首页 > 最新文献

Journal of Raptor Research最新文献

英文 中文
Manuscript Referees 手稿裁判
IF 1.7 4区 生物学 Q2 ORNITHOLOGY Pub Date : 2023-02-01 DOI: 10.3356/JRR-Manuscript-Referees
P. Alarcón, D. Anderson, A. Archer, G. Barrowclough, A. Beardsell, J. Bednarz, D. Bell, J. Bell, K. Biles, S. Birrer, G. Blanco, P. Bloom, S. Chiavacci, W. Clark, M. Collopy, R. Crandall, B. Dudek, P. Dumandan, J. Heath, A. Hunt, W., Keeley, J. Kolowski, M. Martell, A. Matz, J. McCabe, R. McCabe, H., McCaslin, C. McClure, K. McDonnell, E. Miller, K. Miller, R. Miller, T. Miller, E. Mojica, J. Morant, J. Morrison, J. Morrow, D. Oleyar, N. Paprocki, A. Passarotto, M. Prommer, B. Robinson, E. Ruelas, Inzunza, M. Saggese, J. Smallwood, S. Smith, J. Terraube, D. Varland
The editorial staff thanks the following people for reviewing manuscripts for The Journal of Raptor Research in 2022. Peer review plays a vital role in the publishing process and improving the quality of the Journal. The names of those who reviewed two or more manuscripts are indicated with an asterisk. M. Abou-Turab, N. Agostini*, P. Alarcón*, M. Allen, T. Allison, O. Al-Sheikhly, D. Anderson*, A. Archer*, L. Arias Bernal, F. Barbar, R. Barbour, J. Barclay, G. Barrowclough, A. Beardsell, J. Bednarz*, D. Bell*, J. Bell*, K. Biles*, S. Birrer, G. Blanco*, P. Bloom*, C. Boal, G. Bogliani, J. Bosch, A. Botha, J. Brown, J. Buchanan, I. Bueno, K. Burnham, J. Calladine, S. Campbell, A. Capdevielle, V. Careau. C.-C. Chen, S. Chiavacci, W. Clark*, M. Collopy*, C. Concepcion, T. Conkling, D. Cooper, R. Crandall*, C. Davis, R. Dawson, F. DechaumeMoncharmont, S. Destefano, D. Diego Méndez, C. Dove, B. Dudek*, P. Dumandan*, O. Duriez, R. Efrat, Y. Ehlers-Smith, K. Elliott, T. Esque, C. Farmer, D. Fernández-Bellon, R. Figueroa R., M. Finkelstein, G. Fitzgerald, D. Fogell, J. Gallardo, T. Ganesh, M.-S. Garcia-Heras, R. Gerhardt, J. Gjershaug, L. Goodrich, J. Grande*, K. Gura, F. Hailer, M. Heacker, J. Heath*, K. Heath-Acre, C. Henny, C. Hermes, G. Herring*, S. Hindmarch, G. Holroyd, M. Huang, Y.-K. Huang*, A. Hunt*, G. Hunt, P. Hurtado, F. Iannarilli, W. Inselman, R. Jackman, M. Jiménez-Franco, K. Johansen, D. Johnson, M. Juhant, M. Kamm, E. Kappers, T. Katzner, W. Keeley*, E. Kettel, K. Kittelberger, M. Kochert, J. Kolowski*, O. Krone, Y. Kropacheva, V. Kucherenkol, R. Kumar, P. Legagneux, G. Leonardi, J. Lincer, M. Marini, M. Martell*, A. Matz, J. McCabe*, R. McCabe*, H. McCaslin, C. McClure*, K. McDonnell*, S. McPherson, P. Mehta, J. Meiburg, M. Melo, D. Méndez, E. Miller, K. Miller*, R. Miller*, T. Miller*, B. Millsap, E. Miranda, E. Mojica*, J. Morant*, J. Morrison, J. Morrow*, R. Muriel, C. Murn, C. Nadeau, C. Nicolai, V. Nijman, G. Njurumana, D. Ogada, D. Oleyar*, P. Olsen, S. Oppel, P. Orozco Valor, M. Otto, J. Pagel, C. Palacı́n, C. Panter, N. Paprocki*, A. Passarotto*, J. Pay, M. Pfeiffer, E. Phillips, P. Plaza, M. Prommer*, G. Proudfoot, C. Puan, S. Rae, G. Ritchison, B. Robinson*, E. Ruelas Inzunza*, M. Saggese*, G. Santolo, S. Sawant, S. Schulwitz, D. Scott, M. Seamans, B. Skipper*, J. Smallwood*, S. Smith*, V. Sokolov, G. Sonerud, S. Sonsthagen, R. Soria, D. Stahlecker, R. Steen, K. Steenhof*, T. Subedi, T. Swem, I. Szabo, J. Terraube*, M. Thakur, J.-F. Therrien, R. Thorstrom, F. Tulis, U. Väli, B. van der Veen, W. Vansteelant, D. Varland*, F. Vilella, B. Washburn, J. Watson, K. Watson*, P. Watts, E. West, K. Wiebe*, H. Williams, K. Williams, R. Wilson, T. Wilson, E. Wommack, T. Yamazaki, R. Ydenberg, D. Yong.
{"title":"Manuscript Referees","authors":"P. Alarcón, D. Anderson, A. Archer, G. Barrowclough, A. Beardsell, J. Bednarz, D. Bell, J. Bell, K. Biles, S. Birrer, G. Blanco, P. Bloom, S. Chiavacci, W. Clark, M. Collopy, R. Crandall, B. Dudek, P. Dumandan, J. Heath, A. Hunt, W., Keeley, J. Kolowski, M. Martell, A. Matz, J. McCabe, R. McCabe, H., McCaslin, C. McClure, K. McDonnell, E. Miller, K. Miller, R. Miller, T. Miller, E. Mojica, J. Morant, J. Morrison, J. Morrow, D. Oleyar, N. Paprocki, A. Passarotto, M. Prommer, B. Robinson, E. Ruelas, Inzunza, M. Saggese, J. Smallwood, S. Smith, J. Terraube, D. Varland","doi":"10.3356/JRR-Manuscript-Referees","DOIUrl":"https://doi.org/10.3356/JRR-Manuscript-Referees","url":null,"abstract":"The editorial staff thanks the following people for reviewing manuscripts for The Journal of Raptor Research in 2022. Peer review plays a vital role in the publishing process and improving the quality of the Journal. The names of those who reviewed two or more manuscripts are indicated with an asterisk. M. Abou-Turab, N. Agostini*, P. Alarcón*, M. Allen, T. Allison, O. Al-Sheikhly, D. Anderson*, A. Archer*, L. Arias Bernal, F. Barbar, R. Barbour, J. Barclay, G. Barrowclough, A. Beardsell, J. Bednarz*, D. Bell*, J. Bell*, K. Biles*, S. Birrer, G. Blanco*, P. Bloom*, C. Boal, G. Bogliani, J. Bosch, A. Botha, J. Brown, J. Buchanan, I. Bueno, K. Burnham, J. Calladine, S. Campbell, A. Capdevielle, V. Careau. C.-C. Chen, S. Chiavacci, W. Clark*, M. Collopy*, C. Concepcion, T. Conkling, D. Cooper, R. Crandall*, C. Davis, R. Dawson, F. DechaumeMoncharmont, S. Destefano, D. Diego Méndez, C. Dove, B. Dudek*, P. Dumandan*, O. Duriez, R. Efrat, Y. Ehlers-Smith, K. Elliott, T. Esque, C. Farmer, D. Fernández-Bellon, R. Figueroa R., M. Finkelstein, G. Fitzgerald, D. Fogell, J. Gallardo, T. Ganesh, M.-S. Garcia-Heras, R. Gerhardt, J. Gjershaug, L. Goodrich, J. Grande*, K. Gura, F. Hailer, M. Heacker, J. Heath*, K. Heath-Acre, C. Henny, C. Hermes, G. Herring*, S. Hindmarch, G. Holroyd, M. Huang, Y.-K. Huang*, A. Hunt*, G. Hunt, P. Hurtado, F. Iannarilli, W. Inselman, R. Jackman, M. Jiménez-Franco, K. Johansen, D. Johnson, M. Juhant, M. Kamm, E. Kappers, T. Katzner, W. Keeley*, E. Kettel, K. Kittelberger, M. Kochert, J. Kolowski*, O. Krone, Y. Kropacheva, V. Kucherenkol, R. Kumar, P. Legagneux, G. Leonardi, J. Lincer, M. Marini, M. Martell*, A. Matz, J. McCabe*, R. McCabe*, H. McCaslin, C. McClure*, K. McDonnell*, S. McPherson, P. Mehta, J. Meiburg, M. Melo, D. Méndez, E. Miller, K. Miller*, R. Miller*, T. Miller*, B. Millsap, E. Miranda, E. Mojica*, J. Morant*, J. Morrison, J. Morrow*, R. Muriel, C. Murn, C. Nadeau, C. Nicolai, V. Nijman, G. Njurumana, D. Ogada, D. Oleyar*, P. Olsen, S. Oppel, P. Orozco Valor, M. Otto, J. Pagel, C. Palacı́n, C. Panter, N. Paprocki*, A. Passarotto*, J. Pay, M. Pfeiffer, E. Phillips, P. Plaza, M. Prommer*, G. Proudfoot, C. Puan, S. Rae, G. Ritchison, B. Robinson*, E. Ruelas Inzunza*, M. Saggese*, G. Santolo, S. Sawant, S. Schulwitz, D. Scott, M. Seamans, B. Skipper*, J. Smallwood*, S. Smith*, V. Sokolov, G. Sonerud, S. Sonsthagen, R. Soria, D. Stahlecker, R. Steen, K. Steenhof*, T. Subedi, T. Swem, I. Szabo, J. Terraube*, M. Thakur, J.-F. Therrien, R. Thorstrom, F. Tulis, U. Väli, B. van der Veen, W. Vansteelant, D. Varland*, F. Vilella, B. Washburn, J. Watson, K. Watson*, P. Watts, E. West, K. Wiebe*, H. Williams, K. Williams, R. Wilson, T. Wilson, E. Wommack, T. Yamazaki, R. Ydenberg, D. Yong.","PeriodicalId":16927,"journal":{"name":"Journal of Raptor Research","volume":"19 1","pages":"123 - 123"},"PeriodicalIF":1.7,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84603783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scavenging of Roadkill by Mississippi Kites (Ictinia mississippiensis) 密西西比鸢(Ictinia密西西比)清除道路上的猎物
IF 1.7 4区 生物学 Q2 ORNITHOLOGY Pub Date : 2023-02-01 DOI: 10.3356/JRR-22-98
C. Boal
Mississippi Kites (Ictinia mississippiensis) prey primarily on large-bodied aerial insects such as cicadas (Hemiptera), locusts (Orthoptera), dragon flies (Odonata), and beetles (Coleoptera) but will, occasionally, take small aerial and terrestrial vertebrate prey (Glinski and Ohmart 1983, Shaw 1985, Bader and Bednarz 2011, Chiavacci et al. 2014, Welch and Boal 2015). Mississippi Kites are aerial hunters, capturing their prey while in flight, but also glean prey from branches of trees and capture nestling birds from nests (Welch and Boal 2015, Parker 2020). Several species of Accipitriformes (e.g., Golden Eagles [Aquila chrysaetos], Ferruginous Hawks [Buteo regalis]) and Falconiformes (e.g., Merlins [Falco columbarius], Peregrine Falcons [F. peregrinus]) are known to engage in facultative scavenging (Knopper et al. 2006, McIntyre et al. 2009, Lonsdorf et al. 2018, Varland et al. 2018, Skalos et al. 2022). However, scavenging by Mississippi Kites has not been described; the only published reference to the behavior that I have found is the statement that they ‘‘Will scavenge diverse roadkills (JWP)’’ (Parker 2020). Here I reported two observations of scavenging by Mississippi Kites in the urban setting of Lubbock, TX, USA. On 7 July 2022 at 0940 H, I was in a vehicle on a residential two-lane street waiting to enter the flow of traffic on a north-south running six-lane (three lanes in each direction with a turn lane in the center) thoroughfare. I observed an adult Mississippi Kite flying up from the road as traffic came by. It circled and went back down low between lanes of south-bound traffic, flared up, circled again and went back down and landed on an apparently road-killed White-winged Dove (Zenaida asiatica). It appeared to try to peck at the dove before quickly taking flight again as a new wave of vehicles went by. I lost sight of the Mississippi Kite after that, but when I returned later in the day, the remains of the dove were still present. In a separate incident on 13 July 2022 at approximately 0830 H, I observed three adult Mississippi Kites making repeated swoops, one after the other, down to a road-killed bird while barely avoiding vehicle traffic on a busy residential street. The three birds landed only briefly on the dead bird and sometimes pecked at it. This continued for several minutes during which the kites swooped down then lifted up repeatedly, and sometimes circled around higher or perched on a tree in a yard before returning to swooping at the roadkill. They eventually gave up and drifted away from the area. I inspected the roadkill and found that it too was a White-winged Dove. White-winged Doves are not reported as prey of Mississippi Kites. However, the rich nutritional value and volume of an available White-winged Dove carcass, compared to the primarily invertebrate diet of kites, may be very attractive to a Mississippi Kite. The Mississippi Kites in these observations tried to feed on the carcasses where they lay rather
密西西比鸢(Ictinia Mississippi)主要捕食体型较大的空中昆虫,如蝉(半翅目)、蝗虫(直翅目)、蜻蜓(蜻蜓目)和甲虫(鞘翅目),但偶尔也会捕食小型空中和陆地脊椎动物(Glinski and Ohmart 1983, Shaw 1985, Bader and Bednarz 2011, Chiavacci et al. 2014, Welch and Boal 2015)。密西西比风筝是空中猎人,在飞行中捕捉猎物,但也从树枝上收集猎物,从巢穴中捕捉雏鸟(Welch和Boal 2015, Parker 2020)。一些鹰形目(如金鹰[Aquila chrysaetos],铁鹰[Buteo regalis])和隼形目(如隼[Falco columbarius],游隼[F.;peregrinus])参与兼性清除(Knopper et al. 2006, McIntyre et al. 2009, Lonsdorf et al. 2018, Varland et al. 2018, Skalos et al. 2022)。然而,密西西比鸢的食腐没有被描述;我发现的关于这种行为的唯一发表的参考文献是它们“会清除各种道路死亡(JWP)”(Parker 2020)的声明。在这里,我报告了密西西比风筝在美国德克萨斯州拉伯克市的城市环境中拾荒的两次观察。2022年7月7日上午9点40分,我在一条住宅双车道街道上的一辆车里,等待进入一条南北走向的六车道(每个方向有三条车道,中间有一条转弯车道)的交通流。当车辆经过时,我看到一只成年的密西西比风筝从路上飞了起来。它盘旋了一圈,又在南行的车道之间低空飞了回来,突然爆发,又盘旋了一圈,又飞了回去,落在一只显然被公路撞死的白翅鸽子(Zenaida asiatica)身上。当一波又一波的车辆经过时,它似乎试图啄食鸽子,然后又迅速飞走了。在那之后,我就看不见密西西比风筝了,但是当我那天晚些时候回来的时候,鸽子的遗体还在。在2022年7月13日上午8点30分左右的另一起事件中,我观察到三只成年密西西比风筝一个接一个地反复俯冲,直到一只被道路撞死的鸟,而在繁忙的住宅街道上,它们几乎没有避开车辆。三只鸟只是短暂地落在那只死鸟身上,有时还啄啄它。这种情况持续了几分钟,在此期间,风筝俯冲下来,然后反复升起,有时在更高的地方盘旋,或者停在院子里的树上,然后再俯冲向路上的猎物。他们最终放弃了,漂离了这个地区。我检查了路上的尸体,发现它也是一只白翅鸽子。白翅鸽没有被报道为密西西比鸢的猎物。然而,与主要以无脊椎动物为食的风筝相比,白翼鸽子尸体丰富的营养价值和体积可能对密西西比风筝非常有吸引力。在这些观察中,密西西比鸢试图以它们躺在那里的尸体为食,而不是把它们带到一个更安全的喂食地点。这可能是由于鸽子的质量超过了风筝所能承受的重量。成年白翅鸽子的体重约为150克,根据风筝的性别,约为成年风筝重量的39 - 70% (Parker 2020)。这一团可能会阻止风筝把被道路撞死的鸽子转移到一个更安全的地方。无论如何,我观察到的风筝反复俯冲和短暂降落在路上的猎物上,因此,使自己受到车辆碰撞的风险增加。在城市环境中,被道路撞死的鸟类并不罕见,这可以为密西西比风筝提供充足的食腐机会。然而,食腐动物是一种危险的行为,可能会导致食腐动物死亡。例如,金鹰在清理道路上被杀死的动物时与车辆相撞而死亡是一个主要的保护问题(Lonsdorf等人,2018年,Slater等人,2022年),Wildman等人(1998年)报告说,红鸢(Milvus Milvus)在清理道路上被杀死的动物时因车辆碰撞而死亡。密西西比风筝通常在树冠高度或更高的地方觅食(Parker 2020),因此车辆碰撞通常不会成为它们预期的死亡风险。然而,清除可能是一个1电子邮件地址:clint.boal@ttu.edu
{"title":"Scavenging of Roadkill by Mississippi Kites (Ictinia mississippiensis)","authors":"C. Boal","doi":"10.3356/JRR-22-98","DOIUrl":"https://doi.org/10.3356/JRR-22-98","url":null,"abstract":"Mississippi Kites (Ictinia mississippiensis) prey primarily on large-bodied aerial insects such as cicadas (Hemiptera), locusts (Orthoptera), dragon flies (Odonata), and beetles (Coleoptera) but will, occasionally, take small aerial and terrestrial vertebrate prey (Glinski and Ohmart 1983, Shaw 1985, Bader and Bednarz 2011, Chiavacci et al. 2014, Welch and Boal 2015). Mississippi Kites are aerial hunters, capturing their prey while in flight, but also glean prey from branches of trees and capture nestling birds from nests (Welch and Boal 2015, Parker 2020). Several species of Accipitriformes (e.g., Golden Eagles [Aquila chrysaetos], Ferruginous Hawks [Buteo regalis]) and Falconiformes (e.g., Merlins [Falco columbarius], Peregrine Falcons [F. peregrinus]) are known to engage in facultative scavenging (Knopper et al. 2006, McIntyre et al. 2009, Lonsdorf et al. 2018, Varland et al. 2018, Skalos et al. 2022). However, scavenging by Mississippi Kites has not been described; the only published reference to the behavior that I have found is the statement that they ‘‘Will scavenge diverse roadkills (JWP)’’ (Parker 2020). Here I reported two observations of scavenging by Mississippi Kites in the urban setting of Lubbock, TX, USA. On 7 July 2022 at 0940 H, I was in a vehicle on a residential two-lane street waiting to enter the flow of traffic on a north-south running six-lane (three lanes in each direction with a turn lane in the center) thoroughfare. I observed an adult Mississippi Kite flying up from the road as traffic came by. It circled and went back down low between lanes of south-bound traffic, flared up, circled again and went back down and landed on an apparently road-killed White-winged Dove (Zenaida asiatica). It appeared to try to peck at the dove before quickly taking flight again as a new wave of vehicles went by. I lost sight of the Mississippi Kite after that, but when I returned later in the day, the remains of the dove were still present. In a separate incident on 13 July 2022 at approximately 0830 H, I observed three adult Mississippi Kites making repeated swoops, one after the other, down to a road-killed bird while barely avoiding vehicle traffic on a busy residential street. The three birds landed only briefly on the dead bird and sometimes pecked at it. This continued for several minutes during which the kites swooped down then lifted up repeatedly, and sometimes circled around higher or perched on a tree in a yard before returning to swooping at the roadkill. They eventually gave up and drifted away from the area. I inspected the roadkill and found that it too was a White-winged Dove. White-winged Doves are not reported as prey of Mississippi Kites. However, the rich nutritional value and volume of an available White-winged Dove carcass, compared to the primarily invertebrate diet of kites, may be very attractive to a Mississippi Kite. The Mississippi Kites in these observations tried to feed on the carcasses where they lay rather ","PeriodicalId":16927,"journal":{"name":"Journal of Raptor Research","volume":"28 1","pages":"121 - 122"},"PeriodicalIF":1.7,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90232543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manuscript Referees 手稿裁判
IF 1.7 4区 生物学 Q2 ORNITHOLOGY Pub Date : 2023-02-01 DOI: 10.3356/0892-1016-51.1.94
D. Andersen, J. Baldwin, F. Barbar, B. Barbaree, C. Barger, J. Barnes, G. Barrowclough, G. Bastianelli, M. Bechard, B. Bedrosian, D. Bell, R. Bierregaard, P. Bloom, C. Boal, M. Boggie, A. Brace, B. Brown, J. Bruggeman, J. Buchanan, T. Cade, J. Calvo, R. Dawson, A. Dennhardt, A. Dhondt, K. Donohue, J. Doyle, E. Drewitt, J. Duncan, J. Dwyer, K. Elliott, J. Estep, C. Farmer, M. Ferrer, J. Fickel, A. Flesch, J. Franson, A. Harmata, J. Heath, C. Henny, S. Hindmarch, G. Holroyd, D. Holt, G. Hunt, F. Isaacs, M. Jensen, J. Jiménez, G. Kaltenecker, G. Kopij, G. Kramer, T. Krause, O. Krone, S. Kross, S. Lambertucci, G. Leonardi, J. Lewis, C. Lindell, B. Mannan, M. Martell, M. McGrady, K. McKay, T. Miller, E. Mojica, C. Nicolai, G. Niemi, J. Orlowski, K. Otter, J. Owen, J. Pagel, M. Panuccio, K. Pias, J. Schmutz, M. Scholer, M. Seidensticker, P. Sharpe, P. Singleton, J. Slaght, S. Slater, J. Smallwood, S. Sonsthagen, D. Stahlecker, K. Steenhof, U. Uslu, J. Wade, Z. Wallace, J. Watson, R. Watson, S. Weidensaul, G. Zi
The following people reviewed manuscripts for The Journal of Raptor Research in 2016. Peer review plays a vital role in the publishing process and improving the quality of the Journal. The editorial staff would like to thank the following people for reviewing manuscripts in the last year. The names of those who reviewed two or more manuscripts are indicated with an asterisk. N. Agostini, F.H. Aguiar-Silva, D. Andersen*, J. Baldwin, F. Barbar, B. Barbaree, C. Barger, J. Barnes, G. Barrowclough, G. Bastianelli, M. Bechard*, B. Bedrosian, D. Bell*, R. Bierregaard*, P. Bloom, C. Boal, M. Boggie, A. Brace, B. Brown, J. Bruggeman, J. Buchanan, T. Cade*, J. Calvo, R. Dawson*, A. Dennhardt, A. Dhondt, K. Donohue, J. Doyle, E. Drewitt, J. Duncan, J. Dunk, J. Dwyer, K. Elliott, J. Estep, C. Farmer, M. Ferrer*, J. Fickel, R. Figueroa R.*, A. Flesch, J. Franson, M. Fuller, M. Garcı́a, L. Goodrich, J. Grande, R. Gutierrez, F. Hailer, D. Hall, A. Harmata, J. Heath, C. Henny, S. Hindmarch*, G. Holroyd*, D. Holt, G. Hunt*, F. Isaacs, K-O. Jacobsen, M. Jensen, J. Jiménez, G. Kaltenecker, C. Kassara, T. Katzner, R. Kenward, T. Kern, M. Kissling, M. Kochert, G. Kopij, G. Kramer, R. Kraus, T. Krause, O. Krone*, S. Kross*, S. Lambertucci, G. Leonardi, J. Lewis, O. Lind, C. Lindell, B. Mannan, M. Martell*, B. Martı́n, J. Martı́nez, J.E. Martı́nez, M. Mayo, C. McClure, S. McGehee, M. McGrady, K. McKay, T. Miller*, E. Mojica*, R. MolinaLópez, G. Montopoli, R. Murphy, V. Naidoo, J. Negro, I. Newton, C. Nicolai, G. Niemi*, E. Nol, H. Noor, T. Nygård, V. Ojeda, L. Olson, G. Orłowski, J. Orlowski, K. Otter*, J. Owen, J. Pagel*, M. Panuccio*, K. Pias, D. Pietersen, S. Poessel, E. Potapov, G. Proudfoot, P. Pyle, J. Raithel, J. Resano-Mayor, M. Restani, R. Risebrough, C. Rodrı́guez, R. Rosenfield, J. Rotenberg, R. Rozema, T. Rymer, G. Santolo, M. Sarà, J. Schmutz, M. Scholer*, M. Seidensticker, P. Sharpe*, M. Simes, P. Singleton, J. Slaght, S. Slater, J. Smallwood*, B. Smith, J. Smits, C. Solaro, M. Solensky, S. Sonsthagen, D. Stahlecker*, K. Steenhof, J.-F. Therrien, R. Thorstrom, C. Turrin, U. Uslu, J. Wade, Z. Wallace*, J. Watson*, R. Watson, S. Weidensaul, D. Wiens, D. Wiggins, P. Williams, A. Wilson, E. Wommack, P. Wood, B. Woodbridge, G. Zimmerman, and I. Zuberogoitia
{"title":"Manuscript Referees","authors":"D. Andersen, J. Baldwin, F. Barbar, B. Barbaree, C. Barger, J. Barnes, G. Barrowclough, G. Bastianelli, M. Bechard, B. Bedrosian, D. Bell, R. Bierregaard, P. Bloom, C. Boal, M. Boggie, A. Brace, B. Brown, J. Bruggeman, J. Buchanan, T. Cade, J. Calvo, R. Dawson, A. Dennhardt, A. Dhondt, K. Donohue, J. Doyle, E. Drewitt, J. Duncan, J. Dwyer, K. Elliott, J. Estep, C. Farmer, M. Ferrer, J. Fickel, A. Flesch, J. Franson, A. Harmata, J. Heath, C. Henny, S. Hindmarch, G. Holroyd, D. Holt, G. Hunt, F. Isaacs, M. Jensen, J. Jiménez, G. Kaltenecker, G. Kopij, G. Kramer, T. Krause, O. Krone, S. Kross, S. Lambertucci, G. Leonardi, J. Lewis, C. Lindell, B. Mannan, M. Martell, M. McGrady, K. McKay, T. Miller, E. Mojica, C. Nicolai, G. Niemi, J. Orlowski, K. Otter, J. Owen, J. Pagel, M. Panuccio, K. Pias, J. Schmutz, M. Scholer, M. Seidensticker, P. Sharpe, P. Singleton, J. Slaght, S. Slater, J. Smallwood, S. Sonsthagen, D. Stahlecker, K. Steenhof, U. Uslu, J. Wade, Z. Wallace, J. Watson, R. Watson, S. Weidensaul, G. Zi","doi":"10.3356/0892-1016-51.1.94","DOIUrl":"https://doi.org/10.3356/0892-1016-51.1.94","url":null,"abstract":"The following people reviewed manuscripts for The Journal of Raptor Research in 2016. Peer review plays a vital role in the publishing process and improving the quality of the Journal. The editorial staff would like to thank the following people for reviewing manuscripts in the last year. The names of those who reviewed two or more manuscripts are indicated with an asterisk. N. Agostini, F.H. Aguiar-Silva, D. Andersen*, J. Baldwin, F. Barbar, B. Barbaree, C. Barger, J. Barnes, G. Barrowclough, G. Bastianelli, M. Bechard*, B. Bedrosian, D. Bell*, R. Bierregaard*, P. Bloom, C. Boal, M. Boggie, A. Brace, B. Brown, J. Bruggeman, J. Buchanan, T. Cade*, J. Calvo, R. Dawson*, A. Dennhardt, A. Dhondt, K. Donohue, J. Doyle, E. Drewitt, J. Duncan, J. Dunk, J. Dwyer, K. Elliott, J. Estep, C. Farmer, M. Ferrer*, J. Fickel, R. Figueroa R.*, A. Flesch, J. Franson, M. Fuller, M. Garcı́a, L. Goodrich, J. Grande, R. Gutierrez, F. Hailer, D. Hall, A. Harmata, J. Heath, C. Henny, S. Hindmarch*, G. Holroyd*, D. Holt, G. Hunt*, F. Isaacs, K-O. Jacobsen, M. Jensen, J. Jiménez, G. Kaltenecker, C. Kassara, T. Katzner, R. Kenward, T. Kern, M. Kissling, M. Kochert, G. Kopij, G. Kramer, R. Kraus, T. Krause, O. Krone*, S. Kross*, S. Lambertucci, G. Leonardi, J. Lewis, O. Lind, C. Lindell, B. Mannan, M. Martell*, B. Martı́n, J. Martı́nez, J.E. Martı́nez, M. Mayo, C. McClure, S. McGehee, M. McGrady, K. McKay, T. Miller*, E. Mojica*, R. MolinaLópez, G. Montopoli, R. Murphy, V. Naidoo, J. Negro, I. Newton, C. Nicolai, G. Niemi*, E. Nol, H. Noor, T. Nygård, V. Ojeda, L. Olson, G. Orłowski, J. Orlowski, K. Otter*, J. Owen, J. Pagel*, M. Panuccio*, K. Pias, D. Pietersen, S. Poessel, E. Potapov, G. Proudfoot, P. Pyle, J. Raithel, J. Resano-Mayor, M. Restani, R. Risebrough, C. Rodrı́guez, R. Rosenfield, J. Rotenberg, R. Rozema, T. Rymer, G. Santolo, M. Sarà, J. Schmutz, M. Scholer*, M. Seidensticker, P. Sharpe*, M. Simes, P. Singleton, J. Slaght, S. Slater, J. Smallwood*, B. Smith, J. Smits, C. Solaro, M. Solensky, S. Sonsthagen, D. Stahlecker*, K. Steenhof, J.-F. Therrien, R. Thorstrom, C. Turrin, U. Uslu, J. Wade, Z. Wallace*, J. Watson*, R. Watson, S. Weidensaul, D. Wiens, D. Wiggins, P. Williams, A. Wilson, E. Wommack, P. Wood, B. Woodbridge, G. Zimmerman, and I. Zuberogoitia","PeriodicalId":16927,"journal":{"name":"Journal of Raptor Research","volume":"49 1","pages":"94 - 94"},"PeriodicalIF":1.7,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83248136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intraguild Predation of an American Kestrel Fledgling by Crested Caracaras in Northern Patagonia, Argentina 阿根廷北部巴塔哥尼亚,美洲红隼在野外被冠毛卡拉鸟捕食
IF 1.7 4区 生物学 Q2 ORNITHOLOGY Pub Date : 2023-01-31 DOI: 10.3356/jrr-22-38
Valeria Ojeda, Bruno Riovitti
{"title":"Intraguild Predation of an American Kestrel Fledgling by Crested Caracaras in Northern Patagonia, Argentina","authors":"Valeria Ojeda, Bruno Riovitti","doi":"10.3356/jrr-22-38","DOIUrl":"https://doi.org/10.3356/jrr-22-38","url":null,"abstract":"","PeriodicalId":16927,"journal":{"name":"Journal of Raptor Research","volume":"38 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78746145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Population Bottleneck Did Not Affect Polymorphism Rates in California Swainson's Hawks 种群瓶颈不影响加州斯温森鹰的多态性率
IF 1.7 4区 生物学 Q2 ORNITHOLOGY Pub Date : 2023-01-23 DOI: 10.3356/JRR-22-52
C. Briggs, Elizabeth A. Wommack, Sarah E. Sawtelle, C. Reynolds, A. Amar
Abstract. Raptor polymorphisms have played an important role in understanding how evolutionary forces within and between populations operate. However, within a population little is known about the history of the polymorphism, the effects of any population bottlenecks, and the overall stability of the polymorphism. We investigated the stability of a melanin-based color polymorphism in Swainson's Hawks (Buteo swainsoni) in California over a 100-year period. In the mid-20th century Swainson's Hawks in California declined by 90%. Therefore, we examined the morphs of breeding individuals collected before 1950 and compared them to images from eBird taken between 2008–2019 and from a Google Images search, because a disproportionate survival of rare alleles after a population bottleneck could lead to changes in current clines. Between the two periods, we did not find differences in plumage morphs, nor did we find evidence of latitude or longitudinal clines over this relatively small spatial scale. Thus, despite a large population decline, this polymorphism has remained consistent over time. Our results suggest that the relatively high occurrence of dark morphs in this population is not simply a result of a bottleneck. Resumen. Los polimorfismos observados en aves rapaces han jugado un papel importante en la comprensión de cómo operan las fuerzas evolutivas dentro y entre las poblaciones. Sin embargo, dentro de una población se sabe poco sobre la historia del polimorfismo, los efectos de los cuellos de botella poblacionales y la estabilidad general del polimorfismo. Investigamos la estabilidad de un polimorfismo de color dependiente de la presencia de melanina en Buteo swainsoni en California durante un período de 100 años. A mediados del siglo XX, los individuos de B. swainsoni en California se redujeron en un 90%. Por lo tanto, examinamos las morfologías de individuos reproductores recolectados antes de 1950 y las comparamos con imágenes de eBird tomadas entre 2008 y 2019 y de aquellas encontradas en Google, dado que una supervivencia desproporcionada de alelos raros después de un cuello de botella poblacional podría conducir a cambios en las clinas actuales. Entre los dos períodos, no encontramos diferencias en los morfos del plumaje, ni encontramos evidencia de clinas latitudinales o longitudinales a lo largo de esta escala espacial relativamente pequeña. Por lo tanto, a pesar de una gran disminución poblacional, este polimorfismo se ha mantenido constante a lo largo del tiempo. Nuestros resultados sugieren que la aparición relativamente alta de morfos oscuros en esta población no es simplemente el resultado de un cuello de botella. [Traducción del equipo editorial]
摘要迅猛龙的多态性在理解种群内部和种群之间的进化力量如何运作方面发挥了重要作用。然而,在一个种群中,对多态性的历史、任何种群瓶颈的影响以及多态性的总体稳定性知之甚少。我们研究了加州斯温森鹰(Buteo swainsoni) 100多年来基于黑色素的颜色多态性的稳定性。20世纪中期,加州的斯温森鹰数量减少了90%。因此,我们研究了1950年之前收集的繁殖个体的形态,并将其与eBird在2008年至2019年期间拍摄的图像和谷歌图像搜索进行了比较,因为在种群瓶颈后罕见等位基因的不成比例存活率可能导致当前种群的变化。在这两个时期之间,我们没有发现羽毛形态的差异,也没有在相对较小的空间尺度上发现纬度或纵向曲线的证据。因此,尽管种群数量大幅下降,但这种多态性一直保持一致。我们的研究结果表明,在这个种群中相对较高的深色变异发生率不仅仅是瓶颈的结果。Resumen。Los polimorfismos observados en aves rapaces than jugado unpapel importante en la comprensión de cómo operan las fuerzas evolutivas dentroy entre las polblaciones。在禁运期间,dentro de una población se sabablecpoco sobre la historia del polimorfismo, los cuellos de botella posblacionales by la estabidad general del polimorfismo。Investigamos de联合国polimorfismo de la estabilidad颜色dependiente de la presencia de melanina en Buteo swainsoni en加州杜兰特联合国periodo de 100岁。2009年,美国加利福尼亚州的B. swainsoni的10个个体的死亡率降低了90%。研究对象为研究对象,研究对象为研究对象morfologías个体繁殖者,研究对象为研究对象,研究对象为研究对象,研究对象为研究对象,研究对象为研究对象,研究对象为研究对象,研究对象为研究对象,研究对象为研究对象,研究对象为研究对象,研究对象为研究对象。Entre los dos períodos,在plumaje的los morfos del中没有交叉的差异,在clinetinininales和longitude中没有交叉的证据,在estestescala spatial relativamente pequeña中没有交叉的证据。波尔·洛·坦托,一位在disminución任职的首席执行官,认为政治上的不稳定是一个很大的问题。Nuestros resultado sugieren que la aparición相对于其他的morfos oscuros甚至esta población no . es simplesel resultado de uncuello de botella。[Traducción del equipo社论]
{"title":"A Population Bottleneck Did Not Affect Polymorphism Rates in California Swainson's Hawks","authors":"C. Briggs, Elizabeth A. Wommack, Sarah E. Sawtelle, C. Reynolds, A. Amar","doi":"10.3356/JRR-22-52","DOIUrl":"https://doi.org/10.3356/JRR-22-52","url":null,"abstract":"Abstract. Raptor polymorphisms have played an important role in understanding how evolutionary forces within and between populations operate. However, within a population little is known about the history of the polymorphism, the effects of any population bottlenecks, and the overall stability of the polymorphism. We investigated the stability of a melanin-based color polymorphism in Swainson's Hawks (Buteo swainsoni) in California over a 100-year period. In the mid-20th century Swainson's Hawks in California declined by 90%. Therefore, we examined the morphs of breeding individuals collected before 1950 and compared them to images from eBird taken between 2008–2019 and from a Google Images search, because a disproportionate survival of rare alleles after a population bottleneck could lead to changes in current clines. Between the two periods, we did not find differences in plumage morphs, nor did we find evidence of latitude or longitudinal clines over this relatively small spatial scale. Thus, despite a large population decline, this polymorphism has remained consistent over time. Our results suggest that the relatively high occurrence of dark morphs in this population is not simply a result of a bottleneck. Resumen. Los polimorfismos observados en aves rapaces han jugado un papel importante en la comprensión de cómo operan las fuerzas evolutivas dentro y entre las poblaciones. Sin embargo, dentro de una población se sabe poco sobre la historia del polimorfismo, los efectos de los cuellos de botella poblacionales y la estabilidad general del polimorfismo. Investigamos la estabilidad de un polimorfismo de color dependiente de la presencia de melanina en Buteo swainsoni en California durante un período de 100 años. A mediados del siglo XX, los individuos de B. swainsoni en California se redujeron en un 90%. Por lo tanto, examinamos las morfologías de individuos reproductores recolectados antes de 1950 y las comparamos con imágenes de eBird tomadas entre 2008 y 2019 y de aquellas encontradas en Google, dado que una supervivencia desproporcionada de alelos raros después de un cuello de botella poblacional podría conducir a cambios en las clinas actuales. Entre los dos períodos, no encontramos diferencias en los morfos del plumaje, ni encontramos evidencia de clinas latitudinales o longitudinales a lo largo de esta escala espacial relativamente pequeña. Por lo tanto, a pesar de una gran disminución poblacional, este polimorfismo se ha mantenido constante a lo largo del tiempo. Nuestros resultados sugieren que la aparición relativamente alta de morfos oscuros en esta población no es simplemente el resultado de un cuello de botella. [Traducción del equipo editorial]","PeriodicalId":16927,"journal":{"name":"Journal of Raptor Research","volume":"6 1","pages":"61 - 68"},"PeriodicalIF":1.7,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84748665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wolverine (Gulo gulo) Recorded as Predator of Nestling Great Gray Owls (Strix nebulosa) in Norway 狼獾(Gulo Gulo)在挪威被记录为大灰猫头鹰(Strix nebulosa)的捕食者
IF 1.7 4区 生物学 Q2 ORNITHOLOGY Pub Date : 2023-01-23 DOI: 10.3356/JRR-22-36
R. Solheim, Sondre Englund Brenni
The Great Gray Owl (Strix nebulosa) has a circumpolar distribution in the boreal forest zone (Cramp 1985) in both the Palearctic and Nearctic region (subspecies S. n. lapponica and S. n. nebulosi, respectively). The Palearctic subspecies has extended its range toward the south and southwest in Scandinavia during the last four decades (Sonerud et al. 2021 and references therein). This expansion includes most of northern Europe (Ławicki et al. 2013). Since 2009, at least 445 nesting attempts were recorded in Hedmark County, Norway (Berg et al. 2011, Berg 2016, Berg et al. 2019). The wolverine (Gulo gulo) is the largest member of the mustelid family, weighing up to 18 kg (Wilson and Mittermeier 2009). It inhabits the taiga in both Eurasia and North America (Wilson and Mittermeier 2009). The wolverine is capable of killing large ungulates such as reindeer (Rangifer tarandus), but it is generally an opportunistic feeder that regularly scavenges on carcasses (Wilson and Mittermeier 2009). Wolverines have bred in the northern half of Hedmark County since 2010, when the Great Gray Owl expansion started (Flagstad et al. 2013, Tovmo and Mattisson 2021). The southernmost known wolverine dens are in the same area as four Great Gray Owl platforms surveyed in 2021 (Fig. 1). Nest predation is a common cause of mortality for many bird species (Caro 2005 and references therein). Mustelids prey on both mammals and birds (Wilson and Mittermeier 2009), and European pine martens (Martes martes) are especially arboreal and known predators of cavity-nesting owls and ducks (Korpimäki and Hakkarainen 2012, Sonerud 1985, 2021a, 2021b). A few Great Gray Owls have made nesting attempts at ground nests in Hedmark County and all have been predated (Berg et al. 2011). Since 2011, an increasing number of artificial nest platforms (see Stefansson 1997, Solheim 2014) have been erected by local ornithologists in Hedmark County, resulting in .400 platforms installed by 2022 and 48% of nesting attempts occurring on platforms in 2018 (Berg et al. 2019). Here we report the first record of wolverine as a nest predator of Great Gray Owl nestlings on nest platforms. Four Great Gray Owl nests on artificial platforms were monitored with wildlife cameras in central Hedmark County in southeastern Norway (60851N, 11859E) in May and June 2021 (Fig. 1). The platforms surveilled were located along the Kynna watercourse in central Hedmark County, with 31.6 km between the two most-distant platforms, platform 1 and platform 4. Platforms were placed approximately 5.5 m above ground in pine (Pinus sylvestris) or spruce (Picea abies) trees. Three of the platforms (platforms 2, 3, and 4) were used by nesting Great Gray Owls in previous years. Seven wildlife cameras were erected to monitor the platforms. Camera types included Boscon Guard Entry (n1⁄4 3), Spypoint Force Dark (n1⁄4 2), Moultrie No-glow (n1⁄4 1), and Glory LTE, L4-E (n1⁄4 1). The cameras were mounted on tree trunks 2–5 m from the platforms
大灰猫头鹰(Strix nebulosa)在古北和新北极地区的北方森林地带(分别为s.n. lapponica和s.n. nebulosi亚种)均有环极分布。在过去的四十年中,古北亚种向斯堪的纳维亚半岛的南部和西南部扩展了其活动范围(Sonerud et al. 2021和其中的参考文献)。这种扩张包括北欧的大部分地区(Ławicki et al. 2013)。自2009年以来,挪威海德马克县至少记录了445次筑巢尝试(Berg et al. 2011, Berg 2016, Berg et al. 2019)。狼獾(Gulo Gulo)是鼬科动物中最大的成员,体重可达18公斤(Wilson and Mittermeier 2009)。它栖息在欧亚大陆和北美的针叶林中(Wilson and Mittermeier 2009)。狼獾能够杀死大型有蹄类动物,如驯鹿(Rangifer tarandus),但它通常是一种机会主义的捕食者,经常以尸体为食(Wilson和Mittermeier 2009)。自2010年灰鸮扩张开始以来,狼獾就在海德马克县的北半部繁殖(Flagstad et al. 2013, Tovmo and Mattisson 2021)。已知最南端的狼狼巢穴与2021年调查的四个灰鸮平台位于同一区域(图1)。巢穴捕食是许多鸟类死亡的常见原因(Caro 2005和其中的参考文献)。鼬鼠捕食哺乳动物和鸟类(Wilson and Mittermeier 2009),欧洲松貂(Martes Martes)尤其栖息在树上,是已知的洞穴筑巢猫头鹰和鸭子的捕食者(Korpimäki and Hakkarainen 2012, Sonerud 1985, 2021a, 2021b)。一些大灰猫头鹰已经尝试在海德马克县的地面巢穴筑巢,并且都已经被发现(Berg et al. 2011)。自2011年以来,当地鸟类学家在海德马克县建立了越来越多的人工筑巢平台(见Stefansson 1997, Solheim 2014),到2022年安装了0.400个平台,2018年有48%的筑巢尝试发生在平台上(Berg et al. 2019)。在这里,我们报告了狼獾作为灰鸮巢穴捕食者在巢穴平台上筑巢的第一个记录。2021年5月和6月,在挪威东南部海德马克县中部(60851N, 11859E),用野生动物摄像机监测了人工平台上的四个灰鸮巢穴(图1)。被监测的平台位于海德马克县中部的Kynna水道沿岸,距离最远的两个平台,1号平台和4号平台之间有31.6公里。平台放置在离地面约5.5米的松树(Pinus sylvestris)或云杉(Picea abies)树上。其中三个平台(2号平台,3号平台和4号平台)是前几年筑巢的灰鸮使用的。架设了七台野生动物摄像机来监控平台。摄像机类型包括Boscon Guard Entry (n1⁄4 3),Spypoint Force Dark (n1⁄4 2),Moultrie No-glow (n1⁄4 1)和Glory LTE, L4-E (n1⁄4 1)。摄像机安装在距离平台2 - 5米的树干上。相机设置为触发时拍摄三张图像,并在拍摄下一张图像之前暂停1分钟。2021年5月31日,1、3和4站台更换了电池和存储卡。相机是在雏鸟羽翼丰满或消失后收集的。7个摄像头中的3个在另一个摄像头捕捉到平台上的运动时没有触发,或者电池故障。在所有四个平台上,至少有一个摄像头正常工作并定期拍摄图像。共记录图像153600张:1号站台7026张;2号站台22,800张图像;3号平台74,531张图像;4号站台49243人。1邮件地址:r-solhe3@online.no
{"title":"Wolverine (Gulo gulo) Recorded as Predator of Nestling Great Gray Owls (Strix nebulosa) in Norway","authors":"R. Solheim, Sondre Englund Brenni","doi":"10.3356/JRR-22-36","DOIUrl":"https://doi.org/10.3356/JRR-22-36","url":null,"abstract":"The Great Gray Owl (Strix nebulosa) has a circumpolar distribution in the boreal forest zone (Cramp 1985) in both the Palearctic and Nearctic region (subspecies S. n. lapponica and S. n. nebulosi, respectively). The Palearctic subspecies has extended its range toward the south and southwest in Scandinavia during the last four decades (Sonerud et al. 2021 and references therein). This expansion includes most of northern Europe (Ławicki et al. 2013). Since 2009, at least 445 nesting attempts were recorded in Hedmark County, Norway (Berg et al. 2011, Berg 2016, Berg et al. 2019). The wolverine (Gulo gulo) is the largest member of the mustelid family, weighing up to 18 kg (Wilson and Mittermeier 2009). It inhabits the taiga in both Eurasia and North America (Wilson and Mittermeier 2009). The wolverine is capable of killing large ungulates such as reindeer (Rangifer tarandus), but it is generally an opportunistic feeder that regularly scavenges on carcasses (Wilson and Mittermeier 2009). Wolverines have bred in the northern half of Hedmark County since 2010, when the Great Gray Owl expansion started (Flagstad et al. 2013, Tovmo and Mattisson 2021). The southernmost known wolverine dens are in the same area as four Great Gray Owl platforms surveyed in 2021 (Fig. 1). Nest predation is a common cause of mortality for many bird species (Caro 2005 and references therein). Mustelids prey on both mammals and birds (Wilson and Mittermeier 2009), and European pine martens (Martes martes) are especially arboreal and known predators of cavity-nesting owls and ducks (Korpimäki and Hakkarainen 2012, Sonerud 1985, 2021a, 2021b). A few Great Gray Owls have made nesting attempts at ground nests in Hedmark County and all have been predated (Berg et al. 2011). Since 2011, an increasing number of artificial nest platforms (see Stefansson 1997, Solheim 2014) have been erected by local ornithologists in Hedmark County, resulting in .400 platforms installed by 2022 and 48% of nesting attempts occurring on platforms in 2018 (Berg et al. 2019). Here we report the first record of wolverine as a nest predator of Great Gray Owl nestlings on nest platforms. Four Great Gray Owl nests on artificial platforms were monitored with wildlife cameras in central Hedmark County in southeastern Norway (60851N, 11859E) in May and June 2021 (Fig. 1). The platforms surveilled were located along the Kynna watercourse in central Hedmark County, with 31.6 km between the two most-distant platforms, platform 1 and platform 4. Platforms were placed approximately 5.5 m above ground in pine (Pinus sylvestris) or spruce (Picea abies) trees. Three of the platforms (platforms 2, 3, and 4) were used by nesting Great Gray Owls in previous years. Seven wildlife cameras were erected to monitor the platforms. Camera types included Boscon Guard Entry (n1⁄4 3), Spypoint Force Dark (n1⁄4 2), Moultrie No-glow (n1⁄4 1), and Glory LTE, L4-E (n1⁄4 1). The cameras were mounted on tree trunks 2–5 m from the platforms","PeriodicalId":16927,"journal":{"name":"Journal of Raptor Research","volume":"15 1","pages":"116 - 120"},"PeriodicalIF":1.7,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89554160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Range Contraction of an Osprey Population Following Lethal Control at a State Fish Hatchery in Montana 在蒙大拿州的一个国家鱼类孵化场,致命控制后鱼鹰种群的范围收缩
IF 1.7 4区 生物学 Q2 ORNITHOLOGY Pub Date : 2023-01-20 DOI: 10.3356/JRR-22-30
M. Restani
Abstract. Human-Osprey (Pandion haliaetus) conflicts are increasing as the species rebounds from the negative effects of DDT. Ospreys forage at aquaculture facilities in North America, South America, and Europe, where nonlethal and lethal control are used to reduce depredations. Under the authority of a federal depredation permit, personnel at a state-owned fish hatchery in Montana shot eight Ospreys from 2018–2020 to reduce loss of brood stock largemouth bass (Micropterus salmoides). Independent long-term data (2012–2022) of Osprey breeding ecology along the Yellowstone River, which included the hatchery, afforded a rare opportunity to examine nest occupancy and reproductive success of the local population before, during, and following lethal control. The local breeding population of Ospreys collapsed by 2021 and the breeding range contracted 48–67 km during and after shooting. Shooting at the hatchery was the greatest source of Osprey mortality on the 950-km linear study area. In 2021, an informal working group of diverse stakeholders began meeting to develop nonlethal methods to reduce Osprey depredations at the hatchery. Resumen. Los conflictos entre humanos y Pandion haliaetus aumentan a medida que la especie se recupera de los efectos negativos del DDT. P. haliaetus se alimenta en instalaciones acuícolas en América del Norte, América del Sur y Europa, donde se utilizan controles no letales y letales para reducir las depredaciones. Bajo la autoridad de un permiso federal de control, el personal de una piscifactoría de propiedad estatal en Montana disparó contra ocho individuos de P. haliaetus entre 2018 y 2020 para reducir la pérdida de reproductores de Micropterus salmoides. Los datos independientes a largo plazo (2012–2022) de la ecología reproductiva de P. haliaetus a lo largo del Río Yellowstone, que incluía la piscifactoría, proporcionaron una rara oportunidad para examinar la ocupación del nido y el éxito reproductivo de la población local antes, durante y después del control letal. La población reproductora local de P. haliaetus colapsó en 2021 y el área de reproducción se contrajo de 48 a 67 km durante y después de los disparos. Los disparos en la piscifactoría fueron la mayor fuente de mortalidad de P. haliaetus en el área de estudio lineal de 950 km. En 2021, un grupo de trabajo informal de diversas partes interesadas comenzó a reunirse para desarrollar métodos no letales para reducir las depredaciones de P. haliaetus en la piscifactoría. [Traducción del equipo editorial]
摘要随着鱼鹰从DDT的负面影响中恢复过来,人类与鱼鹰(Pandion haliaetus)之间的冲突正在增加。鱼鹰在北美、南美和欧洲的水产养殖设施中觅食,这些地方采用非致命和致命控制来减少掠夺。根据联邦掠夺许可证的授权,蒙大拿州一家国有鱼类孵化场的工作人员在2018年至2020年期间射杀了8只鱼鹰,以减少大口黑鲈(Micropterus salmoides)幼鱼的损失。黄石河沿岸鱼鹰繁殖生态的独立长期数据(2012-2022),包括孵化场,提供了一个难得的机会来检查在致命控制之前,期间和之后的巢占用率和当地种群的繁殖成功率。当地的鱼鹰繁殖种群到2021年崩溃,繁殖范围在拍摄期间和之后缩小了48-67公里。在950公里的线性研究区内,在孵化场射击是鱼鹰死亡的最大原因。2021年,一个由不同利益相关者组成的非正式工作组开始开会,制定非致命方法,以减少孵化场对鱼鹰的掠夺。Resumen。人类对滴滴涕的抗药性和对滴滴涕的消极面效应的影响尤其明显。halalietus使用alimenta en instalaciones acuícolas在北美、欧洲南部的美洲和美洲的北美和欧洲的美洲,没有使用控制的方法,没有使用控制的方法,没有使用控制的方法。联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局piscifactoría联邦管制当局和蒙大拿州联邦管制当局disparó联邦管制当局,联邦管制当局,联邦管制当局disparó联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局,联邦管制当局。Los datos independes a large plazo (2012-2022) de la ecología reproductiva de p.h aliaetus a lo largo del Río Yellowstone, que incluía la piscifactoría, proporcionaron una rara机会para examinar la ocupación del nido y el samxito reproductivo de la población local antes, durante y despusamos del control tal。La población reproductora local de p.h aliaetus colapsó en 2021 y el área de reproducción se contrjo de 48 a 67 km durante y despusamus de los disparos。Los disparos en la piscifactoría fueron la mayor fuente de mortalidad de p.h aliaetus en el área de estudio linear de 950 km。到2021年,不同缔约方非正式贸易小组将通过以下方式开展工作:comenzó和其他缔约方非正式贸易小组将通过下列方式开展工作:piscifactoría。[Traducción del equipo社论]
{"title":"Range Contraction of an Osprey Population Following Lethal Control at a State Fish Hatchery in Montana","authors":"M. Restani","doi":"10.3356/JRR-22-30","DOIUrl":"https://doi.org/10.3356/JRR-22-30","url":null,"abstract":"Abstract. Human-Osprey (Pandion haliaetus) conflicts are increasing as the species rebounds from the negative effects of DDT. Ospreys forage at aquaculture facilities in North America, South America, and Europe, where nonlethal and lethal control are used to reduce depredations. Under the authority of a federal depredation permit, personnel at a state-owned fish hatchery in Montana shot eight Ospreys from 2018–2020 to reduce loss of brood stock largemouth bass (Micropterus salmoides). Independent long-term data (2012–2022) of Osprey breeding ecology along the Yellowstone River, which included the hatchery, afforded a rare opportunity to examine nest occupancy and reproductive success of the local population before, during, and following lethal control. The local breeding population of Ospreys collapsed by 2021 and the breeding range contracted 48–67 km during and after shooting. Shooting at the hatchery was the greatest source of Osprey mortality on the 950-km linear study area. In 2021, an informal working group of diverse stakeholders began meeting to develop nonlethal methods to reduce Osprey depredations at the hatchery. Resumen. Los conflictos entre humanos y Pandion haliaetus aumentan a medida que la especie se recupera de los efectos negativos del DDT. P. haliaetus se alimenta en instalaciones acuícolas en América del Norte, América del Sur y Europa, donde se utilizan controles no letales y letales para reducir las depredaciones. Bajo la autoridad de un permiso federal de control, el personal de una piscifactoría de propiedad estatal en Montana disparó contra ocho individuos de P. haliaetus entre 2018 y 2020 para reducir la pérdida de reproductores de Micropterus salmoides. Los datos independientes a largo plazo (2012–2022) de la ecología reproductiva de P. haliaetus a lo largo del Río Yellowstone, que incluía la piscifactoría, proporcionaron una rara oportunidad para examinar la ocupación del nido y el éxito reproductivo de la población local antes, durante y después del control letal. La población reproductora local de P. haliaetus colapsó en 2021 y el área de reproducción se contrajo de 48 a 67 km durante y después de los disparos. Los disparos en la piscifactoría fueron la mayor fuente de mortalidad de P. haliaetus en el área de estudio lineal de 950 km. En 2021, un grupo de trabajo informal de diversas partes interesadas comenzó a reunirse para desarrollar métodos no letales para reducir las depredaciones de P. haliaetus en la piscifactoría. [Traducción del equipo editorial]","PeriodicalId":16927,"journal":{"name":"Journal of Raptor Research","volume":"2 1","pages":"69 - 74"},"PeriodicalIF":1.7,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84879445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Genetic Differentiation of the South Florida Red-Shouldered Hawk (Buteo lineatus extimus) from the Nominate Subspecies (Buteo lineatus lineatus) 南佛罗里达红肩鹰(Buteo lineatus extimus)与指定亚种(Buteo lineatus lineatus)的遗传分化
IF 1.7 4区 生物学 Q2 ORNITHOLOGY Pub Date : 2023-01-20 DOI: 10.3356/JRR-22-83
Madeline A. Dykstra, Donna M. Marain, A. Wrona, C. Dykstra, H. Farrington, Jeff Johnson, A. Wegman, Melinda M. Simon, Jeffrey L. Hays
Abstract. The south Florida subspecies of the Red-shouldered Hawk (Buteo lineatus extimus) is distinctly paler and smaller than other subspecies, reproduces at a lower rate, and can occupy very different habitats such as open marshes and grasslands with only scattered trees. We evaluated population differentiation between the south Florida population of Red-shouldered Hawks and two populations of eastern Red-shouldered Hawks (B. l. lineatus) in suburban (Cincinnati) and rural (Hocking Hills) environments in southern Ohio. Based on analysis of 11 microsatellite loci, we found significant genetic differentiation between the south Florida and eastern populations (FST = 0.077–0.097), as well as significant differentiation between the two populations of the eastern subspecies (FST = 0.047). Standardized genetic distance principal components analysis indicated two clusters, with individuals from the two Ohio populations forming a single cluster and those from Florida forming a second cluster. The substantial differences between the south Florida and other subspecies suggest this population warrants attention and possibly management as a distinct conservation unit, particularly in light of possible threats including habitat loss and rodenticide exposure. Resumen. La subespecie del sur de Florida Buteo lineatus extimus es claramente más pálida y más pequeña que otras subespecies, se reproduce a un ritmo menor y puede ocupar hábitats muy diferentes, como marismas abiertas y pastizales con solo árboles dispersos. Evaluamos la diferenciación poblacional entre la población de B. l. extimus del sur de Florida y dos poblaciones orientales de B. l. lineatus de ambientes suburbanos (Cincinnati) y rurales (Hocking Hills) en el sur de Ohio. Con base en el análisis de 11 loci de microsatélites, encontramos una diferenciación genética significativa entre las poblaciones del sur de Florida y las orientales (FST = 0.077–0.097), así como una diferenciación significativa entre las dos poblaciones de la subespecie oriental (FST = 0.047). El análisis estandarizado de componentes principales de la distancia genética mostró dos grupos, con individuos de las dos poblaciones de Ohio formando un solo grupo y aquellos de Florida formando un segundo grupo. Las diferencias sustanciales entre el sur de Florida y otras subespecies sugieren que esta población merece atención y posiblemente manejo como una unidad de conservación distinta, particularmente a la luz de las posibles amenazas que incluyen la pérdida de hábitat y la exposición a rodenticidas. [Traducción del equipo editorial]
摘要南佛罗里达的红肩鹰亚种(Buteo lineatus extimus)比其他亚种明显更白、更小,繁殖率更低,可以占据非常不同的栖息地,如开阔的沼泽和只有零星树木的草原。本研究评估了南佛罗里达州红肩鹰种群与俄亥俄州南部郊区(辛辛那提)和农村(霍金山)的两个东部红肩鹰种群之间的种群分化。通过对11个微卫星位点的分析,发现南佛罗里达与东部居群之间存在显著的遗传分化(FST = 0.077 ~ 0.097),东部亚种两个居群之间存在显著的遗传分化(FST = 0.047)。标准化遗传距离主成分分析结果显示为2个聚类,其中来自俄亥俄州两个种群的个体构成1个聚类,来自佛罗里达州的个体构成2个聚类。南佛罗里达和其他亚种之间的巨大差异表明,这个种群值得关注,并可能作为一个独特的保护单位进行管理,特别是考虑到可能的威胁,包括栖息地丧失和灭鼠剂暴露。Resumen。La subspeciie del sur de Florida Buteo lineatus es claramente más pálida y más pequeña que otras亚种,它们繁殖一个单一的个体,它们占据hábitats许多差异,como marismas abiertas y pastizales con solo árboles dispersos。评估diferenciación问题中心población在佛罗里达州南部的B. l. exctimus、在郊区(辛辛那提)的B. l. lineatus、在俄亥俄州南部的农村(霍金山)的问题中心población。Con base en el análisis de 11个微satacolites位点,encontramos una diferenciación genacolitica significant entre las blacoliones del sur Florida and las orientales (FST = 0.077-0.097), así como una diferenciación significant entre las dos blacoliones de la subespecie oriental (FST = 0.047)。El分析estandarizado de组件螯de la distancia遗传mostro dos降,反对individuos de las dos poblaciones de俄亥俄州formando联合国独奏grupo y aquellos de佛罗里达formando联合国segundo grupo。在佛罗里达南部和其他亚种之间存在的物质差异表明,它们可能具有不同的特征,例如población和atención,它们可能具有不同的特征,特别是它们可能具有不同的特征,例如,它们可能具有不同的特征,例如hábitat和exposición。[Traducción del equipo社论]
{"title":"Genetic Differentiation of the South Florida Red-Shouldered Hawk (Buteo lineatus extimus) from the Nominate Subspecies (Buteo lineatus lineatus)","authors":"Madeline A. Dykstra, Donna M. Marain, A. Wrona, C. Dykstra, H. Farrington, Jeff Johnson, A. Wegman, Melinda M. Simon, Jeffrey L. Hays","doi":"10.3356/JRR-22-83","DOIUrl":"https://doi.org/10.3356/JRR-22-83","url":null,"abstract":"Abstract. The south Florida subspecies of the Red-shouldered Hawk (Buteo lineatus extimus) is distinctly paler and smaller than other subspecies, reproduces at a lower rate, and can occupy very different habitats such as open marshes and grasslands with only scattered trees. We evaluated population differentiation between the south Florida population of Red-shouldered Hawks and two populations of eastern Red-shouldered Hawks (B. l. lineatus) in suburban (Cincinnati) and rural (Hocking Hills) environments in southern Ohio. Based on analysis of 11 microsatellite loci, we found significant genetic differentiation between the south Florida and eastern populations (FST = 0.077–0.097), as well as significant differentiation between the two populations of the eastern subspecies (FST = 0.047). Standardized genetic distance principal components analysis indicated two clusters, with individuals from the two Ohio populations forming a single cluster and those from Florida forming a second cluster. The substantial differences between the south Florida and other subspecies suggest this population warrants attention and possibly management as a distinct conservation unit, particularly in light of possible threats including habitat loss and rodenticide exposure. Resumen. La subespecie del sur de Florida Buteo lineatus extimus es claramente más pálida y más pequeña que otras subespecies, se reproduce a un ritmo menor y puede ocupar hábitats muy diferentes, como marismas abiertas y pastizales con solo árboles dispersos. Evaluamos la diferenciación poblacional entre la población de B. l. extimus del sur de Florida y dos poblaciones orientales de B. l. lineatus de ambientes suburbanos (Cincinnati) y rurales (Hocking Hills) en el sur de Ohio. Con base en el análisis de 11 loci de microsatélites, encontramos una diferenciación genética significativa entre las poblaciones del sur de Florida y las orientales (FST = 0.077–0.097), así como una diferenciación significativa entre las dos poblaciones de la subespecie oriental (FST = 0.047). El análisis estandarizado de componentes principales de la distancia genética mostró dos grupos, con individuos de las dos poblaciones de Ohio formando un solo grupo y aquellos de Florida formando un segundo grupo. Las diferencias sustanciales entre el sur de Florida y otras subespecies sugieren que esta población merece atención y posiblemente manejo como una unidad de conservación distinta, particularmente a la luz de las posibles amenazas que incluyen la pérdida de hábitat y la exposición a rodenticidas. [Traducción del equipo editorial]","PeriodicalId":16927,"journal":{"name":"Journal of Raptor Research","volume":"1 1","pages":"52 - 60"},"PeriodicalIF":1.7,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89268762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breeding Behavior of the Hooded Vulture (Necrosyrtes monachus) in the Sudano-Sahelian Area (Garango, Burkina Faso) 苏丹-萨赫勒地区(布基纳法索加兰戈)秃鹫的繁殖行为
IF 1.7 4区 生物学 Q2 ORNITHOLOGY Pub Date : 2023-01-20 DOI: 10.3356/JRR-21-38
Clément Daboné, A. Ouéda, J. B. Adjakpa, P. Weesie
Abstract. Knowledge of Hooded Vulture (Necrosyrtes monachus) breeding behavior is important for monitoring purposes and to understand factors that may impact their breeding rates. In this study, we describe the breeding behavior of 65 Hooded Vulture pairs during two breeding seasons (2013/2014 and 2014/2015) in the Sudano-Sahelian area, Garango, in central-eastern Burkina Faso. The main behavioral patterns examined were aerial displays, copulation, nest building, incubation, nestling-rearing, and nest attendance. Hooded Vultures appeared highly selective with regard to nesting tree selection (91% of the 65 nests were in one of three species: Parkia biglobosa, Faidherbia albida, and Tamarindus indica). The breeding period of 65 pairs of Hooded Vultures spanned approximately 8 mo from egg-laying to fledging of the young. The constructed nests included a variety of human-made waste (plastic, paper, paperboard, and rags). Incubation lasted 48.1 ± 2.0 (SD) d for 18 hatched eggs. Juveniles continued receiving food from their parents on the nesting site for at least 38 d after fledging, and stayed with their parents for >5 mo post-fledging. Aerial displays were frequently performed by Hooded Vultures in pairs (two adults) or in threes (two adults with juvenile) and those observed early in the breeding season were considered to be courtship displays. Both sexes contributed to nest building and incubation tasks, and nestlings were relatively well attended by parents at all times of the day during the first weeks. Hooded Vultures produced 0.70 fledged young per nest where eggs were laid, or 0.57 fledged young per territorial pair. Hooded Vultures have a relatively healthy reproductive rate, but remain threatened primarily by direct human persecution. Local protection of Hooded Vultures in this area should be strengthened by public awareness campaigns to safeguard the population's long-term persistence. Resumen. Conocer el comportamiento reproductor de Necrosyrtes monachus es importante para fines de seguimiento y para comprender los factores que pueden afectar sus tasas reproductivas. En este estudio, describimos el comportamiento reproductor de 65 parejas de N. monachus durante dos temporadas de cría (2013/2014 y 2014/2015) en el área sudano-saheliana, Garango, centro-este de Burkina Faso. Los principales patrones de comportamiento examinados fueron las exhibiciones aéreas, la cópula, la construcción del nido, la incubación, la crianza de los polluelos y la asistencia al nido. Los individuos de N. monachus parecieron ser muy selectivos con respecto a la selección de árboles para anidar (91% de los 65 nidos estaban en una de las siguientes especies: Parkia biglobosa, Faidherbia albida y Tamarindus indica). El período reproductor de las 65 parejas abarcó aproximadamente 8 meses, desde la puesta de huevos hasta el emplumamiento de las crías. Los nidos construidos incluyeron una variedad de desechos antropogénicos (plástico, papel, cartón y trapos). La incuba
摘要了解秃鹫(necrosytes monachus)的繁殖行为对于监测目的和了解可能影响其繁殖率的因素非常重要。在这项研究中,我们描述了在布基纳法索中东部加兰戈的苏丹-萨赫勒地区两个繁殖季节(2013/2014和2014/2015)65对秃鹫的繁殖行为。研究的主要行为模式为空中展示、交配、筑巢、孵化、育雏和出勤。在筑巢树的选择上,秃鹫表现出高度的选择性(65个巢中有91%是三种巢:Parkia biglobosa, Faidherbia albida和Tamarindus indica)。65对秃鹰的繁殖期从产卵到雏鸟羽化约为8个月。建造的鸟巢包括各种人造废物(塑料,纸,纸板和破布)。孵化期为48.1±2.0 (SD) d。雏鸟在雏鸟羽化后的至少38天内继续在筑巢地接受父母的食物,并在雏鸟羽化后与父母呆在一起50 - 50个月。秃鹰经常成对(两只成年)或三只(两只成年和幼鸟)进行空中表演,在繁殖季节早期观察到的秃鹰被认为是求爱表演。两性都参与筑巢和孵化任务,在头几周,雏鸟在一天中的任何时候都有父母的照顾。秃鹰每窝产0.70只羽翼丰满的雏鸟,每对领地产0.57只羽翼丰满的雏鸟。秃鹰有相对健康的繁殖率,但仍然主要受到人类直接迫害的威胁。该地区应加强当地对秃鹰的保护,提高公众意识,以保障秃鹰的长期生存。Resumen。猕猴桃生殖系统的整体结构是猕猴桃生殖系统的重要组成部分,是猕猴桃生殖系统的重要组成部分,是猕猴桃生殖系统的重要组成部分。En este estudio,描述65只临时长尾猴(2013/2014 y 2014/2015)在área苏丹-萨赫利亚纳,加兰戈,布基纳法索中部。洛杉矶螯赞助人de comportamiento examinados fueron las exhibiciones aereas,连系动词,la construccion德尔尼多la la incubacion crianza de Los polluelos y la asistencia艾尔尼多。猕猴桃(N. monachus parecieron)个体对selección de árboles para - anidar有明显的选择性(91% de monachus peridos),其中65个有选择性的物种为biglobosa, Faidherbia albida和柽柳(Tamarindus indica)。El período复制器de las 65 parejas abarcó近8 meses, desde la puesta de huevos hasta El emplumamiento de las crías。Los nidos contridos包括unvariedanddesechos anthropogsamicos (plástico,纸张,cartón y trapos)。La incubación duró 48.1±2.0 (DE) d para 18 huevos eclosionados。未成年人继续受罚,继续受罚,继续受罚,继续受罚,继续受罚,继续受罚,继续受罚,继续受罚,继续受罚,继续受罚,继续受罚,继续受罚。n monachus realizo con frecuencia exhibiciones aereas en pareja (dos adultos) o在三人小组(dos adultos反对联合国“)y aquellas observadas al comienzo de la estacion生殖fueron consideradas科莫exhibiciones de cortejo。Ambos的性别对一个区域的贡献为construcción e incubación del nido,而对一个区域的贡献为:在参与者之间的关系为:在参与者之间的关系为:在参与者之间的关系为:在参与者之间的关系为:在参与者之间的关系为:在参与者之间的关系为:在参与者之间的关系为:día durante las primeras semanas。单爪螨的产螨率为0.70,产螨率为0.57,产螨率为0.57。单爪单胞菌是一种具有生殖亲缘关系的细菌,是一种具有生殖亲缘关系的细菌,是一种具有生殖亲缘关系的细菌。La protección local de N. monachus en esta área debería ser fortalecida mediante campañas de concienciación pública para salvaguardar La persistencia a large plaza de esta población。[Traducción del equipo社论]
{"title":"Breeding Behavior of the Hooded Vulture (Necrosyrtes monachus) in the Sudano-Sahelian Area (Garango, Burkina Faso)","authors":"Clément Daboné, A. Ouéda, J. B. Adjakpa, P. Weesie","doi":"10.3356/JRR-21-38","DOIUrl":"https://doi.org/10.3356/JRR-21-38","url":null,"abstract":"Abstract. Knowledge of Hooded Vulture (Necrosyrtes monachus) breeding behavior is important for monitoring purposes and to understand factors that may impact their breeding rates. In this study, we describe the breeding behavior of 65 Hooded Vulture pairs during two breeding seasons (2013/2014 and 2014/2015) in the Sudano-Sahelian area, Garango, in central-eastern Burkina Faso. The main behavioral patterns examined were aerial displays, copulation, nest building, incubation, nestling-rearing, and nest attendance. Hooded Vultures appeared highly selective with regard to nesting tree selection (91% of the 65 nests were in one of three species: Parkia biglobosa, Faidherbia albida, and Tamarindus indica). The breeding period of 65 pairs of Hooded Vultures spanned approximately 8 mo from egg-laying to fledging of the young. The constructed nests included a variety of human-made waste (plastic, paper, paperboard, and rags). Incubation lasted 48.1 ± 2.0 (SD) d for 18 hatched eggs. Juveniles continued receiving food from their parents on the nesting site for at least 38 d after fledging, and stayed with their parents for >5 mo post-fledging. Aerial displays were frequently performed by Hooded Vultures in pairs (two adults) or in threes (two adults with juvenile) and those observed early in the breeding season were considered to be courtship displays. Both sexes contributed to nest building and incubation tasks, and nestlings were relatively well attended by parents at all times of the day during the first weeks. Hooded Vultures produced 0.70 fledged young per nest where eggs were laid, or 0.57 fledged young per territorial pair. Hooded Vultures have a relatively healthy reproductive rate, but remain threatened primarily by direct human persecution. Local protection of Hooded Vultures in this area should be strengthened by public awareness campaigns to safeguard the population's long-term persistence. Resumen. Conocer el comportamiento reproductor de Necrosyrtes monachus es importante para fines de seguimiento y para comprender los factores que pueden afectar sus tasas reproductivas. En este estudio, describimos el comportamiento reproductor de 65 parejas de N. monachus durante dos temporadas de cría (2013/2014 y 2014/2015) en el área sudano-saheliana, Garango, centro-este de Burkina Faso. Los principales patrones de comportamiento examinados fueron las exhibiciones aéreas, la cópula, la construcción del nido, la incubación, la crianza de los polluelos y la asistencia al nido. Los individuos de N. monachus parecieron ser muy selectivos con respecto a la selección de árboles para anidar (91% de los 65 nidos estaban en una de las siguientes especies: Parkia biglobosa, Faidherbia albida y Tamarindus indica). El período reproductor de las 65 parejas abarcó aproximadamente 8 meses, desde la puesta de huevos hasta el emplumamiento de las crías. Los nidos construidos incluyeron una variedad de desechos antropogénicos (plástico, papel, cartón y trapos). La incuba","PeriodicalId":16927,"journal":{"name":"Journal of Raptor Research","volume":"56 1","pages":"30 - 43"},"PeriodicalIF":1.7,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84559255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
American Kestrel Migration: Insights and Challenges from Tracking Individuals across the Annual Cycle 美国红隼迁徙:从跟踪个体跨越年度周期的见解和挑战
4区 生物学 Q2 ORNITHOLOGY Pub Date : 2023-01-18 DOI: 10.3356/jrr-22-05
Anjolene R. Hunt, Jesse L. Watson, Jason M. Winiarski, Ron R. Porter, Julie A. Heath
La variación natural en las estrategias migratorias de Falco sparverius a través de su área de distribución proporciona una oportunidad única para la investigación comparativa de los ciclos anuales. Sin embargo, puede ser un desafío logístico y técnico rastrear una especie tan pequeña pero altamente móvil. Marcamos individuos de F. sparverius con geolocalizadores de nivel de luz o transmisores satelitales con el objetivo de estimar el tiempo de migración y la conectividad. Igualmente, un subconjunto de individuos fue seguido con emisores satelitales durante la temporada reproductiva para evaluar la función y el desgaste del transmisor. Recuperamos geolocalizadores de seis de los 49 (12%) individuos marcados. Un individuo marcado con un geolocalizador migró aproximadamente 1235 km desde su área de reproducción en Idaho hasta la frontera de Nuevo México y Arizona durante el invierno y regresó a Idaho la primavera siguiente. Los otros cinco individuos recapturados permanecieron durante todo el año cerca (<200 km) de sus lugares de cría. La baja fiabilidad de la recuperación y la baja precisión de las ubicaciones sugirieron importantes limitaciones en el uso de geolocalizadores para rastrear esta especie. La mayoría de los transmisores satelitales (18 de 22, 82%) fallaron antes de la migración, pero un individuo seguido con satélite migró aproximadamente 5945 km desde Canadá a Nicaragua, y otros tres transmitieron ≥1 ubicación durante la migración. Los transmisores dejaron de funcionar mientras estaban en individuos vivos a pesar de no mostrar daños visibles y de mantener niveles de batería adecuados. Estos resultados sugieren que se necesitan más pruebas y desarrollo antes de que estos emisores desarrollados recientemente sean colocados nuevamente en F. sparverius. Ambos individuos con rutas migratorias completas mostraron evidencia de movimientos post-reproductivos de corta distancia (250–350 km) hacia sitios de parada en el sur donde permanecieron de uno a tres meses antes de seguir migrando. Aunque los tamaños de muestra fueron pequeños, los patrones migratorios fueron consistentes con los patrones de “salto de rana” latitudinales descritos en estudios previos y mostraron un patrón interesante de una escala post-reproductiva prolongada antes de una migración más larga. Además, la ruta de migración de Canadá a Nicaragua representa la ruta de migración más larga registrada para esta especie. [Traducción del equipo editorial]
Falco sparverius在其范围内迁徙策略的自然变化为年度周期的比较研究提供了独特的机会。然而,追踪这样一个小但高度移动的物种可能是一个后勤和技术上的挑战。我们用光级地理定位器或卫星发射器标记了F. sparverius个体,以估计迁移时间和连通性。在繁殖季节,用卫星发射器跟踪一组个体,以评估发射器的功能和磨损情况。我们恢复了49个(12%)标记个体中的6个(12%)的地理定位器。一个标有地理定位器的个体在冬天从爱达荷州的繁殖地迁移到新墨西哥和亚利桑那州的边界,并在第二年春天返回爱达荷州。其他5只被捕获的个体全年都呆在离繁殖地(<200公里)附近。检索可靠性低,定位精度低,表明使用地理定位器跟踪该物种存在重大局限性。大多数卫星发射机(22.82%中的18个)在迁移前失败,但一个卫星跟踪的个人从加拿大迁移到尼加拉瓜约5945公里,另外3个在迁移期间传输≥1个位置。发射机在活着的人身上停止工作,尽管没有明显的损坏和保持足够的电池水平。这些结果表明,在这些新开发的发射器再次放置在F. sparverius之前,还需要进一步的测试和开发。这两种迁徙路线完整的个体都显示出繁殖后向南部停留地点(250 - 350公里)的短距离移动的证据,它们在那里停留了一到三个月,然后继续迁徙。尽管样本量很小,但迁徙模式与之前研究中描述的纬度“青蛙跳跃”模式一致,并显示了一个有趣的模式,即在更长的迁徙之前,繁殖后的规模会延长。此外,从加拿大到尼加拉瓜的迁徙路线是该物种有记录以来最长的迁徙路线。[编辑团队翻译]
{"title":"American Kestrel Migration: Insights and Challenges from Tracking Individuals across the Annual Cycle","authors":"Anjolene R. Hunt, Jesse L. Watson, Jason M. Winiarski, Ron R. Porter, Julie A. Heath","doi":"10.3356/jrr-22-05","DOIUrl":"https://doi.org/10.3356/jrr-22-05","url":null,"abstract":"La variación natural en las estrategias migratorias de Falco sparverius a través de su área de distribución proporciona una oportunidad única para la investigación comparativa de los ciclos anuales. Sin embargo, puede ser un desafío logístico y técnico rastrear una especie tan pequeña pero altamente móvil. Marcamos individuos de F. sparverius con geolocalizadores de nivel de luz o transmisores satelitales con el objetivo de estimar el tiempo de migración y la conectividad. Igualmente, un subconjunto de individuos fue seguido con emisores satelitales durante la temporada reproductiva para evaluar la función y el desgaste del transmisor. Recuperamos geolocalizadores de seis de los 49 (12%) individuos marcados. Un individuo marcado con un geolocalizador migró aproximadamente 1235 km desde su área de reproducción en Idaho hasta la frontera de Nuevo México y Arizona durante el invierno y regresó a Idaho la primavera siguiente. Los otros cinco individuos recapturados permanecieron durante todo el año cerca (<200 km) de sus lugares de cría. La baja fiabilidad de la recuperación y la baja precisión de las ubicaciones sugirieron importantes limitaciones en el uso de geolocalizadores para rastrear esta especie. La mayoría de los transmisores satelitales (18 de 22, 82%) fallaron antes de la migración, pero un individuo seguido con satélite migró aproximadamente 5945 km desde Canadá a Nicaragua, y otros tres transmitieron ≥1 ubicación durante la migración. Los transmisores dejaron de funcionar mientras estaban en individuos vivos a pesar de no mostrar daños visibles y de mantener niveles de batería adecuados. Estos resultados sugieren que se necesitan más pruebas y desarrollo antes de que estos emisores desarrollados recientemente sean colocados nuevamente en F. sparverius. Ambos individuos con rutas migratorias completas mostraron evidencia de movimientos post-reproductivos de corta distancia (250–350 km) hacia sitios de parada en el sur donde permanecieron de uno a tres meses antes de seguir migrando. Aunque los tamaños de muestra fueron pequeños, los patrones migratorios fueron consistentes con los patrones de “salto de rana” latitudinales descritos en estudios previos y mostraron un patrón interesante de una escala post-reproductiva prolongada antes de una migración más larga. Además, la ruta de migración de Canadá a Nicaragua representa la ruta de migración más larga registrada para esta especie. [Traducción del equipo editorial]","PeriodicalId":16927,"journal":{"name":"Journal of Raptor Research","volume":"95 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135392679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Journal of Raptor Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1