Telomere dysfunction induces chromosomal instability, which is a driving force in the development of cancers. To examine X-irradiation's effect on telomere integrity, we investigated X-ray-induced abnormalities in telomere signals detected by fluorescence in situ hybridization (telomere FISH) in mouse embryo fibroblast cells. The abnormalities were categorized as either extra telomere signals (ETSs) or loss of telomere signals (LTSs). The results indicated that low doses (0.3-0.5 Gy) of X-rays significantly induced ETS but not LTS and that ETS induction was saturated at doses above 0.5 Gy. In addition, treatment with hydrogen peroxide also induced ETS but not LTS. To clarify the involvement of radicals in inducing ETS, we examined the effect of ascorbic acid (AsA) on telomere FISH signals and found that pre-treatment with AsA (5 mM, 2 h), but not post-treatment, significantly suppressed the induction of ETS by X-irradiation. Importantly, neither pre- nor post-treatment with AsA affected X-ray-induced chromosome aberrations. These results suggest that oxidative DNA damage induced by radicals is involved in the induction of ETS. Furthermore, combined treatment with aphidicolin, a DNA replication inhibitor, elevated the induction of ETS by X-irradiation. This observation suggests that DNA replication stress, potentially triggered by oxidative DNA lesions within telomeres, may contribute to the induction of ETS resulting from X-irradiation. Based on these results, we propose that ETS is a sensitive biological marker of oxidative DNA damage in telomere structures.