Pub Date : 2024-11-01Epub Date: 2024-08-15DOI: 10.1007/s10265-024-01566-9
Hala M E Abdelfattah, Hussein A Hussein, Samir S Teleb, Marwa M El-Demerdash, Nelly M George
Hibiscus is a charismatic genus of the Malvaceae family that is noted for its diversity, lacking identifiable characteristics for distinguishing its various species. Therefore, there is an urgent need to develop authentication methods for genus delimitation and species delineation. The present study aims to discern the taxonomic relationships between the well-known, globally familiar, and economically important five Hibiscus species, namely: H. × rosa-sinensis, H. sabdariffa, H. schizopetalus, H. syriacus and H. tiliaceus based on traditional morphological and anatomical characteristics compared to the contemporary chemotaxonomy. In this context, the leaf-based methanolic extracts of the studied species were analyzed by Gas Chromatography-Mass Spectrometer (GC-MS) to estimate their secondary metabolites similarity. In addition, selected qualitative morphological and anatomical traits including leaf venation patterns, epidermal micromorphology, stomata types and trichomes diversity, petiole serial sectioning (outline, adaxial groove features, vasculature traces arrangement), and midrib characteristics of the studied species were investigated. The results of both chemotaxonomy and traditional taxonomy exhibited a remarkable agreement in the delineation of the five studied species. Specifically, the chemotaxonomy-based dendrogram separates the studied species into two main clusters with the H. sabdariffa as an outlier species in a single cluster and the remaining four species as another cluster with variant distances in its similarity indices. Similarly, the traditional morphological and anatomical characteristics revealed distinct traits for H. sabdariffa compared to the remaining four species. The findings of this study highlight the significance of integrating the structural features with phytochemicals profiling as a potential approach that could be harnessed for the delineation of the taxonomically challenging Hibiscus genus.
木槿是锦葵科植物中极具魅力的一个属,以其多样性而著称,但缺乏可用于区分不同物种的可识别特征。因此,迫切需要开发用于属划分和种划分的鉴定方法。本研究旨在辨别著名的、全球熟悉的、具有重要经济价值的五个木槿品种之间的分类学关系,这五个品种是:H:H. × rosa-sinensis、H. sabdariffa、H. schizopetalus、H. syriacus 和 H. tiliaceus。在此背景下,对所研究物种的叶基甲醇提取物进行了气相色谱-质谱联用仪(GC-MS)分析,以估计其次级代谢物的相似性。此外,还研究了所研究物种的部分定性形态和解剖特征,包括叶脉模式、表皮微形态、气孔类型和毛状体多样性、叶柄连续切片(轮廓、正面沟槽特征、脉管痕迹排列)以及中脉特征。化学分类法和传统分类法的结果在划分所研究的五个物种时表现出了显著的一致性。具体来说,基于化学分类法的树枝图将所研究的物种分为两大类,其中 H. sabdariffa 是一个类群中的离群种,其余 4 个物种是另一个类群,其相似性指数的距离各不相同。同样,传统的形态学和解剖学特征也显示,与其余四个物种相比,沙巴藻的性状截然不同。本研究的结果突显了将结构特征与植物化学物质分析相结合的重要性,这是一种潜在的方法,可用于划分在分类学上具有挑战性的木槿属。
{"title":"Chemotaxonomy compared to morphological and anatomical taxonomy of five Hibiscus species.","authors":"Hala M E Abdelfattah, Hussein A Hussein, Samir S Teleb, Marwa M El-Demerdash, Nelly M George","doi":"10.1007/s10265-024-01566-9","DOIUrl":"10.1007/s10265-024-01566-9","url":null,"abstract":"<p><p>Hibiscus is a charismatic genus of the Malvaceae family that is noted for its diversity, lacking identifiable characteristics for distinguishing its various species. Therefore, there is an urgent need to develop authentication methods for genus delimitation and species delineation. The present study aims to discern the taxonomic relationships between the well-known, globally familiar, and economically important five Hibiscus species, namely: H. × rosa-sinensis, H. sabdariffa, H. schizopetalus, H. syriacus and H. tiliaceus based on traditional morphological and anatomical characteristics compared to the contemporary chemotaxonomy. In this context, the leaf-based methanolic extracts of the studied species were analyzed by Gas Chromatography-Mass Spectrometer (GC-MS) to estimate their secondary metabolites similarity. In addition, selected qualitative morphological and anatomical traits including leaf venation patterns, epidermal micromorphology, stomata types and trichomes diversity, petiole serial sectioning (outline, adaxial groove features, vasculature traces arrangement), and midrib characteristics of the studied species were investigated. The results of both chemotaxonomy and traditional taxonomy exhibited a remarkable agreement in the delineation of the five studied species. Specifically, the chemotaxonomy-based dendrogram separates the studied species into two main clusters with the H. sabdariffa as an outlier species in a single cluster and the remaining four species as another cluster with variant distances in its similarity indices. Similarly, the traditional morphological and anatomical characteristics revealed distinct traits for H. sabdariffa compared to the remaining four species. The findings of this study highlight the significance of integrating the structural features with phytochemicals profiling as a potential approach that could be harnessed for the delineation of the taxonomically challenging Hibiscus genus.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"967-984"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525320/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-08-24DOI: 10.1007/s10265-024-01569-6
Elizabeth Victoriano-Romero, Dulce María Figueroa-Castro, Jonas Morales-Linares
Cloud forests figure as one of the most diverse ecosystems, accounting not only for a high number of plant species but also with a great variety of interactions among them. A common interaction in these forests is the one between vascular epiphytes and their hosts. However, few studies have used the network approach to analyze them. Here, we analyze the horizontal and vertical structure of the vascular epiphyte - host network in a cloud forest in central Mexico. We quantified the number of epiphyte stands on each host both total and per-stratum. Complete network, group, and species metrics were estimated at both levels of analysis. The host - epiphyte networks had relatively low network size but were highly connected; moderately nested, with low specialization, and modularity; but higher vulnerability than generality, and high niche overlap. The community was composed by a high number of generalist species. To our knowledge this is the first study in which network analyses are conducted with standardized data and including all host and epiphyte species in the community. The analyses suggest that the networks are robust, and that functional redundancy might be probable, two advantageous characteristics in a very fragmented and threatened cloud forest.
{"title":"Network analyses show horizontal and vertical distribution of vascular epiphytes on their hosts in a fragment of cloud forest in Central Mexico.","authors":"Elizabeth Victoriano-Romero, Dulce María Figueroa-Castro, Jonas Morales-Linares","doi":"10.1007/s10265-024-01569-6","DOIUrl":"10.1007/s10265-024-01569-6","url":null,"abstract":"<p><p>Cloud forests figure as one of the most diverse ecosystems, accounting not only for a high number of plant species but also with a great variety of interactions among them. A common interaction in these forests is the one between vascular epiphytes and their hosts. However, few studies have used the network approach to analyze them. Here, we analyze the horizontal and vertical structure of the vascular epiphyte - host network in a cloud forest in central Mexico. We quantified the number of epiphyte stands on each host both total and per-stratum. Complete network, group, and species metrics were estimated at both levels of analysis. The host - epiphyte networks had relatively low network size but were highly connected; moderately nested, with low specialization, and modularity; but higher vulnerability than generality, and high niche overlap. The community was composed by a high number of generalist species. To our knowledge this is the first study in which network analyses are conducted with standardized data and including all host and epiphyte species in the community. The analyses suggest that the networks are robust, and that functional redundancy might be probable, two advantageous characteristics in a very fragmented and threatened cloud forest.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"985-995"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lignin is a phenolic polymer that is a major source of biomass. Oxidative enzymes, such as laccase and peroxidase, are required for lignin polymerisation. Laccase is a member of the multicopper oxidase family and has a high amino acid sequence similarity with ascorbate oxidase. However, the process of functional differentiation between the two enzymes remains poorly understood. In this study, the common ancestry sequence of laccase and ascorbate oxidase (AncMCO) was predicted via phylogenetic reconstruction, and its in vivo effect on lignin biosynthesis in Arabidopsis thaliana was assessed. The estimated AncMCO sequence conserved key residues that coordinate with copper ions, implying that the electron transfer system is likely to be conserved in AncMCO. However, multiple insertions/deletions corresponding to protein surface structures have been found between laccase, ascorbate oxidase, and AncMCO. The overexpression of canonical laccase (AtLAC4) and ascorbate oxidase (AtAAO1) in A. thaliana resulted in notable increases of syringyl/guaiacyl lignin unit ratio in stems, whereas, in contrast, the overexpression of AncMCO did not show any detectable change in lignin deposition. Transcriptomic analysis revealed that the AtAAO1-overexpressing line exhibited significant changes in the expression of a wide range of cell wall biosynthesis genes. These results highlight the importance of the molecular evolution of multicopper oxidase, which drives lignin biosynthesis during plant evolution.
{"title":"Expression of laccase and ascorbate oxidase affects lignin composition in Arabidopsis thaliana stems.","authors":"Konan Ishida, Senri Yamamoto, Takashi Makino, Yuki Tobimatsu","doi":"10.1007/s10265-024-01585-6","DOIUrl":"10.1007/s10265-024-01585-6","url":null,"abstract":"<p><p>Lignin is a phenolic polymer that is a major source of biomass. Oxidative enzymes, such as laccase and peroxidase, are required for lignin polymerisation. Laccase is a member of the multicopper oxidase family and has a high amino acid sequence similarity with ascorbate oxidase. However, the process of functional differentiation between the two enzymes remains poorly understood. In this study, the common ancestry sequence of laccase and ascorbate oxidase (AncMCO) was predicted via phylogenetic reconstruction, and its in vivo effect on lignin biosynthesis in Arabidopsis thaliana was assessed. The estimated AncMCO sequence conserved key residues that coordinate with copper ions, implying that the electron transfer system is likely to be conserved in AncMCO. However, multiple insertions/deletions corresponding to protein surface structures have been found between laccase, ascorbate oxidase, and AncMCO. The overexpression of canonical laccase (AtLAC4) and ascorbate oxidase (AtAAO1) in A. thaliana resulted in notable increases of syringyl/guaiacyl lignin unit ratio in stems, whereas, in contrast, the overexpression of AncMCO did not show any detectable change in lignin deposition. Transcriptomic analysis revealed that the AtAAO1-overexpressing line exhibited significant changes in the expression of a wide range of cell wall biosynthesis genes. These results highlight the importance of the molecular evolution of multicopper oxidase, which drives lignin biosynthesis during plant evolution.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"1177-1187"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-08-27DOI: 10.1007/s10265-024-01562-z
Manit Kidyoo, Aroonrat Kidyoo, Doyle McKey
The present study assesses the phylogenetic position of certain Thai members of Gymnema, Gymnemopsis, and Sarcolobus in relation to other known Marsdenieae species. Fifteen accessions newly sequenced from Thailand were added to the dataset of the homologous sequences of 125 accessions of Marsdenieae downloaded from GenBank. In our molecular phylogeny, almost all the delimited major clades and their relationships are largely congruent with those revealed in previous studies. The monophyly of Gymnema (including the former Jasminanthes species) and that of Sarcolobus, as presently circumscribed, are confirmed. The new accessions of these two genera from Thailand are well grouped with the members of their respective genera. Our analyses provide the first molecular evidence for recognition of Gymnemopsis, a small Asian genus that has never been included in the previous phylogenetic studies, as a distinct genus. All elements of Gymnemopsis are retrieved as a well-supported monophyletic group that is strongly supported as sister to Lygisma, another small Asian genus that most closely resembles it in growth habit, color of latex, indumentum on plant parts, corona structure and follicle traits. Combined molecular phylogenetic, morphological and ecological data also support recognition of two new Sarcolobus species from Thailand, Sarcolobus busbanianus sp. nov. and S. flavus sp. nov. Similarities and differences between these new species and their close relative, S. carinatus, are discussed. In addition, this study also reveals the first record for Thailand of Gymnema lacei. Keys to the species of Gymnemopsis (for all members of the genus), Gymnema and Sarcolobus (for Thai members of these genera) are provided.
{"title":"Phylogenetic positions of Thai members of Gymnema, Gymnemopsis and Sarcolobus (Apocynaceae, Asclepiadoideae, Marsdenieae), and two new Sarcolobus species uncovered by morpho-molecular evidence.","authors":"Manit Kidyoo, Aroonrat Kidyoo, Doyle McKey","doi":"10.1007/s10265-024-01562-z","DOIUrl":"10.1007/s10265-024-01562-z","url":null,"abstract":"<p><p>The present study assesses the phylogenetic position of certain Thai members of Gymnema, Gymnemopsis, and Sarcolobus in relation to other known Marsdenieae species. Fifteen accessions newly sequenced from Thailand were added to the dataset of the homologous sequences of 125 accessions of Marsdenieae downloaded from GenBank. In our molecular phylogeny, almost all the delimited major clades and their relationships are largely congruent with those revealed in previous studies. The monophyly of Gymnema (including the former Jasminanthes species) and that of Sarcolobus, as presently circumscribed, are confirmed. The new accessions of these two genera from Thailand are well grouped with the members of their respective genera. Our analyses provide the first molecular evidence for recognition of Gymnemopsis, a small Asian genus that has never been included in the previous phylogenetic studies, as a distinct genus. All elements of Gymnemopsis are retrieved as a well-supported monophyletic group that is strongly supported as sister to Lygisma, another small Asian genus that most closely resembles it in growth habit, color of latex, indumentum on plant parts, corona structure and follicle traits. Combined molecular phylogenetic, morphological and ecological data also support recognition of two new Sarcolobus species from Thailand, Sarcolobus busbanianus sp. nov. and S. flavus sp. nov. Similarities and differences between these new species and their close relative, S. carinatus, are discussed. In addition, this study also reveals the first record for Thailand of Gymnema lacei. Keys to the species of Gymnemopsis (for all members of the genus), Gymnema and Sarcolobus (for Thai members of these genera) are provided.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"951-965"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-02DOI: 10.1007/s10265-024-01584-7
Elena Lovyagina, Oksana Luneva, Aleksey Loktyushkin, Boris Semin
In the region of slightly acidic pH (рН 5.7), the manganese cluster in oxygen-evolving complex of photosystem II (PSII) is more resistant to exogenous reductants. The effect of such pH on the heat inactivation efficiency of the electron transport chain (O2 evolution and 2,6-dichlorophenolindophenol reduction) in PSII membranes and thylakoid membranes was investigated. Under thylakoid membranes illumination accompanied by lumen acidification, their resistance to heat inactivation increases. In the presence of protonophores, the rate of heat inactivation increases, which seems to be associated not with the protonophore mechanism, but with structural and/or functional changes in membranes. In PSII membrane preparations, the efficiency of the oxygen evolution inhibition at pH 5.7 is also lower than at pH 6.5. The role of reactive oxygen species in thermal inactivation of photosynthetic membranes was investigated using a lipophilic cyclic hydroxylamine ESR spin probe.
{"title":"Light increases resistance of thylakoid membranes to thermal inactivation.","authors":"Elena Lovyagina, Oksana Luneva, Aleksey Loktyushkin, Boris Semin","doi":"10.1007/s10265-024-01584-7","DOIUrl":"10.1007/s10265-024-01584-7","url":null,"abstract":"<p><p>In the region of slightly acidic pH (рН 5.7), the manganese cluster in oxygen-evolving complex of photosystem II (PSII) is more resistant to exogenous reductants. The effect of such pH on the heat inactivation efficiency of the electron transport chain (O<sub>2</sub> evolution and 2,6-dichlorophenolindophenol reduction) in PSII membranes and thylakoid membranes was investigated. Under thylakoid membranes illumination accompanied by lumen acidification, their resistance to heat inactivation increases. In the presence of protonophores, the rate of heat inactivation increases, which seems to be associated not with the protonophore mechanism, but with structural and/or functional changes in membranes. In PSII membrane preparations, the efficiency of the oxygen evolution inhibition at pH 5.7 is also lower than at pH 6.5. The role of reactive oxygen species in thermal inactivation of photosynthetic membranes was investigated using a lipophilic cyclic hydroxylamine ESR spin probe.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"1189-1200"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The green alga Pediastrum duplex forms colonies through asexual reproduction and has a unique life cycle. To elucidate the mechanisms that regulate the asexual reproductive cycle in P. duplex, we analyzed the effects of light on the processes and gene expression involved in each step of the asexual reproductive cycle, revealing light irradiation to be essential for increasing the number of colonies. Among the processes in the asexual reproductive cycle, the transition from cell hypertrophy to zoospore formation could proceed even in the dark if glucose was added to the medium. Transcriptome analysis revealed that the expression of different groups of genes was significantly promoted or suppressed before and after the number of colonies increased. Our findings indicate that the asexual reproductive cycle of P. duplex includes a process promoted by photosynthesis. This study enhances our understanding of the growth characteristics of P. duplex and other microalgae.
{"title":"Light promotes asexual reproduction and mediates transcriptomic changes in Pediastrum duplex.","authors":"Akari Masaki, Narumi Miyamoto, Sridharan Harshavardhini, Noriko Nagata, Yuki Tsuchikane, Hiroyuki Sekimoto, Yutaka Kodama, Tomohiro Suzuki, Tomoko Shinomura","doi":"10.1007/s10265-024-01567-8","DOIUrl":"10.1007/s10265-024-01567-8","url":null,"abstract":"<p><p>The green alga Pediastrum duplex forms colonies through asexual reproduction and has a unique life cycle. To elucidate the mechanisms that regulate the asexual reproductive cycle in P. duplex, we analyzed the effects of light on the processes and gene expression involved in each step of the asexual reproductive cycle, revealing light irradiation to be essential for increasing the number of colonies. Among the processes in the asexual reproductive cycle, the transition from cell hypertrophy to zoospore formation could proceed even in the dark if glucose was added to the medium. Transcriptome analysis revealed that the expression of different groups of genes was significantly promoted or suppressed before and after the number of colonies increased. Our findings indicate that the asexual reproductive cycle of P. duplex includes a process promoted by photosynthesis. This study enhances our understanding of the growth characteristics of P. duplex and other microalgae.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"1127-1135"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-05DOI: 10.1007/s10265-024-01578-5
Shugo Maekawa, Ikuto Nishikawa, Gorou Horiguchi
Nucleotides are the building blocks of living organisms and their biosynthesis must be tightly regulated. Inosine monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme in GTP synthesis that is essential for biological activities, such as RNA synthesis. In animals, the suppression of IMPDH function causes ribosomal stress (also known as nucleolar stress), a disorder in ribosome biogenesis that results in cell proliferation defects and apoptosis. Despite its importance, plant IMPDH has not been analyzed in detail. Therefore, we analyzed the phenotypes of mutants of the two IMPDH genes in Arabidopsis thaliana and investigated their relationship with ribosomal stress. Double mutants of IMPDH1 and IMPDH2 were lethal, and only the impdh2 mutants showed growth defects and transient chlorophyll deficiency. These results suggested that IMPDH1 and IMPDH2 are redundant and essential, whereas IMPDH2 has a crucial role. In addition, the impdh2 mutants showed a reduction in nucleolus size and resistance to several translation inhibitors, which is a known response to ribosomal stress. Furthermore, the IMPDH1/impdh1 impdh2 mutants showed more severe growth defects and phenotypes such as reduced plastid rRNA levels and abnormal processing patterns than the impdh2 mutants. Finally, multiple mutations of impdh with as2, which has abnormal leaf polarity, caused the development of needle-like leaves because of the enhancement of the as2 phenotype, which is a typical effect observed in mutants of genes involved in ribosome biogenesis. These results indicated that IMPDH is closely related to ribosome biogenesis, and that mutations in the genes lead to not only known responses to ribosomal stress, but also plant-specific responses.
{"title":"Impaired inosine monophosphate dehydrogenase leads to plant-specific ribosomal stress responses in Arabidopsis thaliana.","authors":"Shugo Maekawa, Ikuto Nishikawa, Gorou Horiguchi","doi":"10.1007/s10265-024-01578-5","DOIUrl":"10.1007/s10265-024-01578-5","url":null,"abstract":"<p><p>Nucleotides are the building blocks of living organisms and their biosynthesis must be tightly regulated. Inosine monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme in GTP synthesis that is essential for biological activities, such as RNA synthesis. In animals, the suppression of IMPDH function causes ribosomal stress (also known as nucleolar stress), a disorder in ribosome biogenesis that results in cell proliferation defects and apoptosis. Despite its importance, plant IMPDH has not been analyzed in detail. Therefore, we analyzed the phenotypes of mutants of the two IMPDH genes in Arabidopsis thaliana and investigated their relationship with ribosomal stress. Double mutants of IMPDH1 and IMPDH2 were lethal, and only the impdh2 mutants showed growth defects and transient chlorophyll deficiency. These results suggested that IMPDH1 and IMPDH2 are redundant and essential, whereas IMPDH2 has a crucial role. In addition, the impdh2 mutants showed a reduction in nucleolus size and resistance to several translation inhibitors, which is a known response to ribosomal stress. Furthermore, the IMPDH1/impdh1 impdh2 mutants showed more severe growth defects and phenotypes such as reduced plastid rRNA levels and abnormal processing patterns than the impdh2 mutants. Finally, multiple mutations of impdh with as2, which has abnormal leaf polarity, caused the development of needle-like leaves because of the enhancement of the as2 phenotype, which is a typical effect observed in mutants of genes involved in ribosome biogenesis. These results indicated that IMPDH is closely related to ribosome biogenesis, and that mutations in the genes lead to not only known responses to ribosomal stress, but also plant-specific responses.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"1091-1104"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-26DOI: 10.1007/s10265-024-01582-9
Yuta Nakamura, Shinya Wada, Chikahiro Miyake, Amane Makino, Yuji Suzuki
We have previously suggested that in rice (Oryza sativa L.) leaves of different ages and N nutrition statuses, photosystems II and I (PSII and PSI, respectively) are regulated depending on N partitioning to Rubisco, which can determine the magnitude of unutilized light energy. The robustness of this mechanism was tested using Rubisco-antisense transgenic rice plants, in which reduced N partitioning to Rubisco markedly increases unutilized light energy. In wild-type plants, N partitioning to Rubisco tended to be smaller in the leaves at lower positions owing to leaf senescence. In the transgenic plants, N partitioning to Rubisco was generally smaller than in the wild-type plants and was relatively constant among leaf positions. The quantum efficiency of PSII [Y(II)] and quantum yield of non-photochemical quenching [Y(NPQ)] correlated positively and negatively, respectively, with N partitioning to Rubisco irrespective of leaf position or genotype. The oxidation levels of the reaction center chlorophyll of PSI (P700) [Y(ND)] negatively correlated with N partitioning to Rubisco. However, in mature and early senescent leaves of the transgenic plants, Y(ND) was markedly lower than expected from N partitioning to Rubisco. These results suggest that in the transgenic plants, the regulation depending on N partitioning to Rubisco is robust for PSII but fails for PSI in mature and early senescing leaves. In these leaves, the magnitudes of P700 oxidation were found to be less than expected from the Y(II) and Y(NPQ) values. The mechanistic reasons and physiological implications of these phenomena are discussed.
{"title":"Regulation of photosystems II and I depending on N partitioning to Rubisco in rice leaves: a study using Rubisco-antisense transgenic plants.","authors":"Yuta Nakamura, Shinya Wada, Chikahiro Miyake, Amane Makino, Yuji Suzuki","doi":"10.1007/s10265-024-01582-9","DOIUrl":"10.1007/s10265-024-01582-9","url":null,"abstract":"<p><p>We have previously suggested that in rice (Oryza sativa L.) leaves of different ages and N nutrition statuses, photosystems II and I (PSII and PSI, respectively) are regulated depending on N partitioning to Rubisco, which can determine the magnitude of unutilized light energy. The robustness of this mechanism was tested using Rubisco-antisense transgenic rice plants, in which reduced N partitioning to Rubisco markedly increases unutilized light energy. In wild-type plants, N partitioning to Rubisco tended to be smaller in the leaves at lower positions owing to leaf senescence. In the transgenic plants, N partitioning to Rubisco was generally smaller than in the wild-type plants and was relatively constant among leaf positions. The quantum efficiency of PSII [Y(II)] and quantum yield of non-photochemical quenching [Y(NPQ)] correlated positively and negatively, respectively, with N partitioning to Rubisco irrespective of leaf position or genotype. The oxidation levels of the reaction center chlorophyll of PSI (P700) [Y(ND)] negatively correlated with N partitioning to Rubisco. However, in mature and early senescent leaves of the transgenic plants, Y(ND) was markedly lower than expected from N partitioning to Rubisco. These results suggest that in the transgenic plants, the regulation depending on N partitioning to Rubisco is robust for PSII but fails for PSI in mature and early senescing leaves. In these leaves, the magnitudes of P700 oxidation were found to be less than expected from the Y(II) and Y(NPQ) values. The mechanistic reasons and physiological implications of these phenomena are discussed.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"1165-1175"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-08-24DOI: 10.1007/s10265-024-01570-z
Elena A Marchuk, Anastasiya K Kvitchenko, Lyubov A Kameneva, Aleksandra A Yuferova, Dmitry E Kislov
The Khanka Lowland forest-steppe is the most eastern outpost of the Eurasian steppe biome. It includes unique grassland plant communities with rare steppe species. These coenosis have changed under the influence of anthropogenic activity, especially during the last 100 years and included both typical steppe species and nemoral mesophytic species. To distinguish these ecological groups of plants the random forest method with three datasets of environmental variables was applied. Specifically, a model of classification with the most important bioindices to predict a mesophytic ecological group of plants with a sensitivity greater than 80% was constructed. The data demonstrated the presence of steppe species that arrived at different times in the Primorye Territory. Most of these species are associated with the Mongolian-Daurian relict steppe complex and habit in the Khanka Lowland. Other species occur only in mountains in Primorye Territory and do not persist in the Khanka Lowland. These findings emphasize the presence of relict steppe communities with a complex of true steppe species in the Khanka Lowland. Steppe communities exhibit features of anthropogenic influence definitely through the long land use period but are not anthropogenic in origin. The most steppe species are located at the eastern border of distribution in the Khanka Lowlands and are valuable in terms of conservation and sources of information about steppe species origin and the emergence of the steppe biome as a whole.
{"title":"East Asian forest-steppe outpost in the Khanka Lowland (Russia) and its conservation.","authors":"Elena A Marchuk, Anastasiya K Kvitchenko, Lyubov A Kameneva, Aleksandra A Yuferova, Dmitry E Kislov","doi":"10.1007/s10265-024-01570-z","DOIUrl":"10.1007/s10265-024-01570-z","url":null,"abstract":"<p><p>The Khanka Lowland forest-steppe is the most eastern outpost of the Eurasian steppe biome. It includes unique grassland plant communities with rare steppe species. These coenosis have changed under the influence of anthropogenic activity, especially during the last 100 years and included both typical steppe species and nemoral mesophytic species. To distinguish these ecological groups of plants the random forest method with three datasets of environmental variables was applied. Specifically, a model of classification with the most important bioindices to predict a mesophytic ecological group of plants with a sensitivity greater than 80% was constructed. The data demonstrated the presence of steppe species that arrived at different times in the Primorye Territory. Most of these species are associated with the Mongolian-Daurian relict steppe complex and habit in the Khanka Lowland. Other species occur only in mountains in Primorye Territory and do not persist in the Khanka Lowland. These findings emphasize the presence of relict steppe communities with a complex of true steppe species in the Khanka Lowland. Steppe communities exhibit features of anthropogenic influence definitely through the long land use period but are not anthropogenic in origin. The most steppe species are located at the eastern border of distribution in the Khanka Lowlands and are valuable in terms of conservation and sources of information about steppe species origin and the emergence of the steppe biome as a whole.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"997-1018"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}