The structural, magnetic, and electronic transport properties of Mn₂CoSi (MCS) thin film have been studied to explore the possibility of half-metallicity of MCS Heusler alloy (HA) in thin film form. Grazing incidence X-ray diffraction (GIXRD) data indicated the presence of the rhombohedral crystal structure with a space group of R (148). Spectrum fitting of X-ray reflectivity (XRR) suggests the deposited film has smooth surface with uniform density. Magnetic analysis reveals the ferrimagnetic nature of the film with a transition temperature well above the room temperature. Electric transport study of MCS thin film indicates the non-metallic behavior (< 250 K) and metallic behavior (> 250 K) in different temperature regimes. The persistence of half-metallicity across the entire temperature range is supported by the presence of T7/2 terms in the resistivity data due to two-magnon scattering. Arrhenius equation fitting of the electrical resistivity data in the non-metallic regime results the activation energy of 4.98 meV. At room temperature, the electrical resistivity is 1.372 mΩ-cm which is consistent with the values reported previously for other well-known half-metallic HAs. The observed results of HA in thin film form seems encouraging to us which could find its applications as a magnetic electrode for future spintronics.
为了探索薄膜形式的 Mn₂CoSi(MCS) Heusler 合金(HA)半金属性的可能性,我们研究了 Mn₂CoSi(MCS)薄膜的结构、磁性和电子传输特性。掠入射 X 射线衍射(GIXRD)数据表明,存在空间群为 R 3‾(148) 的斜方晶体结构。X 射线反射率(XRR)光谱拟合表明,沉积薄膜表面光滑,密度均匀。磁性分析表明薄膜具有铁磁性,转变温度远高于室温。MCS 薄膜的电传输研究表明,在不同的温度条件下,薄膜具有非金属特性(250 K)和金属特性(250 K)。由于双磁子散射,电阻率数据中出现了 T7/2 项,这支持了半金属性在整个温度范围内的持续性。阿伦尼乌斯方程拟合了非金属状态下的电阻率数据,得出活化能为 4.98 meV。室温下的电阻率为 1.372 mΩ-cm,与之前报告的其他著名半金属砷化镓的电阻率值一致。我们对薄膜形式的 HA 的观察结果感到鼓舞,它可以作为磁电极应用于未来的自旋电子学。
{"title":"Probing half-metallicity in Mn2CoSi/Si(100) thin film structures using electrical transport measurements towards spintronic applications","authors":"Anadi Krishna Atul , Indra Sulania , R.J. Choudhary , Neelabh Srivastava","doi":"10.1016/j.jpcs.2024.112391","DOIUrl":"10.1016/j.jpcs.2024.112391","url":null,"abstract":"<div><div>The structural, magnetic, and electronic transport properties of Mn₂CoSi (MCS) thin film have been studied to explore the possibility of half-metallicity of MCS Heusler alloy (HA) in thin film form. Grazing incidence X-ray diffraction (GIXRD) data indicated the presence of the rhombohedral crystal structure with a space group of R <span><math><mrow><mover><mn>3</mn><mo>‾</mo></mover></mrow></math></span> (148). Spectrum fitting of X-ray reflectivity (XRR) suggests the deposited film has smooth surface with uniform density. Magnetic analysis reveals the ferrimagnetic nature of the film with a transition temperature well above the room temperature. Electric transport study of MCS thin film indicates the non-metallic behavior (< 250 K) and metallic behavior (> 250 K) in different temperature regimes. The persistence of half-metallicity across the entire temperature range is supported by the presence of T<sup>7/2</sup> terms in the resistivity data due to two-magnon scattering. Arrhenius equation fitting of the electrical resistivity data in the non-metallic regime results the activation energy of 4.98 meV. At room temperature, the electrical resistivity is 1.372 mΩ-cm which is consistent with the values reported previously for other well-known half-metallic HAs. The observed results of HA in thin film form seems encouraging to us which could find its applications as a magnetic electrode for future spintronics.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"196 ","pages":"Article 112391"},"PeriodicalIF":4.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.jpcs.2024.112388
M. Hariharan, R.D. Eithiraj
This study explores the structural, optical, and thermoelectric properties of non-centrosymmetric layered selenite and tellurite compounds KSb3Se2O12, RbSb3Se2O12, CsSb3Se2O12, TlSb3Se2O12, KSb3Te2O12, RbSb3Te2O12, CsSb3Te2O12, TlSb3Te2O12 to assess their potential for sustainable and renewable energy technologies. The selenite and tellurite compounds feature distinct non-centrosymmetric layered crystal structures, which are key to their unique optical and electronic properties. The materials display a layered structure without a center of symmetry, characterized by distinct atomic arrangements, and their band gaps vary depending on the constituent elements. For selenites, band gaps range from 2.97 eV to 3.19 eV, while for tellurites, they range from 2.75 eV to 3.02 eV, indicate their suitability for indirect semiconducting applications. The investigated materials exhibit high absorbance in the ultraviolet region, suggesting they are promising for solar cell applications. The energy loss function peaks at 14 eV, indicating minimal optical loss in the infrared and visible spectra. The static dielectric constants ε1(0) were calculated, showing variations based on the elemental composition. The response of ε2(ω) demonstrates strong interactions in the ultraviolet region, corresponding to electronic transitions from the valence to the conduction bands. Thermoelectric properties, evaluated with the BoltzTrap code using transport theory. The Seebeck coefficient of p-type semiconductors typically increases with temperature, but TlSb3Se2O12 shows an even greater increase, suggesting enhanced thermoelectric properties. Both selenites and tellurites have rising electrical conductivities, with ASb3Se2O12 peaking at 800 K. The Power Factor improves with temperature, reaching a peak for TlSb3Se2O12. These compounds exhibit favorable electrical conductivity and power factor, suggesting potential applications in thermoelectric systems. The figure of merit (ZT) values spanning from 0.90 to 1.51, with a maximum ZT value of 1.41 at 800 K, TlSb3Se2O12 shows great potential for high-temperature thermoelectric applications. These findings advance the understanding of non-centrosymmetric oxide materials and provide valuable insights for developing advanced materials for energy technologies.
本研究探讨了非中心对称层状硒石和碲石化合物 KSb3Se2O12、RbSb3Se2O12、CsSb3Se2O12、TlSb3Se2O12、KSb3Te2O12、RbSb3Te2O12、CsSb3Te2O12、TlSb3Te2O12 的结构、光学和热电特性,以评估它们在可持续和可再生能源技术方面的潜力。硒酸盐和碲酸盐化合物具有独特的非中心对称层状晶体结构,这是它们具有独特光学和电子特性的关键。这些材料显示出一种没有对称中心的层状结构,其特点是原子排列独特,它们的带隙随组成元素的不同而变化。硒化物的带隙在 2.97 eV 至 3.19 eV 之间,而碲化物的带隙在 2.75 eV 至 3.02 eV 之间,这表明它们适合间接半导体应用。所研究的材料在紫外线区域表现出较高的吸收率,这表明它们有望应用于太阳能电池。能量损失函数在 14 eV 处达到峰值,表明在红外和可见光谱中的光学损失极小。计算得出的静态介电常数ε1(0)显示了元素组成的变化。ε2(ω)的响应在紫外区显示出强烈的相互作用,与价带到导带的电子跃迁相对应。热电性能是通过 BoltzTrap 代码利用输运理论进行评估的。p 型半导体的塞贝克系数通常会随温度升高而增大,但 TlSb3Se2O12 的增幅更大,这表明其热电特性得到了增强。硒化物和碲化物的电导率都在上升,其中 ASb3Se2O12 的电导率在 800 K 时达到峰值。这些化合物表现出良好的导电性和功率因数,表明它们在热电系统中具有潜在的应用前景。TlSb3Se2O12 的优越性(ZT)值从 0.90 到 1.51 不等,在 800 K 时达到 1.41 的最大 ZT 值,显示出其在高温热电应用中的巨大潜力。这些发现加深了人们对非中心对称氧化物材料的理解,为开发先进的能源技术材料提供了宝贵的见解。
{"title":"Unveiling the recently synthesis noncentrosymmetric layered ASb3X2O12 (A = K, Rb, Cs, Tl; X = Se, Te) via first principles calculations","authors":"M. Hariharan, R.D. Eithiraj","doi":"10.1016/j.jpcs.2024.112388","DOIUrl":"10.1016/j.jpcs.2024.112388","url":null,"abstract":"<div><div>This study explores the structural, optical, and thermoelectric properties of non-centrosymmetric layered selenite and tellurite compounds KSb<sub>3</sub>Se<sub>2</sub>O<sub>12</sub>, RbSb<sub>3</sub>Se<sub>2</sub>O<sub>12</sub>, CsSb<sub>3</sub>Se<sub>2</sub>O<sub>12</sub>, TlSb<sub>3</sub>Se<sub>2</sub>O<sub>12</sub>, KSb<sub>3</sub>Te<sub>2</sub>O<sub>12</sub>, RbSb<sub>3</sub>Te<sub>2</sub>O<sub>12</sub>, CsSb<sub>3</sub>Te<sub>2</sub>O<sub>12</sub>, TlSb<sub>3</sub>Te<sub>2</sub>O<sub>12</sub> to assess their potential for sustainable and renewable energy technologies. The selenite and tellurite compounds feature distinct non-centrosymmetric layered crystal structures, which are key to their unique optical and electronic properties. The materials display a layered structure without a center of symmetry, characterized by distinct atomic arrangements, and their band gaps vary depending on the constituent elements. For selenites, band gaps range from 2.97 eV to 3.19 eV, while for tellurites, they range from 2.75 eV to 3.02 eV, indicate their suitability for indirect semiconducting applications. The investigated materials exhibit high absorbance in the ultraviolet region, suggesting they are promising for solar cell applications. The energy loss function peaks at 14 eV, indicating minimal optical loss in the infrared and visible spectra. The static dielectric constants <em>ε</em><sub>1</sub>(0) were calculated, showing variations based on the elemental composition. The response of <em>ε</em><sub>2</sub>(ω) demonstrates strong interactions in the ultraviolet region, corresponding to electronic transitions from the valence to the conduction bands. Thermoelectric properties, evaluated with the BoltzTrap code using transport theory. The Seebeck coefficient of p-type semiconductors typically increases with temperature, but TlSb<sub>3</sub>Se<sub>2</sub>O<sub>12</sub> shows an even greater increase, suggesting enhanced thermoelectric properties. Both selenites and tellurites have rising electrical conductivities, with ASb<sub>3</sub>Se<sub>2</sub>O<sub>12</sub> peaking at 800 K. The Power Factor improves with temperature, reaching a peak for TlSb<sub>3</sub>Se<sub>2</sub>O<sub>12</sub>. These compounds exhibit favorable electrical conductivity and power factor, suggesting potential applications in thermoelectric systems. The figure of merit (ZT) values spanning from 0.90 to 1.51, with a maximum ZT value of 1.41 at 800 K, TlSb<sub>3</sub>Se<sub>2</sub>O<sub>12</sub> shows great potential for high-temperature thermoelectric applications. These findings advance the understanding of non-centrosymmetric oxide materials and provide valuable insights for developing advanced materials for energy technologies.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"196 ","pages":"Article 112388"},"PeriodicalIF":4.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.jpcs.2024.112386
Nondon Lal Dey , Md. Shamim Reza , Avijit Ghosh , Hmoud Al-Dmour , Mahbuba Moumita , Md. Selim Reza , Sabina Sultana , Abul Kashem Mohammad Yahia , Mohammad Shahjalal , Nasser S. Awwad , Hala A. Ibrahium
Strontium Nitride Trichloride (Sr3NCl3) is a promising absorber material for solar cells due to its unique structural, electrical, and optical properties. We conducted a thorough investigation to scrutinize the structural, optical, and electronic characteristics and the photovoltaic efficiency of double-heterojunction solar cells utilizing Sr3NCl3 absorbers. Various metals were evaluated for the front and rear contacts to determine the optimal metal-semiconductor interface, with the study determining that silver (Ag) is the most suitable option for the front contact and nickel (Ni) for the back contact. The PV performance of innovative Sr3NCl3 absorber-based cell structures was evaluated with two different Hole Transport Layers (HTLs), MASnBe3 and CBTS, alongside ZnO and WS2 serving as the transition metal dichalcogenide (TMD) Electron Transport Layers (ETLs). This investigation examined a range of factors, such as layer thickness, operational temperature, doping density, defect densities at both the interfaces and within the bulk, carrier generation and recombination rates, quantum efficiency (QE), series versus shunt resistance, absorption coefficient, and current density-voltage (J-V) characteristics, utilizing the SCAPS-1D simulator software. Fine-tuning of both two HTL and ETL revealed that the highest power conversion efficiency (PCE) of 27.34 % with JSC of 19.78 mA/cm2, fill factor (FF) of 88.84 %, and VOC of 1.56 V was achieved with MASnBe3 HTL and ZnO ETL, while the lowest PCE of 25.55 %, with JSC of 19.77 mA/cm2, FF of 89.07 %, and VOC of 1.45 V was obtained for CBTS HTL and WS2 ETL, respectively. These findings highlight the promising potential of Sr3NCl3 absorbers with ZnO as ETL and MASnBe3 as HTL for developing advanced perovskites heterostructure solar cells for enhanced performance in the future.
{"title":"Optimization of Sr3NCl3-based perovskite solar cell performance through the comparison of different electron and hole transport layers","authors":"Nondon Lal Dey , Md. Shamim Reza , Avijit Ghosh , Hmoud Al-Dmour , Mahbuba Moumita , Md. Selim Reza , Sabina Sultana , Abul Kashem Mohammad Yahia , Mohammad Shahjalal , Nasser S. Awwad , Hala A. Ibrahium","doi":"10.1016/j.jpcs.2024.112386","DOIUrl":"10.1016/j.jpcs.2024.112386","url":null,"abstract":"<div><div>Strontium Nitride Trichloride (Sr<sub>3</sub>NCl<sub>3</sub>) is a promising absorber material for solar cells due to its unique structural, electrical, and optical properties. We conducted a thorough investigation to scrutinize the structural, optical, and electronic characteristics and the photovoltaic efficiency of double-heterojunction solar cells utilizing Sr<sub>3</sub>NCl<sub>3</sub> absorbers. Various metals were evaluated for the front and rear contacts to determine the optimal metal-semiconductor interface, with the study determining that silver (Ag) is the most suitable option for the front contact and nickel (Ni) for the back contact. The PV performance of innovative Sr<sub>3</sub>NCl<sub>3</sub> absorber-based cell structures was evaluated with two different Hole Transport Layers (HTLs), MASnBe<sub>3</sub> and CBTS, alongside ZnO and WS<sub>2</sub> serving as the transition metal dichalcogenide (TMD) Electron Transport Layers (ETLs). This investigation examined a range of factors, such as layer thickness, operational temperature, doping density, defect densities at both the interfaces and within the bulk, carrier generation and recombination rates, quantum efficiency (QE), series versus shunt resistance, absorption coefficient, and current density-voltage (J-V) characteristics, utilizing the SCAPS-1D simulator software. Fine-tuning of both two HTL and ETL revealed that the highest power conversion efficiency (PCE) of 27.34 % with <em>J</em><sub><em>SC</em></sub> of 19.78 mA/cm<sup>2</sup>, fill factor (FF) of 88.84 %, and <em>V</em><sub><em>OC</em></sub> of 1.56 V was achieved with MASnBe<sub>3</sub> HTL and ZnO ETL, while the lowest PCE of 25.55 %, with <em>J</em><sub><em>SC</em></sub> of 19.77 mA/cm<sup>2</sup>, FF of 89.07 %, and <em>V</em><sub><em>OC</em></sub> of 1.45 V was obtained for CBTS HTL and WS<sub>2</sub> ETL, respectively. These findings highlight the promising potential of Sr<sub>3</sub>NCl<sub>3</sub> absorbers with ZnO as ETL and MASnBe<sub>3</sub> as HTL for developing advanced perovskites heterostructure solar cells for enhanced performance in the future.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"196 ","pages":"Article 112386"},"PeriodicalIF":4.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1016/j.jpcs.2024.112382
Fida Rehman , Amina , Noureddine Elboughdiri , Iskandar Shernazarov , A.M. Quraishi , Q. Mohsen , Vineet Tirth , Ali Algahtani , Hassan Alqahtani , Rawaa M. Mohammed , Amnah Mohammed Alsuhaibani , Moamen S. Refat , N.M.A. Hadia , Abid Zaman
Recently advances in perovskites materials have highlighted their exceptional photoelectric properties, sparked substantial scientific interest and felled effort to identify new perovskite variants with improved stability and environment friendliness. These materials are emerging as promising candidates for efficient solar light harvesting. In our study, we utilize first principle calculations grounded in Density Functional Theory (DFT) to explore the structural, electronic, mechanical, optical and thermoelectric characteristics of Rb2YCuX6 (X = Br, I) for advance solar cell and thermoelectric applications and support the advancement of environmentally sustainable perovskites materials. Materials with stable cubic perovskite structures are found to exhibit structural stability as determined by the tolerance factor. The thermodynamic stability is verified by computing the formation energy. Phonon dispersion curve is calculated to confirm the dynamic stability. The examination of electronic properties shows that for Rb2YCuBr6 and Rb2YCuI6 have semiconducting nature. Band gaps for Rb2YCuBr6 and Rb2YCuI6 have been determined to be 2.28 eV and 2.21 eV, respectively. Elastic constants measurement confirms the mechanical stability and reveals that they are anisotropic and ductile. In the visible and near-visible wavelength range, both materials exhibit strong optical absorption. Furthermore, we calculated the thermoelectric properties of both materials. The maximum Seebeck coefficient of 1.55 × 10−3 V/K is found for both materials at room temperature. Based on the research, these materials may make the finest choices for thermoelectric and optoelectronic applications.
{"title":"Exploring the structural, electronic, optical, mechanical and thermoelectric properties of copper based double perovskites Rb2YCuX6 (X=Br, I)","authors":"Fida Rehman , Amina , Noureddine Elboughdiri , Iskandar Shernazarov , A.M. Quraishi , Q. Mohsen , Vineet Tirth , Ali Algahtani , Hassan Alqahtani , Rawaa M. Mohammed , Amnah Mohammed Alsuhaibani , Moamen S. Refat , N.M.A. Hadia , Abid Zaman","doi":"10.1016/j.jpcs.2024.112382","DOIUrl":"10.1016/j.jpcs.2024.112382","url":null,"abstract":"<div><div>Recently advances in perovskites materials have highlighted their exceptional photoelectric properties, sparked substantial scientific interest and felled effort to identify new perovskite variants with improved stability and environment friendliness. These materials are emerging as promising candidates for efficient solar light harvesting. In our study, we utilize first principle calculations grounded in Density Functional Theory (DFT) to explore the structural, electronic, mechanical, optical and thermoelectric characteristics of Rb<sub>2</sub>YCuX<sub>6</sub> (X = Br, I) for advance solar cell and thermoelectric applications and support the advancement of environmentally sustainable perovskites materials. Materials with stable cubic perovskite structures are found to exhibit structural stability as determined by the tolerance factor. The thermodynamic stability is verified by computing the formation energy. Phonon dispersion curve is calculated to confirm the dynamic stability. The examination of electronic properties shows that for Rb<sub>2</sub>YCuBr<sub>6</sub> and Rb<sub>2</sub>YCuI<sub>6</sub> have semiconducting nature. Band gaps for Rb<sub>2</sub>YCuBr<sub>6</sub> and Rb<sub>2</sub>YCuI<sub>6</sub> have been determined to be 2.28 eV and 2.21 eV, respectively. Elastic constants measurement confirms the mechanical stability and reveals that they are anisotropic and ductile. In the visible and near-visible wavelength range, both materials exhibit strong optical absorption. Furthermore, we calculated the thermoelectric properties of both materials. The maximum Seebeck coefficient of 1.55 × 10<sup>−3</sup> V/K is found for both materials at room temperature. Based on the research, these materials may make the finest choices for thermoelectric and optoelectronic applications.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"196 ","pages":"Article 112382"},"PeriodicalIF":4.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1016/j.jpcs.2024.112384
Rachita Panigrahi, Bhabani S. Mallik
Calcium-ion(Ca-ion) batteries are gaining ever-increasing attention for next-generation energy storage systems due to affordability, highly abundant, high energy density, high theoretical capacity, and low redox potential close to Li-ion. In this work, we deployed the first-principles and classical molecular dynamics simulations to investigate the electronic and diffusive properties of isostructural ternary perovskite CaMO3 (M = Fe and Mn). The transport properties at various temperatures from ion dynamics and electronic properties of CaMO3 perovskites are examined using classical molecular dynamics and quantum mechanical simulations, respectively. We present the microscopic origin of the diffusion of multivalent ions like Ca2+ within the crystal structure of perovskite material and the effects of two transition metals, manganese and iron. Dynamic studies of Ca-ions were performed using molecular dynamic simulation, which depicts the diffusivity and conductivity of Ca-ion in CaMO3 material. We find that the diffusivity in both the crystals increases with temperature; as a result, conductivity increases. Among both the crystals, CaFeO3 requires less activation energy for diffusion and ionic conduction than CaMnO3. Using density functional theory, we calculated specific capacity, electronic density of states, phase stability and equilibrium cell voltage, and charge transfer process during intercalation-deintercalation from first-principles calculations. The electronic behavior of these materials show that CaFeO3 has better electronic and transport properties than CaMnO3.
钙离子(Ca-ion)电池具有价格低廉、资源丰富、能量密度高、理论容量大以及氧化还原电势接近锂离子等优点,因此在下一代储能系统中日益受到关注。在这项工作中,我们利用第一性原理和经典分子动力学模拟研究了等结构三元包晶 CaMO3(M = 铁和锰)的电子和扩散特性。我们利用经典分子动力学和量子力学模拟,分别从离子动力学和 CaMO3 包晶的电子特性出发,研究了其在不同温度下的输运特性。我们介绍了 Ca2+ 等多价离子在包晶材料晶体结构中扩散的微观起源,以及锰和铁这两种过渡金属的影响。利用分子动力学模拟对 Ca 离子进行了动态研究,描绘了 Ca 离子在 CaMO3 材料中的扩散率和导电率。我们发现,两种晶体中的扩散率都会随着温度的升高而增加,因此电导率也会随之增加。在这两种晶体中,CaFeO3 的扩散和离子传导所需的活化能低于 CaMnO3。我们利用密度泛函理论计算了比容量、电子态密度、相稳定性和平衡电池电压,并通过第一原理计算了插层-插层过程中的电荷转移过程。这些材料的电子行为表明,CaFeO3 比 CaMnO3 具有更好的电子和传输特性。
{"title":"Ionic conduction and cathodic properties of CaMO3 (M=Fe and Mn) electrode materials via molecular dynamics and first-principles simulations","authors":"Rachita Panigrahi, Bhabani S. Mallik","doi":"10.1016/j.jpcs.2024.112384","DOIUrl":"10.1016/j.jpcs.2024.112384","url":null,"abstract":"<div><div>Calcium-ion(Ca-ion) batteries are gaining ever-increasing attention for next-generation energy storage systems due to affordability, highly abundant, high energy density, high theoretical capacity, and low redox potential close to Li-ion. In this work, we deployed the first-principles and classical molecular dynamics simulations to investigate the electronic and diffusive properties of isostructural ternary perovskite CaMO<sub>3</sub> (M = Fe and Mn). The transport properties at various temperatures from ion dynamics and electronic properties of CaMO<sub>3</sub> perovskites are examined using classical molecular dynamics and quantum mechanical simulations, respectively. We present the microscopic origin of the diffusion of multivalent ions like Ca<sup>2+</sup> within the crystal structure of perovskite material and the effects of two transition metals, manganese and iron. Dynamic studies of Ca-ions were performed using molecular dynamic simulation, which depicts the diffusivity and conductivity of Ca-ion in CaMO<sub>3</sub> material. We find that the diffusivity in both the crystals increases with temperature; as a result, conductivity increases. Among both the crystals, CaFeO<sub>3</sub> requires less activation energy for diffusion and ionic conduction than CaMnO<sub>3</sub>. Using density functional theory, we calculated specific capacity, electronic density of states, phase stability and equilibrium cell voltage, and charge transfer process during intercalation-deintercalation from first-principles calculations. The electronic behavior of these materials show that CaFeO<sub>3</sub> has better electronic and transport properties than CaMnO<sub>3</sub>.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"196 ","pages":"Article 112384"},"PeriodicalIF":4.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1016/j.jpcs.2024.112376
T. Guerra , Isaac M. Félix , D.S. Gomes , J.M. Pontes , S. Azevedo
The opening of an energy gap and generating magnetism in graphene are certainly the most significant and urgent topics in your current research. The majority of proposed applications for it require the ability to modify its electronic structure and induce magnetism in it. Here, using first-principles calculations utilizing the PBE and HSE06 functionals, we examine the structural, energetic, electronic, magnetic, and phonon transport characteristics of armchair graphene and boron nitride nanoribbons (aGNRs and aBNNRs), and zigzag graphene and boron nitride nanoribbons (zGNRs and zBNNRs) with varying widths. We shall emphasize the impact of incorporating aBNNRs and zBNNRs of varying widths into graphene monolayers (GMLs). The findings suggest that zBNNRs are easier to insert into GMLs than aBNNRs. A study of the average formation energies of graphene and boron nitride nanoribbons reveals that BNNRs have a formation energy that is at least twenty times greater than GNRs. We have observed energy gaps that can be classified into three distinct families in aGNRs, aBNNRs, and aBNNRs inserted into GML. In the zGNRs and zBNNRs inserted in GML, depending on the width, different magnetic orderings (antiferromagnetic, ferrimagnetic, and ferromagnetic), and electronic behaviors are observed (metallic, semimetallic, semiconductor, and topological insulator).
{"title":"The incorporation of armchair and zigzag boron nitride nanoribbons in graphene monolayers: An examination of the structural, electronic, and magnetic properties","authors":"T. Guerra , Isaac M. Félix , D.S. Gomes , J.M. Pontes , S. Azevedo","doi":"10.1016/j.jpcs.2024.112376","DOIUrl":"10.1016/j.jpcs.2024.112376","url":null,"abstract":"<div><div>The opening of an energy gap and generating magnetism in graphene are certainly the most significant and urgent topics in your current research. The majority of proposed applications for it require the ability to modify its electronic structure and induce magnetism in it. Here, using first-principles calculations utilizing the PBE and HSE06 functionals, we examine the structural, energetic, electronic, magnetic, and phonon transport characteristics of armchair graphene and boron nitride nanoribbons (aGNRs and aBNNRs), and zigzag graphene and boron nitride nanoribbons (zGNRs and zBNNRs) with varying widths. We shall emphasize the impact of incorporating aBNNRs and zBNNRs of varying widths into graphene monolayers (GMLs). The findings suggest that zBNNRs are easier to insert into GMLs than aBNNRs. A study of the average formation energies of graphene and boron nitride nanoribbons reveals that BNNRs have a formation energy that is at least twenty times greater than GNRs. We have observed energy gaps that can be classified into three distinct families in aGNRs, aBNNRs, and aBNNRs inserted into GML. In the zGNRs and zBNNRs inserted in GML, depending on the width, different magnetic orderings (antiferromagnetic, ferrimagnetic, and ferromagnetic), and electronic behaviors are observed (metallic, semimetallic, semiconductor, and topological insulator).</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"196 ","pages":"Article 112376"},"PeriodicalIF":4.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1016/j.jpcs.2024.112380
Mohamed J. Saadh , Ahmed Mahal , Maha Mohammed Tawfiq , Abbas Hameed Abdul Hussein , Aseel Salah Mansoor , Usama Kadem Radi , Ahmad J. Obaidullah , Parminder Singh , Ahmed Elawady
Recently, scientists have created a novel type of boron nitride material known as BNyen. This material is similar in structure to Graphyne and has a higher N:B ratio than traditional boron nitride due to the addition of boron and nitrogen connecting segments within its units. This material has been studied for its potential as a photocatalyst for reduction of CO2 using DFT approaches. Optical and electronic attributes of BNyen suggest that it has a wider visible-light range and a band gap of 5.69 eV. By adding boron to BNyen, patial distributions of LUMO and HOMO indicate that π network has been extended, resulting in significantly greater photocatalytic efficiency. Upon the adsorption of CO2 on BNyen monolayer, the band gap significantly decreases, indicating a strong interaction between the BNyen and CO2. DFT computations were employed to explore the mechanism of CO2 reduction to a single carbon product catalyzed by BNyen. Based on the ΔG values, the optimized pathway for this reduction is from CO2 to CH4. Additionally, the potential formation of di-carbon products was considered, and based on the free energy values, CH3CH2OH is identified as the final di-carbon product. The Gibbs free energies for potential CO2 reaction pathways on BNyen were calculated, revealing that CO2 can be reduced to CH4 with a low limiting potential of −0.37 V and to CH3CH2OH with a low limiting potential of −0.57 V, both processes being powered by solar energy. In CO2RR, the competing hydrogen evolution reaction (HER) must be considered. The free energy of HER (ΔG = 0.96 eV) is significantly higher than the ΔG of the rate-determining steps for the mono-carbon product (0.37 eV) and the di-carbon product (0.57 eV) on BNyen. Therefore, BNyen effectively suppresses HER during the CO2RR process. This research can serve as a valuable guide for developing novel types of BNyen as appropriate photocatalysts for CO2 reduction reactions (CO2RR).
{"title":"Reduction of carbon dioxide to methane and ethanol on the surface of graphyne-like boron nitride (BNyen) monolayer: A DFT study","authors":"Mohamed J. Saadh , Ahmed Mahal , Maha Mohammed Tawfiq , Abbas Hameed Abdul Hussein , Aseel Salah Mansoor , Usama Kadem Radi , Ahmad J. Obaidullah , Parminder Singh , Ahmed Elawady","doi":"10.1016/j.jpcs.2024.112380","DOIUrl":"10.1016/j.jpcs.2024.112380","url":null,"abstract":"<div><div>Recently, scientists have created a novel type of boron nitride material known as BNyen. This material is similar in structure to Graphyne and has a higher N:B ratio than traditional boron nitride due to the addition of boron and nitrogen connecting segments within its units. This material has been studied for its potential as a photocatalyst for reduction of CO<sub>2</sub> using DFT approaches. Optical and electronic attributes of BNyen suggest that it has a wider visible-light range and a band gap of 5.69 eV. By adding boron to BNyen, patial distributions of LUMO and HOMO indicate that π network has been extended, resulting in significantly greater photocatalytic efficiency. Upon the adsorption of CO<sub>2</sub> on BNyen monolayer, the band gap significantly decreases, indicating a strong interaction between the BNyen and CO<sub>2</sub>. DFT computations were employed to explore the mechanism of CO<sub>2</sub> reduction to a single carbon product catalyzed by BNyen. Based on the ΔG values, the optimized pathway for this reduction is from CO<sub>2</sub> to CH<sub>4</sub>. Additionally, the potential formation of di-carbon products was considered, and based on the free energy values, CH<sub>3</sub>CH<sub>2</sub>OH is identified as the final di-carbon product. The Gibbs free energies for potential CO<sub>2</sub> reaction pathways on BNyen were calculated, revealing that CO<sub>2</sub> can be reduced to CH<sub>4</sub> with a low limiting potential of −0.37 V and to CH<sub>3</sub>CH<sub>2</sub>OH with a low limiting potential of −0.57 V, both processes being powered by solar energy. In CO<sub>2</sub>RR, the competing hydrogen evolution reaction (HER) must be considered. The free energy of HER (ΔG = 0.96 eV) is significantly higher than the ΔG of the rate-determining steps for the mono-carbon product (0.37 eV) and the di-carbon product (0.57 eV) on BNyen. Therefore, BNyen effectively suppresses HER during the CO<sub>2</sub>RR process. This research can serve as a valuable guide for developing novel types of BNyen as appropriate photocatalysts for CO<sub>2</sub> reduction reactions (CO<sub>2</sub>RR).</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"196 ","pages":"Article 112380"},"PeriodicalIF":4.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1016/j.jpcs.2024.112381
Mst A. Khatun , M.H. Mia , M.A. Hossain , F. Parvin , A.K.M.A. Islam
The main objective of this research is to provide a comprehensive insight into the optical and thermoelectric properties of layer structured Ba2XS4(X = Zr, Hf) for energy harvesting applications using Density Functional Theory (DFT) and semiclassical Boltzmann transport theory. There is a good match between the computed lattice parameters and the available experimental data. Both compounds are thermodynamically and mechanically stable and they are soft, ductile, machinable, and elastically anisotropic. The indirect band gaps are found to be 1.03 eV for Ba2ZrS4 and 1.48 eV for Ba2HfS4. Both compounds possess a mixture of ionic and covalent bonding confirmed by charge density distribution and Mulliken bond population analysis. The maximum absorption is in the ultraviolet regions ( of light spectra. The total thermal conductivity increases with temperature due to increasing trend of electronic thermal conductivity. The total thermal conductivity at 700 K along c-axis is 4.6 (6.1 W/mK) for Ba2ZrS4 (Ba2HfS4). For p-type Ba2ZrS4 (Ba2HfS4), power factor (PF) is about 7 (5.7) mW/mK2, whereas for n-type it is about 4 (3.9) mW/mK2 at 700 K along c-axis. The power factors of the studied compounds are much higher than those of the reported GeTe and SnSe which would create great interest for further study. The predicted ZT values at 700 K for p-type Ba2ZrS4 and Ba2HfS4 are 0.7 and 0.6, respectively. These values may further be improved through reduction of thermal conductivity and tuning ductility employing known suitable strategies such as alloying and nano-structuring. Finally, Ba2ZrS4 and Ba2HfS4 can be considered new eco-friendly alternatives to previously studied toxic lead-based thermoelectric materials. Their unique advantages of high thermodynamic stability, non-toxic nature and high performance make them strong candidate for sustainable energy solutions.
本研究的主要目的是利用密度泛函理论(DFT)和半经典波尔兹曼输运理论,对用于能量收集应用的层状结构 Ba2XS4(X = Zr、Hf)的光学和热电特性进行全面深入的研究。计算得出的晶格参数与现有实验数据非常吻合。这两种化合物都具有热力学和机械稳定性,而且柔软、韧性好、可加工,并具有弹性各向异性。研究发现,Ba2ZrS4 和 Ba2HfS4 的间接带隙分别为 1.03 eV 和 1.48 eV。电荷密度分布和 Mulliken 键群分析证实,这两种化合物都具有离子键和共价键。最大吸收位于光光谱的紫外区(∼13.6eV)。由于电子热导率呈上升趋势,总热导率随温度升高而增加。对于 Ba2ZrS4 (Ba2HfS4),700 K 时沿 c 轴的总热导率为 4.6 (6.1 W/mK)。对于 p 型 Ba2ZrS4 (Ba2HfS4),功率因数 (PF) 约为 7 (5.7) mW/mK2,而对于 n 型 Ba2ZrS4 (Ba2HfS4),在 700 K 时沿 c 轴的功率因数约为 4 (3.9) mW/mK2。所研究化合物的功率因数远高于已报道的 GeTe 和 SnSe,这引起了进一步研究的极大兴趣。p 型 Ba2ZrS4 和 Ba2HfS4 在 700 K 时的预测 ZT 值分别为 0.7 和 0.6。通过采用已知的合适策略(如合金化和纳米结构)降低热导率和调整延展性,这些值可能会进一步提高。最后,Ba2ZrS4 和 Ba2HfS4 可以被认为是新的生态友好型材料,可替代以前研究过的有毒铅基热电材料。它们具有热力学稳定性高、无毒和高性能等独特优势,是可持续能源解决方案的有力候选材料。
{"title":"The optical and thermoelectric properties of layer structured Ba2XS4 (X = Zr, Hf) for energy harvesting applications","authors":"Mst A. Khatun , M.H. Mia , M.A. Hossain , F. Parvin , A.K.M.A. Islam","doi":"10.1016/j.jpcs.2024.112381","DOIUrl":"10.1016/j.jpcs.2024.112381","url":null,"abstract":"<div><div>The main objective of this research is to provide a comprehensive insight into the optical and thermoelectric properties of layer structured Ba<sub>2</sub><em>X</em>S<sub>4</sub>(<em>X</em> = <em>Zr, Hf</em>) for energy harvesting applications using Density Functional Theory (DFT) and semiclassical Boltzmann transport theory. There is a good match between the computed lattice parameters and the available experimental data. Both compounds are thermodynamically and mechanically stable and they are soft, ductile, machinable, and elastically anisotropic. The indirect band gaps are found to be 1.03 eV for Ba<sub>2</sub><em>Zr</em>S<sub>4</sub> and 1.48 eV for Ba<sub>2</sub><em>Hf</em>S<sub>4</sub>. Both compounds possess a mixture of ionic and covalent bonding confirmed by charge density distribution and Mulliken bond population analysis. The maximum absorption is in the ultraviolet regions (<span><math><mrow><mrow><mo>∼</mo><mn>13.6</mn><mspace></mspace><mtext>eV</mtext></mrow><mo>)</mo></mrow></math></span> of light spectra. The total thermal conductivity increases with temperature due to increasing trend of electronic thermal conductivity. The total thermal conductivity at 700 K along <em>c</em>-axis is 4.6 (6.1 W/mK) for Ba<sub>2</sub><em>Zr</em>S<sub>4</sub> (Ba<sub>2</sub><em>Hf</em>S<sub>4</sub>). For <em>p</em>-type Ba<sub>2</sub><em>Zr</em>S<sub>4</sub> (Ba<sub>2</sub><em>Hf</em>S<sub>4</sub>), power factor (PF) is about 7 (5.7) mW/mK<sup>2</sup>, whereas for <em>n</em>-type it is about 4 (3.9) mW/mK<sup>2</sup> at 700 K along <em>c</em>-axis. The power factors of the studied compounds are much higher than those of the reported GeTe and SnSe which would create great interest for further study. The predicted <em>ZT</em> values at 700 K for <em>p</em>-type Ba<sub>2</sub>ZrS<sub>4</sub> and Ba<sub>2</sub>HfS<sub>4</sub> are 0.7 and 0.6, respectively. These values may further be improved through reduction of thermal conductivity and tuning ductility employing known suitable strategies such as alloying and nano-structuring. Finally, Ba<sub>2</sub>ZrS<sub>4</sub> and Ba<sub>2</sub>HfS<sub>4</sub> can be considered new eco-friendly alternatives to previously studied toxic lead-based thermoelectric materials. Their unique advantages of high thermodynamic stability, non-toxic nature and high performance make them strong candidate for sustainable energy solutions.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"196 ","pages":"Article 112381"},"PeriodicalIF":4.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the quest for sustainable energy, perovskite solar cells have emerged as promising candidates due to their high power conversion efficiencies and excellent optoelectronic properties. This study focuses on SrZrS3, a lead-free chalcogenide perovskite, and its integration with various inorganic transport layers for enhanced photovoltaic performance. Using SCAPS-1D simulation software, the effects of different electron transport layers (ETLs) and hole transport layers (HTLs) on device efficiency were systematically explored. The device with a-Si:H as the HTL and ZnS as the ETL (aSi-3) shows the highest efficiency of 20.01 % resulting from better energy band alignment and reduced recombination losses. This study highlights the importance of optimizing transport layers for enhancing SrZrS3-based solar cells, offering insights for developing high-performance, lead-free perovskite solar cells.
{"title":"Enhancing SrZrS3 perovskite solar cells: A comprehensive SCAPS-1D analysis of inorganic transport layers","authors":"Satyajeet Kumar , Likhita Allam , Soumya Bharadwaj, Biswajit Barman","doi":"10.1016/j.jpcs.2024.112378","DOIUrl":"10.1016/j.jpcs.2024.112378","url":null,"abstract":"<div><div>In the quest for sustainable energy, perovskite solar cells have emerged as promising candidates due to their high power conversion efficiencies and excellent optoelectronic properties. This study focuses on SrZrS<sub>3</sub>, a lead-free chalcogenide perovskite, and its integration with various inorganic transport layers for enhanced photovoltaic performance. Using SCAPS-1D simulation software, the effects of different electron transport layers (ETLs) and hole transport layers (HTLs) on device efficiency were systematically explored. The device with a-Si:H as the HTL and ZnS as the ETL (<em>aSi-3</em>) shows the highest efficiency of 20.01 % resulting from better energy band alignment and reduced recombination losses. This study highlights the importance of optimizing transport layers for enhancing SrZrS<sub>3</sub>-based solar cells, offering insights for developing high-performance, lead-free perovskite solar cells.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"196 ","pages":"Article 112378"},"PeriodicalIF":4.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Catalytic oxidation is an efficient VOCs removal technology with great potential and development advantages. The key to the oxidative elimination of VOCs lies in the development and application of the catalyst with high efficiency. In this work, the nano-MnOx catalysts were prepared by redox method and the catalytic oxidation performance of toluene was studied. The calcination temperature could effectively change the surface chemical composition and the nano-MnOx catalyst structures, which could effectively regulate the number of active centers on the catalyst surface to improve the adsorption, activation, and oxidation ability of the nano-MnOx catalysts for toluene molecules. The nano-MnOx catalyst dominated by the MnO2 phase, which was prepared at the calcination temperature of 400 °C, had a high specific surface area, developed porosity, abundant reactive oxygen species, and oxygen vacancies. The structural characteristics are conducive to the adsorption, activation, and oxidation of toluene molecules, and thus exhibited excellent toluene catalytic oxidation activity. At the reaction temperature of 140 °C, the toluene oxidation conversion was as high as 99.4 %, and the toluene conversion remained above 96.6 % after experiencing a 690 min stability test.
{"title":"Nano-MnOx prepared by redox method for toluene oxidation removal from air","authors":"Chunmei Fan , Shuang Chen , Jia Zeng , Hongmei Xie , Ling Chen , Ping Ouyang , Guilin Zhou","doi":"10.1016/j.jpcs.2024.112379","DOIUrl":"10.1016/j.jpcs.2024.112379","url":null,"abstract":"<div><div>Catalytic oxidation is an efficient VOCs removal technology with great potential and development advantages. The key to the oxidative elimination of VOCs lies in the development and application of the catalyst with high efficiency. In this work, the nano-MnO<sub>x</sub> catalysts were prepared by redox method and the catalytic oxidation performance of toluene was studied. The calcination temperature could effectively change the surface chemical composition and the nano-MnO<sub>x</sub> catalyst structures, which could effectively regulate the number of active centers on the catalyst surface to improve the adsorption, activation, and oxidation ability of the nano-MnO<sub>x</sub> catalysts for toluene molecules. The nano-MnO<sub>x</sub> catalyst dominated by the MnO<sub>2</sub> phase, which was prepared at the calcination temperature of 400 °C, had a high specific surface area, developed porosity, abundant reactive oxygen species, and oxygen vacancies. The structural characteristics are conducive to the adsorption, activation, and oxidation of toluene molecules, and thus exhibited excellent toluene catalytic oxidation activity. At the reaction temperature of 140 °C, the toluene oxidation conversion was as high as 99.4 %, and the toluene conversion remained above 96.6 % after experiencing a 690 min stability test.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"196 ","pages":"Article 112379"},"PeriodicalIF":4.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}