathetic hyperinnervation, along with mast cell stabilization via the PI3K/Akt pathway. SIGNIFICANCE STATEMENT: This is the first study to elucidate the role and mechanism of oxytocin (OT) in inflammatory-sympathetic communication mediated sympathetic hyperinnervation after myocardial infarction (MI), providing new approaches to prevent fatal arrhythmias.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":" ","pages":"240-249"},"PeriodicalIF":3.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}