Makoto Saito, Kota Abe, Masato Tsuneda, Yukio Fujita, Yukinao Abe, Tsumugi Nishimura, Asuka Kodate, Aki Kanazawa, Rintaro Harada, Miho Watanabe, Takashi Uno
The purpose of this study was to evaluate the feasibility of treatment plans for prostate cancer with magnetic resonance (MR)-guided online adaptive radiotherapy, which are generated using deformable image registration (DIR)-created contours of the targets and organs. Totally, 150 fractions from 30 prostate cancer patients implanted with a hydrogel spacer and treated with the MR-Linac were studied. Reference treatment plans that satisfied all institutional dose constraints were initially created on planning MRI. The adaptive treatment plans were created on daily MRI based on the reference plan using the DIR-created contours, ensuring all dose constraints were met. Subsequently, a clinician manually created reference contours for each daily MRI. Finally, the dose volume histogram indices of the plan generated with DIR-created contours were re-evaluated with clinician created contours. The evaluated contours included the bladder wall, rectum wall, sigmoid, small bowel and planning target volume (PTV) for dose prescription. The PTV for dose prescription met the dose constraints in all fractions. The bladder and rectum walls met the dose constraint of maximum dose (D0.03 cc) in all fractions. Five patients failed to meet the sigmoid and small bowel dose constraints, with the largest deviation being 13.3% exceedance at D2 cc in the small bowel added 3 mm margin. This study suggests that most treatment plans created without modifying the DIR-created contours are clinically viable. However, dislodgements of the small bowel and sigmoid may exceed the extent of DIR propagation from the reference plan contours, and it is recommended that these contours be verified.
这项研究的目的是评估利用磁共振(MR)引导的在线自适应放疗治疗前列腺癌计划的可行性,该计划是利用可变形图像配准(DIR)创建的目标和器官轮廓生成的。共研究了 30 名植入水凝胶垫片并接受 MR-Linac 治疗的前列腺癌患者的 150 个分段。最初在规划核磁共振成像时创建了满足所有机构剂量限制的参考治疗计划。使用 DIR 创建的轮廓,根据参考计划在每日 MRI 上创建自适应治疗计划,确保满足所有剂量限制。随后,临床医生为每台每日 MRI 手动创建参考轮廓。最后,使用临床医生创建的轮廓对使用 DIR 创建的轮廓生成的计划的剂量体积直方图指数进行重新评估。评估的轮廓包括膀胱壁、直肠壁、乙状结肠、小肠和剂量处方的规划目标体积(PTV)。用于剂量处方的 PTV 符合所有分段的剂量限制。膀胱壁和直肠壁在所有分次中都符合最大剂量(D0.03 cc)的剂量限制。有五名患者未能达到乙状结肠和小肠的剂量限制,其中最大的偏差是小肠的 D2 cc 超标了 13.3%,边缘增加了 3 毫米。这项研究表明,大多数不修改 DIR 创建轮廓的治疗方案在临床上都是可行的。但是,小肠和乙状结肠的移位可能会超出参考计划轮廓的 DIR 传播范围,因此建议对这些轮廓进行验证。
{"title":"Feasibility of creating a daily adaptive plan using automatic DIR-created target and OARs contours in patients with prostate cancer magnetic-resonance-guided adaptive radiotherapy.","authors":"Makoto Saito, Kota Abe, Masato Tsuneda, Yukio Fujita, Yukinao Abe, Tsumugi Nishimura, Asuka Kodate, Aki Kanazawa, Rintaro Harada, Miho Watanabe, Takashi Uno","doi":"10.1093/jrr/rrae088","DOIUrl":"10.1093/jrr/rrae088","url":null,"abstract":"<p><p>The purpose of this study was to evaluate the feasibility of treatment plans for prostate cancer with magnetic resonance (MR)-guided online adaptive radiotherapy, which are generated using deformable image registration (DIR)-created contours of the targets and organs. Totally, 150 fractions from 30 prostate cancer patients implanted with a hydrogel spacer and treated with the MR-Linac were studied. Reference treatment plans that satisfied all institutional dose constraints were initially created on planning MRI. The adaptive treatment plans were created on daily MRI based on the reference plan using the DIR-created contours, ensuring all dose constraints were met. Subsequently, a clinician manually created reference contours for each daily MRI. Finally, the dose volume histogram indices of the plan generated with DIR-created contours were re-evaluated with clinician created contours. The evaluated contours included the bladder wall, rectum wall, sigmoid, small bowel and planning target volume (PTV) for dose prescription. The PTV for dose prescription met the dose constraints in all fractions. The bladder and rectum walls met the dose constraint of maximum dose (D0.03 cc) in all fractions. Five patients failed to meet the sigmoid and small bowel dose constraints, with the largest deviation being 13.3% exceedance at D2 cc in the small bowel added 3 mm margin. This study suggests that most treatment plans created without modifying the DIR-created contours are clinically viable. However, dislodgements of the small bowel and sigmoid may exceed the extent of DIR propagation from the reference plan contours, and it is recommended that these contours be verified.</p>","PeriodicalId":16922,"journal":{"name":"Journal of Radiation Research","volume":" ","pages":"845-850"},"PeriodicalIF":1.9,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630044/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Our previous study demonstrated that the linear quadratic model appeared to be not well-suited for high dose per fraction due to an observed increase in α/β ratio as the dose per fraction increased. To further validate this conclusion, we draw the cell survival curve to calculate the α/β ratio by the clone formation experiment and then convert the fractionated radiation dose into an equivalent single hypofractionated radiation dose comparing with that on the survival curve. Western Blot and laser confocal immunofluorescence were used to detect the expression of γ-H2AX and RAD51 after different fractionated modes of radiation. We constructed a murine xenograft model, and changes in transplanted tumor volume were used to evaluate the biological effects after different fractionated radiation. The results demonstrated that when fractionated radiation dose was converted into equivalent single hypofractionated radiation dose, the effectiveness of hypofractionated radiation was overestimated. If a larger α/β ratio was used, the discrepancy tended to become smaller. γ-H2AX was higher in 24 h after a single high dose radiation than the continuous expression of the DNA repair marker RAD51. This implies more irreparable damage in a single high dose radiation compared with fractionated radiation. In the murine xenograft model, the effectiveness of hypofractionated radiation was also overestimated, and additional fractions of irradiation may be required. The conclusion is that after single hypofractionated radiation, the irreparable damage in cells increased (α value increased) and some repairable sublethal damage (β value) was converted into irreparable damage (α value). When α value increased and β value decreased, the ratio increased.
我们之前的研究表明,线性二次模型似乎并不适合高分次剂量,因为随着分次剂量的增加,α/β比值也会增加。为了进一步验证这一结论,我们绘制了细胞存活曲线,通过克隆形成实验计算α/β比值,然后将分次辐射剂量转换为等效的单次低分次辐射剂量,并与存活曲线上的比值进行比较。采用 Western Blot 和激光共聚焦免疫荧光技术检测不同分次辐射模式后γ-H2AX 和 RAD51 的表达。我们构建了小鼠异种移植模型,并利用移植肿瘤体积的变化来评估不同分次辐射后的生物学效应。结果表明,将分次放射剂量转换为等效的单次低分次放射剂量时,低分次放射的有效性被高估。如果使用更大的α/β比值,差异则有变小的趋势。单次高剂量辐射后 24 小时内,γ-H2AX 的表达高于 DNA 修复标记 RAD51 的持续表达。这意味着与分次辐射相比,单次大剂量辐射造成的不可修复的损伤更大。在小鼠异种移植模型中,低分次辐射的有效性也被高估,可能需要额外的分次照射。结论是单次低分次辐射后,细胞内不可修复的损伤增加(α 值增加),一些可修复的亚致死性损伤(β 值)转化为不可修复的损伤(α 值)。当 α 值增大而 β 值减小时,比值增大。
{"title":"Elevated α/β ratio after hypofractionated radiotherapy correlated with DNA damage repairment in an experimental model of prostate cancer.","authors":"Ming Cui, Yuexian Li, Ji Liu, Deyu Sun","doi":"10.1093/jrr/rrae077","DOIUrl":"10.1093/jrr/rrae077","url":null,"abstract":"<p><p>Our previous study demonstrated that the linear quadratic model appeared to be not well-suited for high dose per fraction due to an observed increase in α/β ratio as the dose per fraction increased. To further validate this conclusion, we draw the cell survival curve to calculate the α/β ratio by the clone formation experiment and then convert the fractionated radiation dose into an equivalent single hypofractionated radiation dose comparing with that on the survival curve. Western Blot and laser confocal immunofluorescence were used to detect the expression of γ-H2AX and RAD51 after different fractionated modes of radiation. We constructed a murine xenograft model, and changes in transplanted tumor volume were used to evaluate the biological effects after different fractionated radiation. The results demonstrated that when fractionated radiation dose was converted into equivalent single hypofractionated radiation dose, the effectiveness of hypofractionated radiation was overestimated. If a larger α/β ratio was used, the discrepancy tended to become smaller. γ-H2AX was higher in 24 h after a single high dose radiation than the continuous expression of the DNA repair marker RAD51. This implies more irreparable damage in a single high dose radiation compared with fractionated radiation. In the murine xenograft model, the effectiveness of hypofractionated radiation was also overestimated, and additional fractions of irradiation may be required. The conclusion is that after single hypofractionated radiation, the irreparable damage in cells increased (α value increased) and some repairable sublethal damage (β value) was converted into irreparable damage (α value). When α value increased and β value decreased, the ratio increased.</p>","PeriodicalId":16922,"journal":{"name":"Journal of Radiation Research","volume":" ","pages":"776-786"},"PeriodicalIF":1.9,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630060/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to identify the required capabilities and workload of medical staff in accelerator-based boron neutron capture therapy (BNCT). From August to September 2022, a questionnaire related to the capabilities and workload in the accelerator-based BNCT was administered to 12 physicians, 7 medical physicists and 7 radiological technologists engaged in BNCT and 6 other medical physicists who were not engaged in BNCT to compare the results acquired by those engaged in BNCT. Only 6-21% of patients referred for BNCT received it. Furthermore, 30-75% of patients who received BNCT were treated at facilities located within their local district. The median required workload per treatment was 55 h. Considering additional workloads for ineligible patients, the required workload reached ~1.2 times longer than those for only eligible patients' treatment. With respect to capabilities, discrepancies were observed in treatment planning, quality assurance and quality control, and commissioning between medical physicists and radiological technologists. Furthermore, the specialized skills required by medical physicists are impossible to acquire from the experience of conventional radiotherapies as physicians engaged in BNCT were specialized not only in radiation oncology, but also in other fields. This study indicated the required workload and staff capabilities for conducting accelerator-based BNCT considering actual clinical conditions. The workload required for BNCT depends on the occupation. It is necessary to establish an educational program and certification system for the skills required to safely and effectively provide BNCT to patients.
{"title":"A national survey of medical staffs' required capability and workload for accelerator-based boron neutron capture therapy.","authors":"Satoshi Nakamura, Hiroki Tanaka, Takahiro Kato, Kazuhiko Akita, Mihiro Takemori, Yusaku Kasai, Tairo Kashihara, Yoshihiro Takai, Keiji Nihei, Hiroshi Onishi, Hiroshi Igaki","doi":"10.1093/jrr/rrae058","DOIUrl":"10.1093/jrr/rrae058","url":null,"abstract":"<p><p>This study aimed to identify the required capabilities and workload of medical staff in accelerator-based boron neutron capture therapy (BNCT). From August to September 2022, a questionnaire related to the capabilities and workload in the accelerator-based BNCT was administered to 12 physicians, 7 medical physicists and 7 radiological technologists engaged in BNCT and 6 other medical physicists who were not engaged in BNCT to compare the results acquired by those engaged in BNCT. Only 6-21% of patients referred for BNCT received it. Furthermore, 30-75% of patients who received BNCT were treated at facilities located within their local district. The median required workload per treatment was 55 h. Considering additional workloads for ineligible patients, the required workload reached ~1.2 times longer than those for only eligible patients' treatment. With respect to capabilities, discrepancies were observed in treatment planning, quality assurance and quality control, and commissioning between medical physicists and radiological technologists. Furthermore, the specialized skills required by medical physicists are impossible to acquire from the experience of conventional radiotherapies as physicians engaged in BNCT were specialized not only in radiation oncology, but also in other fields. This study indicated the required workload and staff capabilities for conducting accelerator-based BNCT considering actual clinical conditions. The workload required for BNCT depends on the occupation. It is necessary to establish an educational program and certification system for the skills required to safely and effectively provide BNCT to patients.</p>","PeriodicalId":16922,"journal":{"name":"Journal of Radiation Research","volume":" ","pages":"712-724"},"PeriodicalIF":1.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to clarify the dosimetric impact of calibration beam quality for calibration coefficients of the absorbed dose to water for an ionization chamber in an on-site dosimetry audit. Institution-measured doses of 200 photon and 184 electron beams were compared with the measured dose using one year data before and after the calibration of the ionization chamber used. For photon and electron reference dosimetry, the agreements of the institution-measured dose against two measured doses in this audit were evaluated using the calibration coefficients determined using 60Co (${N}_{D,mathrm{w},{}^{60}mathrm{Co}}$) and linear accelerator (linac) (${N}_{D,mathrm{w},Q}$) beams. For electron reference dosimetry, the agreement of two institution-measured doses against the measured dose was evaluated using${N}_{D,mathrm{w},Q}$. Institution-measured doses were evaluated using direct- and cross-calibration coefficients. For photon reference dosimetry, the mean differences and standard deviation (SD) of institution-measured dose against the measured dose using ${N}_{D,mathrm{w},{}^{60}mathrm{Co}}$ and ${N}_{D,mathrm{w},Q}$ were -0.1% ± 0.4% and -0.3% ± 0.4%, respectively. For electron reference dosimetry, the mean differences and SD of institution-measured dose using the direct-calibration coefficient against the measured dose using ${N}_{D,mathrm{w},{}^{60}mathrm{Co}}$ and ${N}_{D,mathrm{w},Q}$ were 1.3% ± 0.8% and 0.8% ± 0.8%, respectively. Further, the mean differences and SD of institution-measured dose using the cross-calibration coefficient against the measured dose using ${N}_{D,mathrm{w},Q}$ were -0.1% ± 0.6%. For photon beams, the dosimetric impact of introducing calibration coefficients determined using linac beams was small. For electron beams, it was larger, and the measured dose using ${N}_{D,mathrm{w},Q}$ was most consistent with the institution-measured dose, which was evaluated using a cross-calibration coefficient.
{"title":"Dosimetric impact of calibration coefficients determined using linear accelerator photon and electron beams for ionization chamber in an on-site dosimetry audit.","authors":"Kensuke Tani, Akihisa Wakita, Naoki Tohyama, Yukio Fujita","doi":"10.1093/jrr/rrae054","DOIUrl":"10.1093/jrr/rrae054","url":null,"abstract":"<p><p>This study aimed to clarify the dosimetric impact of calibration beam quality for calibration coefficients of the absorbed dose to water for an ionization chamber in an on-site dosimetry audit. Institution-measured doses of 200 photon and 184 electron beams were compared with the measured dose using one year data before and after the calibration of the ionization chamber used. For photon and electron reference dosimetry, the agreements of the institution-measured dose against two measured doses in this audit were evaluated using the calibration coefficients determined using 60Co (${N}_{D,mathrm{w},{}^{60}mathrm{Co}}$) and linear accelerator (linac) (${N}_{D,mathrm{w},Q}$) beams. For electron reference dosimetry, the agreement of two institution-measured doses against the measured dose was evaluated using${N}_{D,mathrm{w},Q}$. Institution-measured doses were evaluated using direct- and cross-calibration coefficients. For photon reference dosimetry, the mean differences and standard deviation (SD) of institution-measured dose against the measured dose using ${N}_{D,mathrm{w},{}^{60}mathrm{Co}}$ and ${N}_{D,mathrm{w},Q}$ were -0.1% ± 0.4% and -0.3% ± 0.4%, respectively. For electron reference dosimetry, the mean differences and SD of institution-measured dose using the direct-calibration coefficient against the measured dose using ${N}_{D,mathrm{w},{}^{60}mathrm{Co}}$ and ${N}_{D,mathrm{w},Q}$ were 1.3% ± 0.8% and 0.8% ± 0.8%, respectively. Further, the mean differences and SD of institution-measured dose using the cross-calibration coefficient against the measured dose using ${N}_{D,mathrm{w},Q}$ were -0.1% ± 0.6%. For photon beams, the dosimetric impact of introducing calibration coefficients determined using linac beams was small. For electron beams, it was larger, and the measured dose using ${N}_{D,mathrm{w},Q}$ was most consistent with the institution-measured dose, which was evaluated using a cross-calibration coefficient.</p>","PeriodicalId":16922,"journal":{"name":"Journal of Radiation Research","volume":" ","pages":"619-627"},"PeriodicalIF":1.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ionizing radiation promotes mammary carcinogenesis. Induction of DNA double-strand breaks (DSBs) is the initial event after radiation exposure, which can potentially lead to carcinogenesis, but the dynamics of DSB induction and repair are not well understood at the tissue level. In this study, we used female rats, which have been recognized as a useful experimental model for studying radiation effects on the mammary gland. We focused on differences in DSB kinetics among basal cells, luminal progenitor and mature cells in different parts of the mammary duct. 53BP1 foci were used as surrogate markers of DSBs, and 53BP1 foci in each mammary epithelial cell in immunostained tissue sections were counted 1-24 h after irradiation and fitted to an exponential function of time. Basal cells were identified as cytokeratin (CK) 14+ cells, luminal progenitor cells as CK8 + 18low cells and luminal mature cells as CK8 + 18high cells. The number of DSBs per nucleus tended to be higher in luminal cells than basal cells at 1 h post-irradiation. A model analysis indicated that basal cells in terminal end buds (TEBs), which constitute the leading edge of the mammary duct, had significantly fewer initial DSBs than the two types of luminal cells, and there was no significant difference in initial amount among the cell types in the subtending duct. The repair rate did not differ among mammary epithelial cell types or their locations. Thus, luminal progenitor and mature cells are more susceptible to radiation-induced DSBs than are basal cells in TEBs.
{"title":"Luminal progenitor and mature cells are more susceptible than basal cells to radiation-induced DNA double-strand breaks in rat mammary tissue.","authors":"Kento Nagata, Mayumi Nishimura, Kazuhiro Daino, Yukiko Nishimura, Yuya Hattori, Ritsuko Watanabe, Daisuke Iizuka, Akinari Yokoya, Keiji Suzuki, Shizuko Kakinuma, Tatsuhiko Imaoka","doi":"10.1093/jrr/rrae067","DOIUrl":"10.1093/jrr/rrae067","url":null,"abstract":"<p><p>Ionizing radiation promotes mammary carcinogenesis. Induction of DNA double-strand breaks (DSBs) is the initial event after radiation exposure, which can potentially lead to carcinogenesis, but the dynamics of DSB induction and repair are not well understood at the tissue level. In this study, we used female rats, which have been recognized as a useful experimental model for studying radiation effects on the mammary gland. We focused on differences in DSB kinetics among basal cells, luminal progenitor and mature cells in different parts of the mammary duct. 53BP1 foci were used as surrogate markers of DSBs, and 53BP1 foci in each mammary epithelial cell in immunostained tissue sections were counted 1-24 h after irradiation and fitted to an exponential function of time. Basal cells were identified as cytokeratin (CK) 14+ cells, luminal progenitor cells as CK8 + 18low cells and luminal mature cells as CK8 + 18high cells. The number of DSBs per nucleus tended to be higher in luminal cells than basal cells at 1 h post-irradiation. A model analysis indicated that basal cells in terminal end buds (TEBs), which constitute the leading edge of the mammary duct, had significantly fewer initial DSBs than the two types of luminal cells, and there was no significant difference in initial amount among the cell types in the subtending duct. The repair rate did not differ among mammary epithelial cell types or their locations. Thus, luminal progenitor and mature cells are more susceptible to radiation-induced DSBs than are basal cells in TEBs.</p>","PeriodicalId":16922,"journal":{"name":"Journal of Radiation Research","volume":" ","pages":"640-650"},"PeriodicalIF":1.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qinqin Cheng, Ruifeng Zhao, Xiaowa Wang, Xufei Wang
A Monte Carlo simulation was used to assess the performance of a collimated hollow X-ray microbeam for subcellular cytoplasm irradiation. A high-Z coaxial collimation structure with an inner core for nucleus shielding was investigated. Two key performances, the extraction efficiency (cytoplasm dose per unit incident fluence) and the dose contrast (cytoplasm-to-nucleus dose ratio), were evaluated regarding the influences of the material, geometry and physical arrangements of the collimator, target dish and incident beam source. Simulation results demonstrate that a gold coaxial structure with a practical collimation geometry of a 1-mm length, 10-μm inner diameter and 200-μm outer diameter, with the top exit closely attached (with a minimized air gap) to the bottom of a cell dish with a 3-μm thick Mylar film is recommended for cytoplasm irradiation of adherent mammalian cells. For a synchrotron source in the energy range < 10 keV, a dose contrast of approximately 100 can be achieved. For a bremsstrahlung source <30-kV tube voltage, a dose contrast of approximately 50-100 can still be achieved. General principles are summarized with further explanations of the performance of the hollow X-ray microbeam.
利用蒙特卡罗模拟评估了用于亚细胞质照射的准直空心 X 射线微束的性能。研究了一种高 Z 同轴准直结构,其内核用于屏蔽细胞核。针对准直器、靶盘和入射束源的材料、几何形状和物理排列的影响,对提取效率(单位入射流量的细胞质剂量)和剂量对比度(细胞质与细胞核的剂量比)这两个关键性能进行了评估。模拟结果表明,在对粘附的哺乳动物细胞进行细胞质辐照时,推荐使用长度为 1 毫米、内径为 10 微米、外径为 200 微米的实用准直几何形状的金同轴结构,其顶部出口与铺有 3 微米厚 Mylar 薄膜的细胞皿底部紧密相连(气隙最小)。对于能量范围为
{"title":"Collimation principles of a hollow X-ray microbeam for high-contrast cytoplasm irradiation.","authors":"Qinqin Cheng, Ruifeng Zhao, Xiaowa Wang, Xufei Wang","doi":"10.1093/jrr/rrae046","DOIUrl":"10.1093/jrr/rrae046","url":null,"abstract":"<p><p>A Monte Carlo simulation was used to assess the performance of a collimated hollow X-ray microbeam for subcellular cytoplasm irradiation. A high-Z coaxial collimation structure with an inner core for nucleus shielding was investigated. Two key performances, the extraction efficiency (cytoplasm dose per unit incident fluence) and the dose contrast (cytoplasm-to-nucleus dose ratio), were evaluated regarding the influences of the material, geometry and physical arrangements of the collimator, target dish and incident beam source. Simulation results demonstrate that a gold coaxial structure with a practical collimation geometry of a 1-mm length, 10-μm inner diameter and 200-μm outer diameter, with the top exit closely attached (with a minimized air gap) to the bottom of a cell dish with a 3-μm thick Mylar film is recommended for cytoplasm irradiation of adherent mammalian cells. For a synchrotron source in the energy range < 10 keV, a dose contrast of approximately 100 can be achieved. For a bremsstrahlung source <30-kV tube voltage, a dose contrast of approximately 50-100 can still be achieved. General principles are summarized with further explanations of the performance of the hollow X-ray microbeam.</p>","PeriodicalId":16922,"journal":{"name":"Journal of Radiation Research","volume":" ","pages":"591-602"},"PeriodicalIF":1.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420837/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
X-ray therapy aims to eliminate tumours while minimizing side effects. Intense mucositis is sometimes induced when irradiating the oral cavity with a dental metal crown (DMC). However, the underlying mechanisms of such inducing radiosensitization by DMC remain uncertain. This study explored the radiosensitizing mechanisms around DMCs in an interdisciplinary approach with cell experiments and Monte Carlo simulation with the PHITS code. Clonogenic survival and nuclear 53BP1 foci of a cell line derived from cervical cancer cells (HeLa cells) were measured post-irradiation with therapeutic X-rays near high-Z materials such as Pb or Au plates, and the experimental sensitizer enhancement ratio (SER) was obtained. Meanwhile, the dose enhancement ratio (DER) and relative biological effectiveness for DNA damage yields were calculated using the PHITS code, by considering the corresponding experimental condition. The experiments show the experimental SER values for cell survival and 53BP1 foci near metals are 1.2-1.4, which agrees well with the calculated DER values. These suggest that the radiosensitizing effects near metal are predominantly attributed to the dose increase. In addition, as a preclinical evaluation, the spatial distributions of DER near DMC are calculated using Computed Tomography Digital Imaging and Communications in Medicine (CT-DICOM) data and a simple tooth model. As a result, the DER values evaluated using the CT-DICOM data were lower than those from a simple tooth model. These findings highlight the challenge of evaluating radiosensitizing effects near DMCs using Digital Imaging and Communications in Medicine (DICOM) images due to volume-averaging effects and emphasize the need for a high-resolution (<1 mm) dose assessment method unaffected by these effects.
X 射线疗法旨在消除肿瘤,同时尽量减少副作用。用牙科金属冠(DMC)照射口腔有时会诱发强烈的粘膜炎。然而,DMC 诱导放射增敏的基本机制仍不确定。本研究采用跨学科方法,通过细胞实验和 PHITS 代码蒙特卡罗模拟,探索了 DMC 的放射致敏机制。实验测量了宫颈癌细胞株(HeLa 细胞)在铅或金板等高 Z 材料附近接受治疗性 X 射线照射后的克隆存活率和核 53BP1 病灶,并得出了实验增敏剂增强比(SER)。同时,考虑到相应的实验条件,利用 PHITS 代码计算了剂量增强比(DER)和 DNA 损伤产率的相对生物有效性。实验结果表明,细胞存活率和金属附近 53BP1 病灶的实验 SER 值为 1.2-1.4,与计算得出的 DER 值十分吻合。这表明金属附近的辐射致敏效应主要归因于剂量的增加。此外,作为临床前评估,利用计算机断层扫描数字成像和医学通信(CT-DICOM)数据和一个简单的牙齿模型,计算了 DMC 附近的 DER 空间分布。结果,使用 CT-DICOM 数据评估的 DER 值低于简单牙齿模型的 DER 值。这些发现凸显了使用医学数字成像和通信(DICOM)图像评估 DMC 附近的放射增敏效应所面临的挑战,因为它具有体积平均效应,并强调了使用高分辨率 (
{"title":"In vitro and in silico study of biological effects on cancer cells in the presence of metallic materials during radiotherapy.","authors":"Takuya Nagano, Yusuke Matsuya, Atsushi Kaida, Hitomi Nojima, Takuya Furuta, Kaoru Sato, Ryoichi Yoshimura, Masahiko Miura","doi":"10.1093/jrr/rrae062","DOIUrl":"10.1093/jrr/rrae062","url":null,"abstract":"<p><p>X-ray therapy aims to eliminate tumours while minimizing side effects. Intense mucositis is sometimes induced when irradiating the oral cavity with a dental metal crown (DMC). However, the underlying mechanisms of such inducing radiosensitization by DMC remain uncertain. This study explored the radiosensitizing mechanisms around DMCs in an interdisciplinary approach with cell experiments and Monte Carlo simulation with the PHITS code. Clonogenic survival and nuclear 53BP1 foci of a cell line derived from cervical cancer cells (HeLa cells) were measured post-irradiation with therapeutic X-rays near high-Z materials such as Pb or Au plates, and the experimental sensitizer enhancement ratio (SER) was obtained. Meanwhile, the dose enhancement ratio (DER) and relative biological effectiveness for DNA damage yields were calculated using the PHITS code, by considering the corresponding experimental condition. The experiments show the experimental SER values for cell survival and 53BP1 foci near metals are 1.2-1.4, which agrees well with the calculated DER values. These suggest that the radiosensitizing effects near metal are predominantly attributed to the dose increase. In addition, as a preclinical evaluation, the spatial distributions of DER near DMC are calculated using Computed Tomography Digital Imaging and Communications in Medicine (CT-DICOM) data and a simple tooth model. As a result, the DER values evaluated using the CT-DICOM data were lower than those from a simple tooth model. These findings highlight the challenge of evaluating radiosensitizing effects near DMCs using Digital Imaging and Communications in Medicine (DICOM) images due to volume-averaging effects and emphasize the need for a high-resolution (<1 mm) dose assessment method unaffected by these effects.</p>","PeriodicalId":16922,"journal":{"name":"Journal of Radiation Research","volume":" ","pages":"628-639"},"PeriodicalIF":1.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420842/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wilhelmina E Radstake, Alessio Parisi, Janet M Denbeigh, Chris J Beltran, Keith M Furutani
The repair of DNA double-strand breaks is a crucial yet delicate process which is affected by a multitude of factors. In this study, our goal is to analyse the influence of the linear energy transfer (LET) on the DNA repair kinetics. By utilizing the database of repair of DNA and aggregating the results of 84 experiments, we conduct various model fits to evaluate and compare different hypothesis regarding the effect of LET on the rejoining of DNA ends. Despite the considerable research efforts dedicated to this topic over the past decades, our findings underscore the complexity of the relationship between LET and DNA repair kinetics. This study leverages big data analysis to capture overall trends that single experimental studies might miss, providing a valuable model for understanding how radiation quality impacts DNA damage and subsequent biological effects. Our results highlight the gaps in our current understanding, emphasizing the pressing need for further investigation into this phenomenon.
DNA 双链断裂的修复是一个关键而又微妙的过程,受到多种因素的影响。在本研究中,我们的目标是分析线性能量转移(LET)对 DNA 修复动力学的影响。通过利用 DNA 修复数据库并汇总 84 项实验结果,我们进行了各种模型拟合,以评估和比较有关 LET 对 DNA 末端重接影响的不同假设。尽管在过去的几十年中对这一课题进行了大量的研究,但我们的研究结果凸显了 LET 与 DNA 修复动力学之间关系的复杂性。这项研究利用大数据分析捕捉了单一实验研究可能忽略的整体趋势,为了解辐射质量如何影响 DNA 损伤及随后的生物效应提供了一个有价值的模型。我们的研究结果凸显了我们目前认识上的差距,强调了进一步研究这一现象的迫切需要。
{"title":"Exploring the LET dependence of DNA DSB repair kinetics using the DR DNA database.","authors":"Wilhelmina E Radstake, Alessio Parisi, Janet M Denbeigh, Chris J Beltran, Keith M Furutani","doi":"10.1093/jrr/rrae071","DOIUrl":"10.1093/jrr/rrae071","url":null,"abstract":"<p><p>The repair of DNA double-strand breaks is a crucial yet delicate process which is affected by a multitude of factors. In this study, our goal is to analyse the influence of the linear energy transfer (LET) on the DNA repair kinetics. By utilizing the database of repair of DNA and aggregating the results of 84 experiments, we conduct various model fits to evaluate and compare different hypothesis regarding the effect of LET on the rejoining of DNA ends. Despite the considerable research efforts dedicated to this topic over the past decades, our findings underscore the complexity of the relationship between LET and DNA repair kinetics. This study leverages big data analysis to capture overall trends that single experimental studies might miss, providing a valuable model for understanding how radiation quality impacts DNA damage and subsequent biological effects. Our results highlight the gaps in our current understanding, emphasizing the pressing need for further investigation into this phenomenon.</p>","PeriodicalId":16922,"journal":{"name":"Journal of Radiation Research","volume":" ","pages":"651-657"},"PeriodicalIF":1.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420981/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142289699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Intracavitary brachytherapy with a remote after-loading system (RALS) is performed as a part of radical radiation therapy in cervical cancer. The radiation source is delivered directly through an applicator placed inside the uterus or vagina. Thorough quality control is important to prevent accidents that can lead to serious irradiation error, and an applicator check is one such quality control measure. We experienced a clinical situation in which a small volume of water was observed in the lumen of a post-sterilized applicator on treatment-planning CT. Although the submersion test was negative and no air bubbles emerged from the applicator, ultra-high-resolution computed tomography (U-HRCT) showed a linear crack reaching the inside of the applicator. This abnormality was not identified on treatment-planning CT, which has lower spatial resolution than U-HRCT. In addition, no linear cracks were seen on U-HRCT images of eight other applicators considered to be free from damage. U-HRCT may have superior potential to detect applicator damage and could be useful for quality assurance of the RALS procedure.
{"title":"A potential usefulness of ultra-high-resolution computed tomography in quality assurance of remote after-loading system for cervical cancer.","authors":"Masashi Kinjyo, Akihiro Nishie, Ryo Kudaka, Shota Nakano, Takuro Ariga","doi":"10.1093/jrr/rrae055","DOIUrl":"10.1093/jrr/rrae055","url":null,"abstract":"<p><p>Intracavitary brachytherapy with a remote after-loading system (RALS) is performed as a part of radical radiation therapy in cervical cancer. The radiation source is delivered directly through an applicator placed inside the uterus or vagina. Thorough quality control is important to prevent accidents that can lead to serious irradiation error, and an applicator check is one such quality control measure. We experienced a clinical situation in which a small volume of water was observed in the lumen of a post-sterilized applicator on treatment-planning CT. Although the submersion test was negative and no air bubbles emerged from the applicator, ultra-high-resolution computed tomography (U-HRCT) showed a linear crack reaching the inside of the applicator. This abnormality was not identified on treatment-planning CT, which has lower spatial resolution than U-HRCT. In addition, no linear cracks were seen on U-HRCT images of eight other applicators considered to be free from damage. U-HRCT may have superior potential to detect applicator damage and could be useful for quality assurance of the RALS procedure.</p>","PeriodicalId":16922,"journal":{"name":"Journal of Radiation Research","volume":" ","pages":"689-692"},"PeriodicalIF":1.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420836/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose of this study is to evaluate patient characteristics, treatments and outcomes in bone metastasis radiotherapy practice. Patients for whom radiotherapy for bone metastasis was planned at 26 institutions in Japan between December 2020 and March 2021 were consecutively registered in this prospective, observational study. Study measures included patient characteristics, pain relief, skeletal-related events (SREs), overall survival and incidence of radiation-related adverse events. Pain was evaluated using a numerical rating scale (NRS) from 0 to 10. Irradiated dose was analyzed by the biologically effective dose (BED) assuming α/β = 10. Overall, 232 patients were registered; 224 patients and 302 lesions were fully analyzed. Eastern Cooperative Oncology Group Performance Status was 0/1/2/3/4 in 23%/38%/22%/13%/4%; 59% of patients had spinal metastases and 84% had painful lesions (NRS ≥ 2). BED was <20 Gy (in 27%), 20-30 Gy (24%), 30-40 Gy (36%) and ≥ 40 Gy (13%); 9% of patients were treated by stereotactic body radiotherapy. Grade 3 adverse events occurred in 4% and no grade 4-5 toxicity was reported. Pain relief was achieved in 52% at 2 months. BED is not related to pain relief. The cumulative incidence of SREs was 6.5% (95% confidence interval (CI) 3.1-9.9) at 6 months; no factors were significantly associated with SREs. With spinal lesions, 18% of patients were not ambulatory at baseline and 50% of evaluable patients in this group could walk at 2 months. The 6-month overall survival rate was 70.2% (95% CI 64.2-76.9%). In conclusion, we report real-world details of radiotherapy in bone metastasis.
{"title":"Multi-institutional prospective observational study of radiotherapy for metastatic bone tumor.","authors":"Hideyuki Harada, Naoto Shikama, Akifumi Notsu, Hiroki Shirato, Kazunari Yamada, Haruka Uezono, Yutaro Koide, Hikaru Kubota, Takuya Yamazaki, Kei Ito, Joichi Heianna, Yukinori Okada, Ayako Tonari, Norio Katoh, Hitoshi Wada, Yasuo Ejima, Kayo Yoshida, Takashi Kosugi, Shigeo Takahashi, Takafumi Komiyama, Nobue Uchida, Misako Miwa, Miho Watanabe, Hisayasu Nagakura, Hiroko Ikeda, Tetsuo Saito, Isao Asakawa, Takeo Takahashi, Naoyuki Shigematsu","doi":"10.1093/jrr/rrae060","DOIUrl":"10.1093/jrr/rrae060","url":null,"abstract":"<p><p>Purpose of this study is to evaluate patient characteristics, treatments and outcomes in bone metastasis radiotherapy practice. Patients for whom radiotherapy for bone metastasis was planned at 26 institutions in Japan between December 2020 and March 2021 were consecutively registered in this prospective, observational study. Study measures included patient characteristics, pain relief, skeletal-related events (SREs), overall survival and incidence of radiation-related adverse events. Pain was evaluated using a numerical rating scale (NRS) from 0 to 10. Irradiated dose was analyzed by the biologically effective dose (BED) assuming α/β = 10. Overall, 232 patients were registered; 224 patients and 302 lesions were fully analyzed. Eastern Cooperative Oncology Group Performance Status was 0/1/2/3/4 in 23%/38%/22%/13%/4%; 59% of patients had spinal metastases and 84% had painful lesions (NRS ≥ 2). BED was <20 Gy (in 27%), 20-30 Gy (24%), 30-40 Gy (36%) and ≥ 40 Gy (13%); 9% of patients were treated by stereotactic body radiotherapy. Grade 3 adverse events occurred in 4% and no grade 4-5 toxicity was reported. Pain relief was achieved in 52% at 2 months. BED is not related to pain relief. The cumulative incidence of SREs was 6.5% (95% confidence interval (CI) 3.1-9.9) at 6 months; no factors were significantly associated with SREs. With spinal lesions, 18% of patients were not ambulatory at baseline and 50% of evaluable patients in this group could walk at 2 months. The 6-month overall survival rate was 70.2% (95% CI 64.2-76.9%). In conclusion, we report real-world details of radiotherapy in bone metastasis.</p>","PeriodicalId":16922,"journal":{"name":"Journal of Radiation Research","volume":" ","pages":"701-711"},"PeriodicalIF":1.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}