首页 > 最新文献

Journal of Physiological Sciences最新文献

英文 中文
The role of GPR81-cAMP-PKA pathway in endurance training-induced intramuscular triglyceride accumulation and mitochondrial content changes in rats.
IF 2.6 4区 医学 Q2 PHYSIOLOGY Pub Date : 2024-01-01 Epub Date: 2025-01-02 DOI: 10.1186/s12576-024-00902-x
Lin Li, Xiangdeng Lai, Yihan Ni, Siyu Chen, Yaqian Qu, Zhiqiang Hu, Jingquan Sun

The athlete's paradox phenomenon involves the accumulation of intramuscular triglycerides (IMTG) in both insulin-resistant and insulin-sensitive endurance athletes. Nevertheless, a complete understanding of this phenomenon is yet to be achieved. Recent research indicates that lactate, a common byproduct of physical activity, may increase the accumulation of IMTG in skeletal muscle. This is achieved through the activation of G protein-coupled receptor 81 (GPR81) leads to the suppression of the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway. The mechanism accountable for the increase in mitochondrial content in skeletal muscle triggered by lactate remains incomprehensible. Based on current research, our objective is to explore the role of the GPR81-inhibited cAMP-PKA pathway in the aggregation of IMTG and the increase in mitochondrial content as a result of prolonged exercise. The GPR81-cAMP-PKA-signaling pathway regulates the buildup of IMTG caused by extended periods of endurance training (ET). This is likely due to a decrease in proteins related to fat breakdown and an increase in proteins responsible for fat production. It is possible that the GPR81-cAMP-PKA pathway does not contribute to the long-term increase in mitochondrial biogenesis and content, which is induced by chronic ET. Additional investigation is required to explore the possible hindrance of the mitochondrial biogenesis and content process during physical activity by the GPR81-cAMP-PKA signal.

{"title":"The role of GPR81-cAMP-PKA pathway in endurance training-induced intramuscular triglyceride accumulation and mitochondrial content changes in rats.","authors":"Lin Li, Xiangdeng Lai, Yihan Ni, Siyu Chen, Yaqian Qu, Zhiqiang Hu, Jingquan Sun","doi":"10.1186/s12576-024-00902-x","DOIUrl":"https://doi.org/10.1186/s12576-024-00902-x","url":null,"abstract":"<p><p>The athlete's paradox phenomenon involves the accumulation of intramuscular triglycerides (IMTG) in both insulin-resistant and insulin-sensitive endurance athletes. Nevertheless, a complete understanding of this phenomenon is yet to be achieved. Recent research indicates that lactate, a common byproduct of physical activity, may increase the accumulation of IMTG in skeletal muscle. This is achieved through the activation of G protein-coupled receptor 81 (GPR81) leads to the suppression of the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway. The mechanism accountable for the increase in mitochondrial content in skeletal muscle triggered by lactate remains incomprehensible. Based on current research, our objective is to explore the role of the GPR81-inhibited cAMP-PKA pathway in the aggregation of IMTG and the increase in mitochondrial content as a result of prolonged exercise. The GPR81-cAMP-PKA-signaling pathway regulates the buildup of IMTG caused by extended periods of endurance training (ET). This is likely due to a decrease in proteins related to fat breakdown and an increase in proteins responsible for fat production. It is possible that the GPR81-cAMP-PKA pathway does not contribute to the long-term increase in mitochondrial biogenesis and content, which is induced by chronic ET. Additional investigation is required to explore the possible hindrance of the mitochondrial biogenesis and content process during physical activity by the GPR81-cAMP-PKA signal.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"8"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of hypothermia-inducing neurons in the preoptic area and activation of them by isoflurane anesthesia and central injection of adenosine.
IF 2.6 4区 医学 Q2 PHYSIOLOGY Pub Date : 2024-01-01 Epub Date: 2025-01-02 DOI: 10.1186/s12576-024-00927-2
Erika Uchino, Ikue Kusumoto-Yoshida, Hideki Kashiwadani, Yuichi Kanmura, Akira Matsunaga, Tomoyuki Kuwaki

Hibernation and torpor are not passive responses caused by external temperature drops and fasting but are active brain functions that lower body temperature. A population of neurons in the preoptic area was recently identified as such active torpor-regulating neurons. We hypothesized that the other hypothermia-inducing maneuvers would also activate these neurons. To test our hypothesis, we first refined the previous observations, examined the brain regions explicitly activated during the falling phase of body temperature using c-Fos expression, and confirmed the preoptic area. Next, we observed long-lasting hypothermia by reactivating torpor-tagged Gq-expressing neurons using the activity tagging and DREADD systems. Finally, we found that about 40-60% of torpor-tagged neurons were activated by succeeding isoflurane anesthesia and by icv administration of an adenosine A1 agonist. Isoflurane-induced and central adenosine-induced hypothermia is, at least in part, an active process mediated by the torpor-regulating neurons in the preoptic area. GRAPHICAL ABSTRACT.

{"title":"Identification of hypothermia-inducing neurons in the preoptic area and activation of them by isoflurane anesthesia and central injection of adenosine.","authors":"Erika Uchino, Ikue Kusumoto-Yoshida, Hideki Kashiwadani, Yuichi Kanmura, Akira Matsunaga, Tomoyuki Kuwaki","doi":"10.1186/s12576-024-00927-2","DOIUrl":"https://doi.org/10.1186/s12576-024-00927-2","url":null,"abstract":"<p><p>Hibernation and torpor are not passive responses caused by external temperature drops and fasting but are active brain functions that lower body temperature. A population of neurons in the preoptic area was recently identified as such active torpor-regulating neurons. We hypothesized that the other hypothermia-inducing maneuvers would also activate these neurons. To test our hypothesis, we first refined the previous observations, examined the brain regions explicitly activated during the falling phase of body temperature using c-Fos expression, and confirmed the preoptic area. Next, we observed long-lasting hypothermia by reactivating torpor-tagged Gq-expressing neurons using the activity tagging and DREADD systems. Finally, we found that about 40-60% of torpor-tagged neurons were activated by succeeding isoflurane anesthesia and by icv administration of an adenosine A1 agonist. Isoflurane-induced and central adenosine-induced hypothermia is, at least in part, an active process mediated by the torpor-regulating neurons in the preoptic area. GRAPHICAL ABSTRACT.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"33"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytotoxic effects of the cigarette smoke extract of heated tobacco products on human oral squamous cell carcinoma: the role of reactive oxygen species and CaMKK2.
IF 2.6 4区 医学 Q2 PHYSIOLOGY Pub Date : 2024-01-01 Epub Date: 2025-01-02 DOI: 10.1186/s12576-024-00928-1
Nagao Kagemichi, Masanari Umemura, Soichiro Ishikawa, Yu Iida, Shota Takayasu, Akane Nagasako, Rina Nakakaji, Taisuke Akimoto, Makoto Ohtake, Takahiro Horinouchi, Tetsuya Yamamoto, Yoshihiro Ishikawa

Background: The increasing prevalence of heated tobacco products (HTPs) has heightened concerns regarding their potential health risks. Previous studies have demonstrated the toxicity of cigarette smoke extract (CSE) from traditional tobacco's mainstream smoke, even after the removal of nicotine and tar. Our study aimed to investigate the cytotoxicity of CSE derived from HTPs and traditional tobacco, with a particular focus on the role of reactive oxygen species (ROS) and intracellular Ca2+.

Methods: A human oral squamous cell carcinoma (OSCC) cell line, HSC-3 was utilized. To prepare CSE, aerosols from HTPs (IQOS) and traditional tobacco products (1R6F reference cigarette) were collected into cell culture media. A cell viability assay, apoptosis assay, western blotting, and Fluo-4 assay were conducted. Changes in ROS levels were measured using electron spin resonance spectroscopy and the high-sensitivity 2',7'-dichlorofluorescein diacetate assay. We performed a knockdown of calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) by shRNA lentivirus in OSCC cells.

Results: CSE from both HTPs and traditional tobacco exhibited cytotoxic effects in OSCC cells. Exposure to CSE from both sources led to an increase in intracellular Ca2+ concentration and induced p38 phosphorylation. Additionally, these extracts prompted cell apoptosis and heightened ROS levels. N-acetylcysteine (NAC) mitigated the cytotoxic effects and p38 phosphorylation. Furthermore, the knockdown of CaMKK2 in HSC-3 cells reduced cytotoxicity, ROS production, and p38 phosphorylation in response to CSE.

Conclusion: Our findings suggest that the CSE from both HTPs and traditional tobacco induce cytotoxicity. This toxicity is mediated by ROS, which are regulated through Ca2+ signaling and CaMKK2 pathways. GRAPHICAL ABSTRACT.

{"title":"Cytotoxic effects of the cigarette smoke extract of heated tobacco products on human oral squamous cell carcinoma: the role of reactive oxygen species and CaMKK2.","authors":"Nagao Kagemichi, Masanari Umemura, Soichiro Ishikawa, Yu Iida, Shota Takayasu, Akane Nagasako, Rina Nakakaji, Taisuke Akimoto, Makoto Ohtake, Takahiro Horinouchi, Tetsuya Yamamoto, Yoshihiro Ishikawa","doi":"10.1186/s12576-024-00928-1","DOIUrl":"10.1186/s12576-024-00928-1","url":null,"abstract":"<p><strong>Background: </strong>The increasing prevalence of heated tobacco products (HTPs) has heightened concerns regarding their potential health risks. Previous studies have demonstrated the toxicity of cigarette smoke extract (CSE) from traditional tobacco's mainstream smoke, even after the removal of nicotine and tar. Our study aimed to investigate the cytotoxicity of CSE derived from HTPs and traditional tobacco, with a particular focus on the role of reactive oxygen species (ROS) and intracellular Ca<sup>2+</sup>.</p><p><strong>Methods: </strong>A human oral squamous cell carcinoma (OSCC) cell line, HSC-3 was utilized. To prepare CSE, aerosols from HTPs (IQOS) and traditional tobacco products (1R6F reference cigarette) were collected into cell culture media. A cell viability assay, apoptosis assay, western blotting, and Fluo-4 assay were conducted. Changes in ROS levels were measured using electron spin resonance spectroscopy and the high-sensitivity 2',7'-dichlorofluorescein diacetate assay. We performed a knockdown of calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) by shRNA lentivirus in OSCC cells.</p><p><strong>Results: </strong>CSE from both HTPs and traditional tobacco exhibited cytotoxic effects in OSCC cells. Exposure to CSE from both sources led to an increase in intracellular Ca<sup>2+</sup> concentration and induced p38 phosphorylation. Additionally, these extracts prompted cell apoptosis and heightened ROS levels. N-acetylcysteine (NAC) mitigated the cytotoxic effects and p38 phosphorylation. Furthermore, the knockdown of CaMKK2 in HSC-3 cells reduced cytotoxicity, ROS production, and p38 phosphorylation in response to CSE.</p><p><strong>Conclusion: </strong>Our findings suggest that the CSE from both HTPs and traditional tobacco induce cytotoxicity. This toxicity is mediated by ROS, which are regulated through Ca<sup>2+</sup> signaling and CaMKK2 pathways. GRAPHICAL ABSTRACT.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"35"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strength training improves heart function, collagen and strength in rats with heart failure.
IF 2.6 4区 医学 Q2 PHYSIOLOGY Pub Date : 2024-01-01 Epub Date: 2025-01-02 DOI: 10.1186/s12576-024-00899-3
Leisiane G Dias, Carlos H O Reis, Leonardo Dos Santos, Walter Krause Neto, Ana Paula Lima-Leopoldo, Julien S Baker, André S Leopoldo, Danilo S Bocalini

Background/objectives: Myocardial infarction (MI) frequently leads to cardiac remodeling and failure with impaired life quality, playing an important role in cardiovascular deaths. Although physical exercise is a well-recognized effective non-pharmacological therapy for cardiovascular diseases, the effects of strength training (ST) on the structural and functional aspects of cardiac remodeling need to be further documented. In this study, we aimed to investigate the role of a linear block ST protocol in the rat model of MI.

Methods and results: After 6 weeks of MI induction or sham surgery, male adult rats performed ST for the following 12 weeks. The ladder-based ST program was organized in three mesocycles of 4 weeks, with one load increment for each block according to the maximal carrying load test. After 12 weeks, the infarcted-trained rats exhibited an increase in performance, associated with reduced cardiac hypertrophy and pulmonary congestion compared with the untrained group. Despite not changing MI size, the ST program partially prevented cardiac dilatation and ventricular dysfunction assessed by echocardiography and hemodynamics, and interstitial fibrosis evaluated by histology. In addition, isolated cardiac muscles from infarcted-trained rats had improved contractility parameters in a steady state, and in response to calcium or stimuli pauses.

Conclusions: The ST in infarcted rats increased the capacity to carry mass, associated with attenuation of cardiac remodeling and pulmonary congestion with improving cardiac function that could be attributed, at least in part, to the improvement of myocardial contractility.

{"title":"Strength training improves heart function, collagen and strength in rats with heart failure.","authors":"Leisiane G Dias, Carlos H O Reis, Leonardo Dos Santos, Walter Krause Neto, Ana Paula Lima-Leopoldo, Julien S Baker, André S Leopoldo, Danilo S Bocalini","doi":"10.1186/s12576-024-00899-3","DOIUrl":"https://doi.org/10.1186/s12576-024-00899-3","url":null,"abstract":"<p><strong>Background/objectives: </strong>Myocardial infarction (MI) frequently leads to cardiac remodeling and failure with impaired life quality, playing an important role in cardiovascular deaths. Although physical exercise is a well-recognized effective non-pharmacological therapy for cardiovascular diseases, the effects of strength training (ST) on the structural and functional aspects of cardiac remodeling need to be further documented. In this study, we aimed to investigate the role of a linear block ST protocol in the rat model of MI.</p><p><strong>Methods and results: </strong>After 6 weeks of MI induction or sham surgery, male adult rats performed ST for the following 12 weeks. The ladder-based ST program was organized in three mesocycles of 4 weeks, with one load increment for each block according to the maximal carrying load test. After 12 weeks, the infarcted-trained rats exhibited an increase in performance, associated with reduced cardiac hypertrophy and pulmonary congestion compared with the untrained group. Despite not changing MI size, the ST program partially prevented cardiac dilatation and ventricular dysfunction assessed by echocardiography and hemodynamics, and interstitial fibrosis evaluated by histology. In addition, isolated cardiac muscles from infarcted-trained rats had improved contractility parameters in a steady state, and in response to calcium or stimuli pauses.</p><p><strong>Conclusions: </strong>The ST in infarcted rats increased the capacity to carry mass, associated with attenuation of cardiac remodeling and pulmonary congestion with improving cardiac function that could be attributed, at least in part, to the improvement of myocardial contractility.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"10"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of the TGF-β1/Smad3-signaling pathway in gender differences in alcoholic liver fibrosis.
IF 2.6 4区 医学 Q2 PHYSIOLOGY Pub Date : 2024-01-01 Epub Date: 2025-01-02 DOI: 10.1186/s12576-024-00901-y
Xiaomin Hong, Sanqiang Li, Renli Luo, Mengli Yang, Junfei Wu, Shuning Chen, Siyu Zhu

The TGF-β1/Smad3-signaling pathway and gender differences were investigated in alcoholic liver fibrosis. Mice were divided into female normal, female model, male normal, and male model groups. Liver injury and fibrosis were assessed using histopathology and serology. Western blotting was performed to analyze the expression of relevant factors. HSC-T6 cells were divided into estradiol + saline, estradiol + ethanol, testosterone + saline, and testosterone + ethanol groups, and similar assessments were conducted in vitro. Compared with the female model group, the male model group exhibited significantly increased GPT, GOT, TNF-α, IL-6, and testosterone levels, fibrosis rate, and TGF-β1, Smad3, and PCNA expression, and significantly decreased estradiol levels and Caspase-3 expression. The apoptosis rate was higher in the estradiol + ethanol group than in the testosterone + ethanol group, although the testosterone + ethanol group exhibited significantly increased TNF-α, IL-6, Collagen-I, α-SMA, TGF-β1, Smad3, and PCNA expression, and significantly decreased Caspase-3 expression. Alcoholic liver fibrosis showed significant gender differences associated with the TGF-β1/Smad3-signaling pathway.

{"title":"Mechanisms of the TGF-β1/Smad3-signaling pathway in gender differences in alcoholic liver fibrosis.","authors":"Xiaomin Hong, Sanqiang Li, Renli Luo, Mengli Yang, Junfei Wu, Shuning Chen, Siyu Zhu","doi":"10.1186/s12576-024-00901-y","DOIUrl":"https://doi.org/10.1186/s12576-024-00901-y","url":null,"abstract":"<p><p>The TGF-β1/Smad3-signaling pathway and gender differences were investigated in alcoholic liver fibrosis. Mice were divided into female normal, female model, male normal, and male model groups. Liver injury and fibrosis were assessed using histopathology and serology. Western blotting was performed to analyze the expression of relevant factors. HSC-T6 cells were divided into estradiol + saline, estradiol + ethanol, testosterone + saline, and testosterone + ethanol groups, and similar assessments were conducted in vitro. Compared with the female model group, the male model group exhibited significantly increased GPT, GOT, TNF-α, IL-6, and testosterone levels, fibrosis rate, and TGF-β1, Smad3, and PCNA expression, and significantly decreased estradiol levels and Caspase-3 expression. The apoptosis rate was higher in the estradiol + ethanol group than in the testosterone + ethanol group, although the testosterone + ethanol group exhibited significantly increased TNF-α, IL-6, Collagen-I, α-SMA, TGF-β1, Smad3, and PCNA expression, and significantly decreased Caspase-3 expression. Alcoholic liver fibrosis showed significant gender differences associated with the TGF-β1/Smad3-signaling pathway.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"13"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiology of the volume-sensitive/regulatory anion channel VSOR/VRAC. Part 1: from its discovery and phenotype characterization to the molecular entity identification.
IF 2.6 4区 医学 Q2 PHYSIOLOGY Pub Date : 2024-01-01 Epub Date: 2025-01-02 DOI: 10.1186/s12576-023-00897-x
Yasunobu Okada

The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 1 review article describes, from the physiological standpoint, first its discovery and significance in cell volume regulation, second its phenotypical properties, and third its molecular identification. Although the pore-forming core molecules and the volume-sensing subcomponent of VSOR/VRAC were identified as LRRC8 members and TRPM7 in 2014 and 2021, respectively, it is stressed that the identification of the molecular entity of VSOR/VRAC is still not complete enough to explain the full set of phenotypical properties.

{"title":"Physiology of the volume-sensitive/regulatory anion channel VSOR/VRAC. Part 1: from its discovery and phenotype characterization to the molecular entity identification.","authors":"Yasunobu Okada","doi":"10.1186/s12576-023-00897-x","DOIUrl":"https://doi.org/10.1186/s12576-023-00897-x","url":null,"abstract":"<p><p>The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 1 review article describes, from the physiological standpoint, first its discovery and significance in cell volume regulation, second its phenotypical properties, and third its molecular identification. Although the pore-forming core molecules and the volume-sensing subcomponent of VSOR/VRAC were identified as LRRC8 members and TRPM7 in 2014 and 2021, respectively, it is stressed that the identification of the molecular entity of VSOR/VRAC is still not complete enough to explain the full set of phenotypical properties.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"3"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiology of the volume-sensitive/regulatory anion channel VSOR/VRAC: part 2: its activation mechanisms and essential roles in organic signal release.
IF 2.6 4区 医学 Q2 PHYSIOLOGY Pub Date : 2024-01-01 Epub Date: 2025-01-02 DOI: 10.1186/s12576-024-00926-3
Yasunobu Okada

The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types, and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 2 review article describes, from the physiological and pathophysiological standpoints, first the pivotal roles of VSOR/VRAC in the release of autocrine/paracrine organic signal molecules, such as glutamate, ATP, glutathione, cGAMP, and itaconate, as well as second the swelling-independent and -dependent activation mechanisms of VSOR/VRAC. Since the pore size of VSOR/VRAC has now well been evaluated by electrophysiological and 3D-structural methods, the signal-releasing activity of VSOR/VRAC is here discussed by comparing the molecular sizes of these organic signals to the channel pore size. Swelling-independent activation mechanisms include a physicochemical one caused by the reduction of intracellular ionic strength and a biochemical one caused by oxidation due to stimulation by receptor agonists or apoptosis inducers. Because some organic substances released via VSOR/VRAC upon cell swelling can trigger or augment VSOR/VRAC activation in an autocrine fashion, swelling-dependent activation mechanisms are to be divided into two phases: the first phase induced by cell swelling per se and the second phase caused by receptor stimulation by released organic signals.

{"title":"Physiology of the volume-sensitive/regulatory anion channel VSOR/VRAC: part 2: its activation mechanisms and essential roles in organic signal release.","authors":"Yasunobu Okada","doi":"10.1186/s12576-024-00926-3","DOIUrl":"https://doi.org/10.1186/s12576-024-00926-3","url":null,"abstract":"<p><p>The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types, and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 2 review article describes, from the physiological and pathophysiological standpoints, first the pivotal roles of VSOR/VRAC in the release of autocrine/paracrine organic signal molecules, such as glutamate, ATP, glutathione, cGAMP, and itaconate, as well as second the swelling-independent and -dependent activation mechanisms of VSOR/VRAC. Since the pore size of VSOR/VRAC has now well been evaluated by electrophysiological and 3D-structural methods, the signal-releasing activity of VSOR/VRAC is here discussed by comparing the molecular sizes of these organic signals to the channel pore size. Swelling-independent activation mechanisms include a physicochemical one caused by the reduction of intracellular ionic strength and a biochemical one caused by oxidation due to stimulation by receptor agonists or apoptosis inducers. Because some organic substances released via VSOR/VRAC upon cell swelling can trigger or augment VSOR/VRAC activation in an autocrine fashion, swelling-dependent activation mechanisms are to be divided into two phases: the first phase induced by cell swelling per se and the second phase caused by receptor stimulation by released organic signals.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"34"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The interactive effects of different exercises and hawthorn consumption on the pain threshold of TMT-induced Alzheimer male rats.
IF 2.6 4区 医学 Q2 PHYSIOLOGY Pub Date : 2024-01-01 Epub Date: 2025-01-02 DOI: 10.1186/s12576-024-00925-4
Ensiyeh Almasi, Ali Heidarianpour, Maryam Keshvari

Exercise increases the pain threshold in healthy people. However, the pain threshold modulation effect of exercise and hawthorn is unclear because of its potential benefits in people with persistent pain, including those with Alzheimer's disease. Accordingly, after the induction of Alzheimer's disease by trimethyl chloride, male rats with Alzheimer's disease were subjected to a 12-week training regimen consisting of resistance training, swimming endurance exercises, and combined exercises. In addition, hawthorn extract was orally administered to the rats. Then, their pain threshold was evaluated using three Tail-flick, Hot-plate, and Formalin tests. Our results showed that Alzheimer's decreased the pain threshold in all three behavioral tests. Combined exercise with hawthorn consumption had the most statistically significant effect on Alzheimer's male rats' pain threshold in all three experiments. A combination of swimming endurance and resistance exercises with hawthorn consumption may modulate hyperalgesia in Alzheimer's rats. Future studies need to determine the effects of these factors on the treatment and/or management of painful conditions. GRAPHICAL ABSTRACT.

{"title":"The interactive effects of different exercises and hawthorn consumption on the pain threshold of TMT-induced Alzheimer male rats.","authors":"Ensiyeh Almasi, Ali Heidarianpour, Maryam Keshvari","doi":"10.1186/s12576-024-00925-4","DOIUrl":"https://doi.org/10.1186/s12576-024-00925-4","url":null,"abstract":"<p><p>Exercise increases the pain threshold in healthy people. However, the pain threshold modulation effect of exercise and hawthorn is unclear because of its potential benefits in people with persistent pain, including those with Alzheimer's disease. Accordingly, after the induction of Alzheimer's disease by trimethyl chloride, male rats with Alzheimer's disease were subjected to a 12-week training regimen consisting of resistance training, swimming endurance exercises, and combined exercises. In addition, hawthorn extract was orally administered to the rats. Then, their pain threshold was evaluated using three Tail-flick, Hot-plate, and Formalin tests. Our results showed that Alzheimer's decreased the pain threshold in all three behavioral tests. Combined exercise with hawthorn consumption had the most statistically significant effect on Alzheimer's male rats' pain threshold in all three experiments. A combination of swimming endurance and resistance exercises with hawthorn consumption may modulate hyperalgesia in Alzheimer's rats. Future studies need to determine the effects of these factors on the treatment and/or management of painful conditions. GRAPHICAL ABSTRACT.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"36"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of age on nicotinic cholinergic regulation of blood flow in rat's olfactory bulb and neocortex.
IF 2.6 4区 医学 Q2 PHYSIOLOGY Pub Date : 2024-01-01 Epub Date: 2025-01-02 DOI: 10.1186/s12576-024-00913-8
Sae Uchida, Fusako Kagitani

The olfactory bulb receives cholinergic basal forebrain inputs as does the neocortex. With a focus on nicotinic acetylcholine receptors (nAChRs), this review article provides an overview and discussion of the following findings: (1) the nAChRs-mediated regulation of regional blood flow in the neocortex and olfactory bulb, (2) the nAChR subtypes that mediate their responses, and (3) their activity in old rats. The activation of the α4β2-like subtype of nAChRs produces vasodilation in the neocortex, and potentiates olfactory bulb vasodilation induced by olfactory stimulation. The nAChR activity producing neocortical vasodilation was similarly maintained in 2-year-old rats as in adult rats, but was clearly reduced in 3-year-old rats. In contrast, nAChR activity in the olfactory bulb was reduced already in 2-year-old rats. Thus, age-related impairment of α4β2-like nAChR function may occur earlier in the olfactory bulb than in the neocortex. Given the findings, the vasodilation induced by α4β2-like nAChR activation may be beneficial for neuroprotection in the neocortex and the olfactory bulb.

{"title":"Influence of age on nicotinic cholinergic regulation of blood flow in rat's olfactory bulb and neocortex.","authors":"Sae Uchida, Fusako Kagitani","doi":"10.1186/s12576-024-00913-8","DOIUrl":"https://doi.org/10.1186/s12576-024-00913-8","url":null,"abstract":"<p><p>The olfactory bulb receives cholinergic basal forebrain inputs as does the neocortex. With a focus on nicotinic acetylcholine receptors (nAChRs), this review article provides an overview and discussion of the following findings: (1) the nAChRs-mediated regulation of regional blood flow in the neocortex and olfactory bulb, (2) the nAChR subtypes that mediate their responses, and (3) their activity in old rats. The activation of the α4β2-like subtype of nAChRs produces vasodilation in the neocortex, and potentiates olfactory bulb vasodilation induced by olfactory stimulation. The nAChR activity producing neocortical vasodilation was similarly maintained in 2-year-old rats as in adult rats, but was clearly reduced in 3-year-old rats. In contrast, nAChR activity in the olfactory bulb was reduced already in 2-year-old rats. Thus, age-related impairment of α4β2-like nAChR function may occur earlier in the olfactory bulb than in the neocortex. Given the findings, the vasodilation induced by α4β2-like nAChR activation may be beneficial for neuroprotection in the neocortex and the olfactory bulb.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"18"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglia mediate the increase in slow-wave sleep associated with high ambient temperature.
IF 2.6 4区 医学 Q2 PHYSIOLOGY Pub Date : 2024-01-01 Epub Date: 2025-01-02 DOI: 10.1186/s12576-024-00929-0
Sena Hatori, Futaba Matsui, Zhiwen Zhou, Hiroaki Norimoto

An increase in ambient temperature leads to an increase in sleep. However, the mechanisms behind this phenomenon remain unknown. This study aimed to investigate the role of microglia in the increase of sleep caused by high ambient temperature. We confirmed that at 35 °C, slow-wave sleep was significantly increased relative to those observed at 25 °C. Notably, this effect was abolished upon treatment with PLX3397, a CSF1R inhibitor that can deplete microglia, while sleep amount at 25°C was unaffected. These observations suggest that microglia play a pivotal role in modulating the homeostatic regulation of sleep in response to the fluctuations in ambient temperature.

{"title":"Microglia mediate the increase in slow-wave sleep associated with high ambient temperature.","authors":"Sena Hatori, Futaba Matsui, Zhiwen Zhou, Hiroaki Norimoto","doi":"10.1186/s12576-024-00929-0","DOIUrl":"https://doi.org/10.1186/s12576-024-00929-0","url":null,"abstract":"<p><p>An increase in ambient temperature leads to an increase in sleep. However, the mechanisms behind this phenomenon remain unknown. This study aimed to investigate the role of microglia in the increase of sleep caused by high ambient temperature. We confirmed that at 35 °C, slow-wave sleep was significantly increased relative to those observed at 25 °C. Notably, this effect was abolished upon treatment with PLX3397, a CSF1R inhibitor that can deplete microglia, while sleep amount at 25°C was unaffected. These observations suggest that microglia play a pivotal role in modulating the homeostatic regulation of sleep in response to the fluctuations in ambient temperature.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"37"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Physiological Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1