Small fractions of patients suffer from radiotherapy late severe adverse events (AEs Grade ≥ 3), which are usually irreversible and badly affect their quality of life. A novel functional DNA repair assay characterizing several steps of double-strand break (DSB) repair mechanisms was used. DNA repair activities of peripheral blood mononuclear cells were monitored for 1 week using NEXT-SPOT assay in 177 breast and prostate cancer patients. Only seven patients had Grade ≥ 3 AEs, 6 months after radiotherapy initiation. The machine learning method established the importance of variables among demographic, clinical and DNA repair data. The most relevant ones, all related to DNA repair, were employed to build a predictor. Predictors constructed with random forest and minimum bounding sphere predicted late Grade ≥ 3 AEs with a sensitivity of 100% and specificity of 77.17 and 86.22%, respectively. This multiplex functional approach strongly supports a dominant role for DSB repair in the development of chronic AEs. It also showed that affected patients share specific features related to functional aspects of DSB repair. This strategy may be suitable for routine clinical analysis and paves the way for modelling DSB repair associated with severe AEs induced by radiotherapy.
The ionizing radiation with high linear energy transfer (LET), such as a heavy ion beam, induces more serious biological effects than low LET ones, such as gamma- and X-rays. This indicates a difference in the DNA damage produced by low and high LET radiations and their biological effects. We have been studying the differences in DNA damage produced by gamma-rays and carbon ion beams. Therefore, we analyze mutations induced by both ionizing radiations to discuss the differences in their biological effects in this study. pUC19 plasmid DNA was irradiated by carbon ion beams in the solution containing 1M dimethyl sulfoxide to mimic a cellular condition. The irradiated DNA was cloned in competent cells of Escherichia coli. The clones harboring some mutations in the region of lacZα were selected, and the sequence alterations were analyzed. A one-deletion mutation is significant in the carbon-irradiated DNA, and the C:G↔T:A transition is minor. On the other hand, the gamma-irradiated DNA shows mainly G:C↔T:A transversion. These results suggest that carbon ion beams produce complex DNA damage, and gamma-rays are prone to single oxidative base damage, such as 8-oxoguanine. Carbon ion beams can also introduce oxidative base damage, and the damage species is 5-hydroxycytosine. This was consistent with our previous results of DNA damage caused by heavy ion beams. We confirmed the causal DNA damage by mass spectrometry for these mutations.
Recently, biomolecular condensates formed through liquid-liquid phase separation have been widely reported to regulate key intracellular processes involved in cell biology and pathogenesis. BRD4 is a nuclear protein instrumental to the establishment of phase-separated super-enhancers (SEs) to direct the transcription of important genes. We previously observed that protein droplets of BRD4 became hydrophobic as their size increase, implying an ability of SEs to limit the ionization of water molecules by irradiation. Here, we aim to establish if SEs confer radiation resistance in cancer cells. We established an in vitro DNA damage assay that measures the effect of radicals provoked by the Fenton reaction on DNA integrity. This revealed that DNA damage was markedly reduced when BRD4 underwent phase separation with DNA. Accordingly, co-focal imaging analyses revealed that SE foci and DNA damage foci are mutually exclusive in irradiated cells. Lastly, we observed that the radioresistance of cancer cells was significantly reduced when irradiation was combined with ARV-771, a BRD4 de-stabilizer. Our data revealed the existence of innately radioresistant genomic regions driven by phase separation in cancer cells. The disruption of these phase-separated components enfolding genomic DNA may represent a novel strategy to augment the effects of radiotherapy.
The aim of this study was to investigate planning target volume (PTV) margin in online adaptive radiation therapy (oART) for gastric mucosa-associated lymphoid tissue (MALT) lymphomas. Four consecutive patients with gastric MALT lymphoma who received oART (30 Gy in 15 fractions) on the oART system were included in this study. One hundred and twenty cone-beam computed tomography (CBCT) scans acquired pre- and post-treatment of 60 fractions for all patients were used to evaluate intra- and interfractional motions. Patients were instructed on breath-holding at exhalation during image acquisition. To assess the intrafraction gastric motion, different PTVs were created by isotropically extending the CTV contoured on a pre-CBCT image (CTVpre) at1 mm intervals. Intrafraction motion was defined as the amount of expansion covering the contoured CTV on post-CBCT images (CTVpost). Interfractional motion was defined as the amount of reference CTV expansion that could cover each CTVpre, as well as the evaluation of the intrafractional motion. PTV margins were estimated from the cumulative proportion of fraction covering the intra- and interfractional motions. The extent of expansion covering the CTVs in 90% of fractions was adopted as the PTV margin. The PTV margin for intrafractional gastric motion using the oART system with breath-holding was 14 mm. In contrast, the PTV margin for interfractional gastric organ motion without the oART system was 25 mm. These results indicated that the oART system can reduce the PTV margin by >10 mm. Our results could be valuable data for oART cases.
Fractionated total body irradiation (TBI) with X-rays induces thymic lymphoma/leukemia (TL) in C57BL/6 mice. Radiation-induced mouse TL (RITL) can be prevented by bone marrow transplantation (BMT) of unirradiated BM cells. However, the mechanisms underlying the prevention of RITL with BMT remain unclear. Here, we show that BMT restores thymic T-cell differentiation in mice subjected to TBI. TBI (four times of 1.8 Gy X-rays weekly) was conducted with C57BL/6 mice. BMT was performed immediately after the last irradiation of TBI in mice by transplantation of BM cells isolated from enhanced green fluorescence protein (eGFP) transgenic mice. Thymic cell numbers were drastically decreased in TBI and TBI + BMT mice compared to those in non-irradiated mice. Flow cytometry showed a dramatic decrease in double negative (DN, CD4-CD8-) thymocytes, especially DN2 (CD25+CD44+) and DN3 (CD25+CD44-) subpopulations, in the TBI mice on Day 10 after the last irradiation. In contrast, the DN2 and DN3 populations were recovered in TBI + BMT mice. Interestingly, these restored DN2 and DN3 cells mainly differentiated from eGFP-negative recipient cells but not from eGFP-positive donor cells, suggesting that transplanted BM cells may interact with recipient cells to restore thymic T-cell development in the RITL model. Taken together, our findings highlight the significance of restoring thymic T-cell differentiation by BMT in RITL prevention.
Laryngeal squamous cell carcinoma (LSCC) is one of the most aggressive cancers that affect the head and neck region. Recent researches have confirmed that long non-coding RNAs (lncRNAs) present an emerging role in diversiform diseases including cancers. Prostate cancer-associated ncRNA transcript 6 (PCAT6) is an oncogene in lung cancer, cervical cancer, colon cancer and gastric cancer, but its role in LSCC is still unknown. In the current study, we attempted to figure out the role of PCAT6 in LSCC. RT-qPCR was to analyze PCAT6 expression in LSCC cells. Functional assays were to uncover the role of PCAT6 in LSCC. Mechanism assays were to explore the regulatory mechanism behind PCAT6 in LSCC. PCAT6 exhibited higher expression in LSCC cells and PCAT6 strengthened cell proliferation and inhibited cell apoptosis. Furthermore, lncRNA PCAT6 modulated notch receptor 3 expression and activated NOTCH signaling pathway via serving as a sponge for miR-4731-5p. Taken together, lncRNA PCAT6 was identified as an oncogene in LSCC, which revealed that PCAT6 might be used as potential therapeutic target for LSCC.
Machine- and patient-specific quality assurance (QA) is essential to ensure the safety and accuracy of radiotherapy. QA methods have become complex, especially in high-precision radiotherapy such as intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), and various recommendations have been reported by AAPM Task Groups. With the widespread use of IMRT and VMAT, there is an emerging demand for increased operational efficiency. Artificial intelligence (AI) technology is quickly growing in various fields owing to advancements in computers and technology. In the radiotherapy treatment process, AI has led to the development of various techniques for automated segmentation and planning, thereby significantly enhancing treatment efficiency. Many new applications using AI have been reported for machine- and patient-specific QA, such as predicting machine beam data or gamma passing rates for IMRT or VMAT plans. Additionally, these applied technologies are being developed for multicenter studies. In the current review article, AI application techniques in machine- and patient-specific QA have been organized and future directions are discussed. This review presents the learning process and the latest knowledge on machine- and patient-specific QA. Moreover, it contributes to the understanding of the current status and discusses the future directions of machine- and patient-specific QA.