Pub Date : 2025-01-05DOI: 10.1007/s10265-024-01600-w
Ankush Prasad, Eliška Mihačová, Renuka Ramalingam Manoharan, Pavel Pospíšil
The oxidative damage induced by abiotic stress factors such as salinity, drought, extreme temperatures, heavy metals, pollution, and high irradiance has been studied in Arabidopsis thaliana. Ultra-weak photon emission (UPE) is presented as a signature reflecting the extent of the oxidation process and/or damage. It can be used to predict the physiological state and general health of plants. This study presents an overview of a potential research platform where the technique can be applied. The results presented can aid in providing invaluable information for developing strategies to mitigate abiotic stress in crops by improving plant breeding programs with a focus on enhancing tolerance. This study evaluates the applicability of charged couple device (CCD) imaging in evaluating plant stress and degree of damage and to discuss the advantages and limitations of the claimed non-invasive label-free tool.
{"title":"Application of ultra-weak photon emission imaging in plant stress assessment.","authors":"Ankush Prasad, Eliška Mihačová, Renuka Ramalingam Manoharan, Pavel Pospíšil","doi":"10.1007/s10265-024-01600-w","DOIUrl":"https://doi.org/10.1007/s10265-024-01600-w","url":null,"abstract":"<p><p>The oxidative damage induced by abiotic stress factors such as salinity, drought, extreme temperatures, heavy metals, pollution, and high irradiance has been studied in Arabidopsis thaliana. Ultra-weak photon emission (UPE) is presented as a signature reflecting the extent of the oxidation process and/or damage. It can be used to predict the physiological state and general health of plants. This study presents an overview of a potential research platform where the technique can be applied. The results presented can aid in providing invaluable information for developing strategies to mitigate abiotic stress in crops by improving plant breeding programs with a focus on enhancing tolerance. This study evaluates the applicability of charged couple device (CCD) imaging in evaluating plant stress and degree of damage and to discuss the advantages and limitations of the claimed non-invasive label-free tool.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142932179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-02DOI: 10.1007/s10265-024-01605-5
Maki Katsuhara
{"title":"New Year's greetings 2025 from the Journal of Plant Research.","authors":"Maki Katsuhara","doi":"10.1007/s10265-024-01605-5","DOIUrl":"https://doi.org/10.1007/s10265-024-01605-5","url":null,"abstract":"","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142914901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Analysis of the sex expression in 10 'Lemon' (mmff) cucumber plants (Cucumis sativus L.), known to be andromonoecious, revealed that 3 plants produced female flowers with short ovaries, resembling bisexual flowers, after producing male and bisexual flowers. To investigate the heredity pattern governing these aberrant female flowers with short ovaries, F1 hybrid plants (MmFf) were generated through a cross between 'Dokanari-sennari' (MMFF) and 'Lemon' (mmff), and #4 (mmff) and #45 (mmFF) were meticulously selected from a pool of 45 F2 segregants. Analysis of the sex expression in both 10 F5 plants (mmff) derived from the #4 (mmff) and 10 F4 plants (mmFF) derived from the #45 (mmFF) revealed that 8-9 plants produced female flowers with short ovaries after producing male and bisexual flowers. Notably, no female flowers with short ovaries were produced in the plants carrying the M gene, such as 'Dokanari-sennari' (MMFF), 8 F1 hybrid plants (MmFf), and the 29 F2 segregants (M-F-,M-ff). Thus, female flowers with short ovaries may be produced in some 'Lemon' (mmff) cucumber plants and their progeny, particularly those carrying the mm genotype (CS-ACS2 genes with c.97G > T mutations), after the production of male and bisexual flowers. However, no clear genetic rules governing the occurrence of these female flowers with short ovaries were observed. This is the first report on trimonoecious cucumber plants displaying male flowers, bisexual flowers with short ovaries, and female flowers with short ovaries, all on the same plant, under the influence of the mm genotype (CS-ACS2 genes with c.97G > T mutations).
对已知为雌雄同株的 10 株'柠檬'(mmff)黄瓜植株(Cucumis sativus L.)的性别表达进行分析后发现,有 3 株植株在开出雄花和两性花后,又开出了类似两性花的短子房雌花。为了研究这些异常短子房雌花的遗传模式,通过'Dokanari-sennari'(MMFF)和'Lemon'(mmff)杂交产生了 F1 杂交植株(MmFf),并从 45 个 F2 分离株中精心挑选了 4 号(mmff)和 45 号(mmFF)。对 4 号(mmff)衍生的 10 个 F5 植株(mmff)和 45 号(mmFF)衍生的 10 个 F4 植株(mmFF)的性别表达进行分析后发现,8-9 个植株在开出雄花和两性花后,又开出了子房短的雌花。值得注意的是,携带 M 基因的植株,如'Dokanari-sennari'(MMFF)、8 株 F1 杂交植株(MmFf)和 29 株 F2 分离株(M-F-,M-ff),均未产生短子房雌花。因此,一些 "柠檬"(mmff)黄瓜植株及其后代,尤其是携带 mm 基因型(CS-ACS2 基因的 c.97G > T 突变)的植株,在开出雄花和两性花后,可能会开出带有短子房的雌花。然而,并没有观察到明确的遗传规律来控制这些短子房雌花的出现。这是首次报道雌雄同株三倍体黄瓜植株在毫米基因型(CS-ACS2基因c.97G > T突变)的影响下,在同一植株上出现雄花、短子房两性花和短子房雌花。
{"title":"Female flowers with short ovaries in 'Lemon' cucumber (Cucumis sativus) plants and their progeny carrying the mm genotype (CS-ACS2 genes with c.97G > T mutations): a novel trimonoecious phenotype.","authors":"Seiji Yamasaki, Taimei Matsumoto, Yuina Tomota, Nanami Watanabe, Tatsuya Tanaka","doi":"10.1007/s10265-024-01583-8","DOIUrl":"10.1007/s10265-024-01583-8","url":null,"abstract":"<p><p>Analysis of the sex expression in 10 'Lemon' (mmff) cucumber plants (Cucumis sativus L.), known to be andromonoecious, revealed that 3 plants produced female flowers with short ovaries, resembling bisexual flowers, after producing male and bisexual flowers. To investigate the heredity pattern governing these aberrant female flowers with short ovaries, F<sub>1</sub> hybrid plants (MmFf) were generated through a cross between 'Dokanari-sennari' (MMFF) and 'Lemon' (mmff), and #4 (mmff) and #45 (mmFF) were meticulously selected from a pool of 45 F<sub>2</sub> segregants. Analysis of the sex expression in both 10 F<sub>5</sub> plants (mmff) derived from the #4 (mmff) and 10 F<sub>4</sub> plants (mmFF) derived from the #45 (mmFF) revealed that 8-9 plants produced female flowers with short ovaries after producing male and bisexual flowers. Notably, no female flowers with short ovaries were produced in the plants carrying the M gene, such as 'Dokanari-sennari' (MMFF), 8 F<sub>1</sub> hybrid plants (MmFf), and the 29 F<sub>2</sub> segregants (M-F-,M-ff). Thus, female flowers with short ovaries may be produced in some 'Lemon' (mmff) cucumber plants and their progeny, particularly those carrying the mm genotype (CS-ACS2 genes with c.97G > T mutations), after the production of male and bisexual flowers. However, no clear genetic rules governing the occurrence of these female flowers with short ovaries were observed. This is the first report on trimonoecious cucumber plants displaying male flowers, bisexual flowers with short ovaries, and female flowers with short ovaries, all on the same plant, under the influence of the mm genotype (CS-ACS2 genes with c.97G > T mutations).</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"77-93"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plants defend themselves against herbivores by recognizing herbivore-derived elicitors and activating intracellular signaling. In Arabidopsis, the receptor-like kinase HAK1 recognizes the poly-saccharide elicitor (FrA) from Spodoptera litura larvae, leading to the expression of defense-related genes such as PDF1.2. During this process, the cytoplasmic kinase CRK2 phosphorylates PBL27, triggers the ERF13 expression via ethylene signaling and subsequently leads to PDF1.2 expression. Herein, we investigated four cytoplasmic kinases from the same receptor-like cytoplasmic kinase (RLCK) VII family as PBL27 that interacts with CRK2. Among them, PBL11, like PBL27, is phosphorylated by CRK2 and induces PDF1.2 expression but does not affect ERF13 expression. The weight gain of S. litura larvae on PBL11-deficient mutant plants was only slightly higher than that of wild-type plants, suggesting that PBL11 may function as a minor RLCK that supports the defense response.
{"title":"Intricate intracellular kinase network regulates the Spodoptera lituta-derived elicitor response signaling in Arabidopsis.","authors":"Yoshitake Desaki, Tasuku Kato, Keiichirou Nemoto, Akira Nozawa, Takuya Uemura, Naoya Ninomiya, Tatsuya Sawasaki, Gen-Ichiro Arimura","doi":"10.1007/s10265-024-01586-5","DOIUrl":"10.1007/s10265-024-01586-5","url":null,"abstract":"<p><p>Plants defend themselves against herbivores by recognizing herbivore-derived elicitors and activating intracellular signaling. In Arabidopsis, the receptor-like kinase HAK1 recognizes the poly-saccharide elicitor (FrA) from Spodoptera litura larvae, leading to the expression of defense-related genes such as PDF1.2. During this process, the cytoplasmic kinase CRK2 phosphorylates PBL27, triggers the ERF13 expression via ethylene signaling and subsequently leads to PDF1.2 expression. Herein, we investigated four cytoplasmic kinases from the same receptor-like cytoplasmic kinase (RLCK) VII family as PBL27 that interacts with CRK2. Among them, PBL11, like PBL27, is phosphorylated by CRK2 and induces PDF1.2 expression but does not affect ERF13 expression. The weight gain of S. litura larvae on PBL11-deficient mutant plants was only slightly higher than that of wild-type plants, suggesting that PBL11 may function as a minor RLCK that supports the defense response.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"95-103"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-13DOI: 10.1007/s10265-024-01592-7
Talvanis Lorenzetti Freire, Jefferson F de Oliveira, José Fernando A Baumgratz, Massimo G Bovini, Karen L G De Toni
In the Malveae tribe (Malvaceae), the axis supporting the flower has a joint at the upper third. This axis can be considered as an articulated pedicel, peduncle, peduncle-pedicel, or anthopodium. Such disparity in terminology reveals a duality in interpretation since this structure is classified as part of the inflorescence or part of the flower. In an effort to reach a consensus, this study aims to evaluate axes supporting the flowers of species from the Malveae tribe through ontogenetic, morphological, and histochemical analyses, using light microscopy and scanning electron microscopy. Ontogenetic analyses indicated that the axis supporting the flower is an articulated pedicel, which is divided into proximal and distal parts owing to the presence of the constriction (joint). Simultaneously, the articulated pedicel arises from the floral meristem, along with the establishment of the calyx and androecium. As development progresses, we observed frequent abscissions of the floral bud, along with the distal portion of the pedicel, at the joint. After this, the remaining proximal portion of the pedicel becomes secretory, as an extrafloral nectary, often foraged by ants of the genus Wasmannia. Thus, this ontogenetic analysis of the articulated pedicel helps in understanding its functionality and morphological variability, highlighting the importance of standardized terminology since it would lead to conceptual clarity in different studies. Additionally, this study, for the first time, reveals the presence of extrafloral nectaries on articulated pedicels in Malveae, a previously undocumented feature in Malveae and Malvaceae.
{"title":"Secretory pedicels? Development, morphology, and histochemistry of articulated pedicels in Neotropical Malveae (Malvaceae).","authors":"Talvanis Lorenzetti Freire, Jefferson F de Oliveira, José Fernando A Baumgratz, Massimo G Bovini, Karen L G De Toni","doi":"10.1007/s10265-024-01592-7","DOIUrl":"10.1007/s10265-024-01592-7","url":null,"abstract":"<p><p>In the Malveae tribe (Malvaceae), the axis supporting the flower has a joint at the upper third. This axis can be considered as an articulated pedicel, peduncle, peduncle-pedicel, or anthopodium. Such disparity in terminology reveals a duality in interpretation since this structure is classified as part of the inflorescence or part of the flower. In an effort to reach a consensus, this study aims to evaluate axes supporting the flowers of species from the Malveae tribe through ontogenetic, morphological, and histochemical analyses, using light microscopy and scanning electron microscopy. Ontogenetic analyses indicated that the axis supporting the flower is an articulated pedicel, which is divided into proximal and distal parts owing to the presence of the constriction (joint). Simultaneously, the articulated pedicel arises from the floral meristem, along with the establishment of the calyx and androecium. As development progresses, we observed frequent abscissions of the floral bud, along with the distal portion of the pedicel, at the joint. After this, the remaining proximal portion of the pedicel becomes secretory, as an extrafloral nectary, often foraged by ants of the genus Wasmannia. Thus, this ontogenetic analysis of the articulated pedicel helps in understanding its functionality and morphological variability, highlighting the importance of standardized terminology since it would lead to conceptual clarity in different studies. Additionally, this study, for the first time, reveals the presence of extrafloral nectaries on articulated pedicels in Malveae, a previously undocumented feature in Malveae and Malvaceae.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"65-76"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical genetics is a multidisciplinary research method. In this study, it is used to screen compounds that promote aluminum-induced malate secretion in Arabidopsis thaliana. Inhibition of p38 mitogen-activated protein kinase (p38 MAPK; LY2228820) significantly increased the transcription of Arabidopsis thaliana aluminum-activated malate transporter 1 (AtALMT1) and sensitive to proton rhizotoxicity 1 (STOP1)-regulated genes, multidrug and toxic compound extrusion and aluminum sensitive 3, but not AtSTOP1 and the Al-biomarker genes At3g28510, At5g13320, suggesting that LY2228820 increased the early expression of STOP1-regulated genes without affecting AtSTOP1 expression. Inhibition of p38 MAPK (LY2228820) and Aurora A (MLN8237) increased aluminum-activated malate transport via AtALMT1, suggesting that both MLN8237 and LY2228820 interfere with AtALMT1 activity. An increase in root elongation was also observed in Arabidopsis after applying compounds LY2228820 and MLN8237. Thus, both LY2228820 and MLN8237 may play important roles in alleviating the inhibitory effects of aluminum on roots.
{"title":"Chemical genetics analysis suggests the involvement of Aurora kinase and MAPKs in aluminum-induced malate secretion in Arabidopsis.","authors":"Liujie Wu, Liuying Lai, Weijun Wu, Yongzhuang Wang, Ganhui Mo, Yuriko Kobayashi, Naohisa Ogo, Hiroyuki Koyama","doi":"10.1007/s10265-024-01594-5","DOIUrl":"10.1007/s10265-024-01594-5","url":null,"abstract":"<p><p>Chemical genetics is a multidisciplinary research method. In this study, it is used to screen compounds that promote aluminum-induced malate secretion in Arabidopsis thaliana. Inhibition of p38 mitogen-activated protein kinase (p38 MAPK; LY2228820) significantly increased the transcription of Arabidopsis thaliana aluminum-activated malate transporter 1 (AtALMT1) and sensitive to proton rhizotoxicity 1 (STOP1)-regulated genes, multidrug and toxic compound extrusion and aluminum sensitive 3, but not AtSTOP1 and the Al-biomarker genes At3g28510, At5g13320, suggesting that LY2228820 increased the early expression of STOP1-regulated genes without affecting AtSTOP1 expression. Inhibition of p38 MAPK (LY2228820) and Aurora A (MLN8237) increased aluminum-activated malate transport via AtALMT1, suggesting that both MLN8237 and LY2228820 interfere with AtALMT1 activity. An increase in root elongation was also observed in Arabidopsis after applying compounds LY2228820 and MLN8237. Thus, both LY2228820 and MLN8237 may play important roles in alleviating the inhibitory effects of aluminum on roots.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"121-129"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-08DOI: 10.1007/s10265-024-01593-6
Lin Yuan, Jingzhi Wang, Rong Liu, Yuqi Tang, Di Wu, Ri Jin, Weihong Zhu
Various environmental conditions influence the characteristics of plant communities within wetlands. Although the influence of key environmental factors on plant community traits within specific types of wetland ecosystems has been studied extensively, how they regulate plant communities across marsh wetland types remains poorly understood. We examined how environmental conditions influence plant communities in marsh wetlands along the lower Tumen River in northeastern China. We collected and analyzed data on the plant community characteristics (species, height, and coverage), soil physicochemical properties (organic carbon, inorganic nitrogen, and sulfur), and climatic and topographic factors (temperature, precipitation, and elevation) of 56 distinct marsh plots (29 herbaceous, 14 shrub, and 13 forested marshes) to understand how these variables correlate with plant community characteristics across marsh types. The wetland plant diversity varied, with the lowest, intermediate, and highest diversity occurring in herbaceous, shrub, and forested marshes, respectively. Climate, topography, and soil properties had crucial influences on plant diversity and biomass. Structural equation modeling showed that, in herbaceous marshes, plant biomass was primarily determined by soil and plant diversity, with climate exerting an indirect effect. In shrub marshes, soil, climate, and plant diversity directly influenced biomass. In forest marshes, soil and plant diversity directly affected biomass, whereas climate and topography had indirect effects. These findings highlight the complex interactions among environmental factors across marsh ecosystems and their influence mechanisms on biomass, aiding in formulating effective conservation and restoration strategies for marsh wetland ecosystems.
{"title":"Soil properties, climate, and topography jointly determine plant community characteristics in marsh wetlands.","authors":"Lin Yuan, Jingzhi Wang, Rong Liu, Yuqi Tang, Di Wu, Ri Jin, Weihong Zhu","doi":"10.1007/s10265-024-01593-6","DOIUrl":"10.1007/s10265-024-01593-6","url":null,"abstract":"<p><p>Various environmental conditions influence the characteristics of plant communities within wetlands. Although the influence of key environmental factors on plant community traits within specific types of wetland ecosystems has been studied extensively, how they regulate plant communities across marsh wetland types remains poorly understood. We examined how environmental conditions influence plant communities in marsh wetlands along the lower Tumen River in northeastern China. We collected and analyzed data on the plant community characteristics (species, height, and coverage), soil physicochemical properties (organic carbon, inorganic nitrogen, and sulfur), and climatic and topographic factors (temperature, precipitation, and elevation) of 56 distinct marsh plots (29 herbaceous, 14 shrub, and 13 forested marshes) to understand how these variables correlate with plant community characteristics across marsh types. The wetland plant diversity varied, with the lowest, intermediate, and highest diversity occurring in herbaceous, shrub, and forested marshes, respectively. Climate, topography, and soil properties had crucial influences on plant diversity and biomass. Structural equation modeling showed that, in herbaceous marshes, plant biomass was primarily determined by soil and plant diversity, with climate exerting an indirect effect. In shrub marshes, soil, climate, and plant diversity directly influenced biomass. In forest marshes, soil and plant diversity directly affected biomass, whereas climate and topography had indirect effects. These findings highlight the complex interactions among environmental factors across marsh ecosystems and their influence mechanisms on biomass, aiding in formulating effective conservation and restoration strategies for marsh wetland ecosystems.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"37-50"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-12DOI: 10.1007/s10265-024-01596-3
Chenhao Cao, Xinbao Qiu, Zhongnan Yang, Yue Jin
UMAMIT proteins have been known as key players in amino acid transport. In Arabidopsis, functions of several UMAMITs have been characterized, but their precise mechanism, evolutionary history and functional divergence remain elusive. In this study, we conducted phylogenetic analysis of the UMAMIT gene family across key species in the evolutionary history of plants, ranging from algae to angiosperms. Our findings indicate that UMAMIT proteins underwent a substantial expansion from algae to angiosperms, accompanied by the stabilization of the EamA (the main domain of UMAMIT) structure. Phylogenetic studies suggest that UMAMITs may have originated from green algae and be divided into four subfamilies. These proteins first diversified in bryophytes and subsequently experienced gene duplication events in seed plants. Subfamily I was potentially associated with amino acid transport in seeds. Regarding subcellular localization, UMAMITs were predominantly localized in the plasma membrane and chloroplasts. However, members from clade 8 in subfamily III exhibited specific localization in the tonoplast. These members may have multiple functions, such as plant disease resistance and root development. Furthermore, our protein structure prediction revealed that the four-helix bundle motif is crucial in controlling the UMAMIT switch for exporting amino acid. We hypothesize that the specific amino acids in the amino acid binding region determine the type of amino acids being transported. Additionally, subfamily II contains genes that are specifically expressed in reproductive organs and roots in angiosperms, suggesting neofunctionalization. Our study highlights the evolutionary complexity of UMAMITs and underscores their crucial role in the adaptation and diversification of seed plants.
{"title":"New insights into the evolution and function of the UMAMIT (USUALLY MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTER) gene family.","authors":"Chenhao Cao, Xinbao Qiu, Zhongnan Yang, Yue Jin","doi":"10.1007/s10265-024-01596-3","DOIUrl":"10.1007/s10265-024-01596-3","url":null,"abstract":"<p><p>UMAMIT proteins have been known as key players in amino acid transport. In Arabidopsis, functions of several UMAMITs have been characterized, but their precise mechanism, evolutionary history and functional divergence remain elusive. In this study, we conducted phylogenetic analysis of the UMAMIT gene family across key species in the evolutionary history of plants, ranging from algae to angiosperms. Our findings indicate that UMAMIT proteins underwent a substantial expansion from algae to angiosperms, accompanied by the stabilization of the EamA (the main domain of UMAMIT) structure. Phylogenetic studies suggest that UMAMITs may have originated from green algae and be divided into four subfamilies. These proteins first diversified in bryophytes and subsequently experienced gene duplication events in seed plants. Subfamily I was potentially associated with amino acid transport in seeds. Regarding subcellular localization, UMAMITs were predominantly localized in the plasma membrane and chloroplasts. However, members from clade 8 in subfamily III exhibited specific localization in the tonoplast. These members may have multiple functions, such as plant disease resistance and root development. Furthermore, our protein structure prediction revealed that the four-helix bundle motif is crucial in controlling the UMAMIT switch for exporting amino acid. We hypothesize that the specific amino acids in the amino acid binding region determine the type of amino acids being transported. Additionally, subfamily II contains genes that are specifically expressed in reproductive organs and roots in angiosperms, suggesting neofunctionalization. Our study highlights the evolutionary complexity of UMAMITs and underscores their crucial role in the adaptation and diversification of seed plants.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"3-17"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-11DOI: 10.1007/s10265-024-01587-4
Toshihiro Watanabe, Nozomi Imai, Syuntaro Hiradate, Hayato Maruyama, Jun Wasaki
Palhinhaea cernua, a lycophyte, and Dicranopteris linearis, a fern, are commonly observed in solfatara fields in Kyushu, Japan, but their distribution trends are different. The aim of this study was to determine why P. cernua is more abundant in areas closer to fumaroles from both a soil and plant perspective. Samples of P. cernua and D. linearis, as well as their respective growing soils, were collected, and the mineral properties, including the concentration of various mineral elements and inorganic anions and δ15N, were determined. P. cernua was better adapted to soil with lower pH, higher soluble aluminum concentrations, and poorer calcium and phosphorus concentrations than D. linearis. A positive correlation was observed between shoot nitrogen concentration and both shoot sulfur concentration and soil water-soluble sulfur concentration in P. cernua, implying the involvement of sulfur in nitrogen acquisition in P. cernua. The results also suggested that D. linearis mainly uses soil NO3-N, while P. cernua uses NH4-N, which is predominant and excessive in the solfatara fields, particularly near the fumaroles. This high preference for NH4-N in P. cernua was confirmed through a cultivation experiment. While D. linearis prefers NO3-N and distributes further from fumaroles, P. cernua may have survived in the solfatara fields by utilizing NH4-N and sulfur, which are abundant near fumaroles where competition from other plant species is minimal.
在日本九州的溶岩田中经常能观察到石蒜科植物石蒜(Palhinhaea cernua)和蕨类植物线形蕨(Dicranopteris linearis),但它们的分布趋势却不尽相同。本研究的目的是从土壤和植物的角度来确定为什么蕨类植物(P. cernua)在靠近热液喷口的地区更多。研究人员采集了 P. cernua 和 D. linearis 以及它们各自生长土壤的样本,并测定了矿物特性,包括各种矿物元素和无机阴离子的浓度以及 δ15N。与线形草相比,P. cernua 能更好地适应 pH 值较低、可溶性铝浓度较高、钙和磷浓度较低的土壤。在 P. cernua 中,观察到嫩枝氮浓度与嫩枝硫浓度和土壤水溶性硫浓度之间存在正相关,这意味着硫参与了 P. cernua 的氮获取。研究结果还表明,D. linearis 主要利用土壤中的 NO3-N,而 P. cernua 则利用 NH4-N。P. cernua 对 NH4-N 的高度偏好通过一项栽培实验得到了证实。线形草更喜欢氮氧化物(NO3-N),分布在离富马隆更远的地方,而蕨麻可能是通过利用 NH4-N 和硫来在索尔法塔拉田里生存的,因为 NH4-N 和硫在富马隆附近含量丰富,来自其他植物物种的竞争极小。
{"title":"Why can Palhinhaea cernua (lycophyte) grow closer to fumaroles in highly acidic solfatara fields?","authors":"Toshihiro Watanabe, Nozomi Imai, Syuntaro Hiradate, Hayato Maruyama, Jun Wasaki","doi":"10.1007/s10265-024-01587-4","DOIUrl":"10.1007/s10265-024-01587-4","url":null,"abstract":"<p><p>Palhinhaea cernua, a lycophyte, and Dicranopteris linearis, a fern, are commonly observed in solfatara fields in Kyushu, Japan, but their distribution trends are different. The aim of this study was to determine why P. cernua is more abundant in areas closer to fumaroles from both a soil and plant perspective. Samples of P. cernua and D. linearis, as well as their respective growing soils, were collected, and the mineral properties, including the concentration of various mineral elements and inorganic anions and δ<sup>15</sup>N, were determined. P. cernua was better adapted to soil with lower pH, higher soluble aluminum concentrations, and poorer calcium and phosphorus concentrations than D. linearis. A positive correlation was observed between shoot nitrogen concentration and both shoot sulfur concentration and soil water-soluble sulfur concentration in P. cernua, implying the involvement of sulfur in nitrogen acquisition in P. cernua. The results also suggested that D. linearis mainly uses soil NO<sub>3</sub>-N, while P. cernua uses NH<sub>4</sub>-N, which is predominant and excessive in the solfatara fields, particularly near the fumaroles. This high preference for NH<sub>4</sub>-N in P. cernua was confirmed through a cultivation experiment. While D. linearis prefers NO<sub>3</sub>-N and distributes further from fumaroles, P. cernua may have survived in the solfatara fields by utilizing NH<sub>4</sub>-N and sulfur, which are abundant near fumaroles where competition from other plant species is minimal.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"19-35"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}