首页 > 最新文献

2023 IEEE International Conference on Prognostics and Health Management (ICPHM)最新文献

英文 中文
1-D Residual Convolutional Neural Network coupled with Data Augmentation and Regularization for the ICPHM 2023 Data Challenge ICPHM 2023数据挑战赛的1-D残差卷积神经网络与数据增强和正则化
Pub Date : 2023-04-14 DOI: 10.1109/ICPHM57936.2023.10194183
Matthias Kreuzer, Walter Kellermann
In this article, we present our contribution to the International Conference on Prognostics and Health Management (ICPHM) 2023 Data Challenge on Industrial Systems' Health Monitoring using Vibration Analysis. For the task of classifying sun gear faults in a gearbox, we propose a residual Convolutive Neural Network (CNN) that operates on raw three-channel time-domain vibration signals. In conjunction with data augmentation and regu-larization techniques, the proposed model yields very good results in a multi-class classification scenario with real-world data despite its relatively small size, i.e., with less than 30,000 trainable parameters. Even when presented with data obtained from multiple operating conditions, the network is still capable to accurately predict the condition of the gearbox under inspection.
在本文中,我们介绍了我们对使用振动分析进行工业系统健康监测的2023年国际预测与健康管理会议(ICPHM)数据挑战的贡献。针对齿轮箱太阳齿轮故障的分类问题,提出了一种基于原始三通道时域振动信号的残差卷积神经网络(CNN)。结合数据增强和正则化技术,所提出的模型在具有真实数据的多类分类场景中产生了非常好的结果,尽管它的规模相对较小,即少于30,000个可训练参数。即使提供了从多个操作条件获得的数据,该网络仍然能够准确地预测被检查齿轮箱的状态。
{"title":"1-D Residual Convolutional Neural Network coupled with Data Augmentation and Regularization for the ICPHM 2023 Data Challenge","authors":"Matthias Kreuzer, Walter Kellermann","doi":"10.1109/ICPHM57936.2023.10194183","DOIUrl":"https://doi.org/10.1109/ICPHM57936.2023.10194183","url":null,"abstract":"In this article, we present our contribution to the International Conference on Prognostics and Health Management (ICPHM) 2023 Data Challenge on Industrial Systems' Health Monitoring using Vibration Analysis. For the task of classifying sun gear faults in a gearbox, we propose a residual Convolutive Neural Network (CNN) that operates on raw three-channel time-domain vibration signals. In conjunction with data augmentation and regu-larization techniques, the proposed model yields very good results in a multi-class classification scenario with real-world data despite its relatively small size, i.e., with less than 30,000 trainable parameters. Even when presented with data obtained from multiple operating conditions, the network is still capable to accurately predict the condition of the gearbox under inspection.","PeriodicalId":169274,"journal":{"name":"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117069578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Airborne Sound Analysis for the Detection of Bearing Faults in Railway Vehicles with Real-World Data 基于实际数据的轨道车辆轴承故障机载声分析
Pub Date : 2023-04-14 DOI: 10.1109/ICPHM57936.2023.10194026
Matthias Kreuzer, D. Schmidt, Simon Wokusch, Walter Kellermann
In this paper, we address the challenging problem of detecting bearing faults in railway vehicles by analyzing acoustic signals recorded during regular operation. For this, we introduce Mel Frequency Cepstral Coefficients (MFCCs) as features, which form the input to a simple Multi-Layer Perceptron classifier. The proposed method is evaluated with real-world data that was obtained for state-of-the-art commuter railway vehicles in a measurement campaign. The experiments show that bearing faults can be reliably detected with the chosen MFCC features even for bearing damages that were not included in training.
本文通过分析轨道车辆正常运行过程中记录的声信号,解决了轨道车辆轴承故障检测的难题。为此,我们引入了Mel频率倒谱系数(MFCCs)作为特征,它构成了一个简单的多层感知器分类器的输入。所提出的方法是评估与现实世界的数据,获得了最先进的通勤铁路车辆在测量活动。实验表明,即使对训练中未包含的轴承损伤,所选择的MFCC特征也能可靠地检测出轴承故障。
{"title":"Airborne Sound Analysis for the Detection of Bearing Faults in Railway Vehicles with Real-World Data","authors":"Matthias Kreuzer, D. Schmidt, Simon Wokusch, Walter Kellermann","doi":"10.1109/ICPHM57936.2023.10194026","DOIUrl":"https://doi.org/10.1109/ICPHM57936.2023.10194026","url":null,"abstract":"In this paper, we address the challenging problem of detecting bearing faults in railway vehicles by analyzing acoustic signals recorded during regular operation. For this, we introduce Mel Frequency Cepstral Coefficients (MFCCs) as features, which form the input to a simple Multi-Layer Perceptron classifier. The proposed method is evaluated with real-world data that was obtained for state-of-the-art commuter railway vehicles in a measurement campaign. The experiments show that bearing faults can be reliably detected with the chosen MFCC features even for bearing damages that were not included in training.","PeriodicalId":169274,"journal":{"name":"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124730414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
2023 IEEE International Conference on Prognostics and Health Management (ICPHM)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1