Pub Date : 2023-04-17DOI: 10.1109/SysCon53073.2023.10131092
Piyush S Bhagdikar, J. Sarlashkar, Stanislav Gankov, S. Rengarajan, Walter Downing, Scott Hotz
Systems incorporating Vehicle to Everything (V2X) and conventional cellular based communication in vehicles can significantly help improve energy consumption via a combination of intelligent powertrain control strategies, smarter routing algorithms and driving in such a way as to minimize fuel economy and the emission of carbon dioxide, known as "eco-driving." In projects led by the Southwest Research Institute (SwRI), large-scale traffic simulations are created to model real-world scenarios with dynamic behavior that is reactive to imposed changes. Coupled with high fidelity powertrain models, the closed loop framework enables research and development of such Connected and Automated Vehicle (CAV) enabled technologies at scale. This paper will discuss a traffic system simulation environment that was built based on the High Street urban corridor in Columbus, Ohio. Eco-driving strategies were tested at scale on a variety of powertrain platforms – internal combustion engines, hybrid electric and fully electric vehicles. The paper will focus on hybrid electric powertrain modeling along with details on how the powertrain model was leveraged to develop a sophisticated clustering scheme to help down-select speed traces from large scale simulation studies for validation on vehicle dynamometer. Nominal energy consumption improvement around 12% was observed with good match between simulation studies and vehicle testing.
将V2X (Vehicle to Everything)技术和传统的基于蜂窝的车辆通信技术结合在一起的系统,可以通过结合智能动力总成控制策略、更智能的路线算法,以及最大限度地降低燃油经济性和二氧化碳排放的驾驶方式,显著提高能耗,被称为“生态驾驶”。在西南研究所(SwRI)领导的项目中,创建了大规模的交通模拟,以模拟现实世界中的动态行为,这些行为是对强加变化的反应。与高保真动力系统模型相结合,闭环框架使此类联网和自动驾驶汽车(CAV)技术的大规模研究和开发成为可能。本文将讨论基于俄亥俄州哥伦布市高街城市走廊的交通系统仿真环境。环保驾驶策略在各种动力系统平台上进行了大规模测试,包括内燃机、混合动力汽车和全电动汽车。本文将重点介绍混合动力系统建模,以及如何利用动力系统模型开发复杂的聚类方案,以帮助从大规模仿真研究中选择速度轨迹,以便在车辆测力计上进行验证。在模拟研究和车辆测试之间,观察到标称能耗改善约12%。
{"title":"Model Based Validation of Intelligent Powertrain Strategies for Connected and Automated Vehicles","authors":"Piyush S Bhagdikar, J. Sarlashkar, Stanislav Gankov, S. Rengarajan, Walter Downing, Scott Hotz","doi":"10.1109/SysCon53073.2023.10131092","DOIUrl":"https://doi.org/10.1109/SysCon53073.2023.10131092","url":null,"abstract":"Systems incorporating Vehicle to Everything (V2X) and conventional cellular based communication in vehicles can significantly help improve energy consumption via a combination of intelligent powertrain control strategies, smarter routing algorithms and driving in such a way as to minimize fuel economy and the emission of carbon dioxide, known as \"eco-driving.\" In projects led by the Southwest Research Institute (SwRI), large-scale traffic simulations are created to model real-world scenarios with dynamic behavior that is reactive to imposed changes. Coupled with high fidelity powertrain models, the closed loop framework enables research and development of such Connected and Automated Vehicle (CAV) enabled technologies at scale. This paper will discuss a traffic system simulation environment that was built based on the High Street urban corridor in Columbus, Ohio. Eco-driving strategies were tested at scale on a variety of powertrain platforms – internal combustion engines, hybrid electric and fully electric vehicles. The paper will focus on hybrid electric powertrain modeling along with details on how the powertrain model was leveraged to develop a sophisticated clustering scheme to help down-select speed traces from large scale simulation studies for validation on vehicle dynamometer. Nominal energy consumption improvement around 12% was observed with good match between simulation studies and vehicle testing.","PeriodicalId":169296,"journal":{"name":"2023 IEEE International Systems Conference (SysCon)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116440103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-17DOI: 10.1109/SysCon53073.2023.10131088
J. Colombi, Benjamin C. Donohoo
Modern defense systems are often designed to static sets of operational requirements and system specifications. This process has generally worked well in the past but fails to account for the strategic interdependence of design choices made before developing and deploying systems. Capturing this interdependence of design choices may prove beneficial and cost-effective. This paper demonstrates how Game Theory and physics-based simulation can drive design decisions for non-cooperative systems. Game Theory is the mathematical study of strategy and payoffs between rational, self-interested actors. Simulation and Value Focused Thinking (VFT) provide a Normal Form representation that can be analyzed for the Nash Equilibria. A scenario using space domain awareness demonstrates the method, and results show how changing priorities of the value model change the corresponding stable design point.
{"title":"Game-Theoretic System Design for Non-Cooperative Scenarios","authors":"J. Colombi, Benjamin C. Donohoo","doi":"10.1109/SysCon53073.2023.10131088","DOIUrl":"https://doi.org/10.1109/SysCon53073.2023.10131088","url":null,"abstract":"Modern defense systems are often designed to static sets of operational requirements and system specifications. This process has generally worked well in the past but fails to account for the strategic interdependence of design choices made before developing and deploying systems. Capturing this interdependence of design choices may prove beneficial and cost-effective. This paper demonstrates how Game Theory and physics-based simulation can drive design decisions for non-cooperative systems. Game Theory is the mathematical study of strategy and payoffs between rational, self-interested actors. Simulation and Value Focused Thinking (VFT) provide a Normal Form representation that can be analyzed for the Nash Equilibria. A scenario using space domain awareness demonstrates the method, and results show how changing priorities of the value model change the corresponding stable design point.","PeriodicalId":169296,"journal":{"name":"2023 IEEE International Systems Conference (SysCon)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127061647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-17DOI: 10.1109/SysCon53073.2023.10131057
J. Sarlashkar, B. Surampudi, Venkata R. Chundru, W. Downing
Battery energy storage system (BESS) is a key enabler of the modern renewable- and inverter-heavy electric grid. It facilitates integration of variable power generation such as wind and solar, and can provide a host of ancillary grid services and help defer infrastructure upgrades. Longevity and safety of BESS, however, remain unclear when subjected to such duties diverse in timescale, power, and state-of-charge (SOC). Much of the existing deployment of BESS provide a single grid service such as frequency regulation or load shifting. Further, the contemporary operating envelope of the BESS is deliberately conservative. In the work reported here, we extract essential characteristics of existing field operation and systematically develop methods to estimate the effect of extended range of services on BESS performance and safety. This extended range includes a multitude of ancillary services dispatched simultaneously (stacked duty) and sequentially (mixed duty) using wider envelope of timescale, power, and state-of-charge of BESS. The designed laboratory experiments can be used to construct regression models of BESS performance and safety, and to calibrate parameters of physics-inspired electrochemical representations such as the extended SPMeT model presented in a companion paper [1].
{"title":"Statistical Characterization of Battery Energy Storage Systems in Mixed and Stacked Service Electrical Grid Operations","authors":"J. Sarlashkar, B. Surampudi, Venkata R. Chundru, W. Downing","doi":"10.1109/SysCon53073.2023.10131057","DOIUrl":"https://doi.org/10.1109/SysCon53073.2023.10131057","url":null,"abstract":"Battery energy storage system (BESS) is a key enabler of the modern renewable- and inverter-heavy electric grid. It facilitates integration of variable power generation such as wind and solar, and can provide a host of ancillary grid services and help defer infrastructure upgrades. Longevity and safety of BESS, however, remain unclear when subjected to such duties diverse in timescale, power, and state-of-charge (SOC). Much of the existing deployment of BESS provide a single grid service such as frequency regulation or load shifting. Further, the contemporary operating envelope of the BESS is deliberately conservative. In the work reported here, we extract essential characteristics of existing field operation and systematically develop methods to estimate the effect of extended range of services on BESS performance and safety. This extended range includes a multitude of ancillary services dispatched simultaneously (stacked duty) and sequentially (mixed duty) using wider envelope of timescale, power, and state-of-charge of BESS. The designed laboratory experiments can be used to construct regression models of BESS performance and safety, and to calibrate parameters of physics-inspired electrochemical representations such as the extended SPMeT model presented in a companion paper [1].","PeriodicalId":169296,"journal":{"name":"2023 IEEE International Systems Conference (SysCon)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127132006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-17DOI: 10.1109/SysCon53073.2023.10131180
T. Hendriks, B. Akesson, J. Voeten, M. Hendriks, Javier Coronel Parada, Miguel García-Gordillo, S. Sáez, J. Valls
Market trends show advanced usage of safety-critical systems with novel services based on smart data analytics. Customers require continuous updates to applications and services and seek lower costs, and easy-to-install solutions (maintenance) for safety-critical cyber-physical systems (CPS). Leveraging edge and cloud technologies has the potential to enhance safety-critical CPS, also in regulated environments. This is only possible when safety, performance, cybersecurity, and privacy of data are kept at the same level as in on-device only safety-critical CPS.This paper presents thirteen selected safety and performance concepts for distributed device-edge-cloud CPS solutions. This early result of the TRANSACT project aims to ensure needed end-to-end performance and safety levels from an end-user perspective, to extend edge and cloud benefits of more rapid innovation and inclusion of value-added services, also to safety-critical CPS.
{"title":"Thirteen concepts to play it safe with the cloud","authors":"T. Hendriks, B. Akesson, J. Voeten, M. Hendriks, Javier Coronel Parada, Miguel García-Gordillo, S. Sáez, J. Valls","doi":"10.1109/SysCon53073.2023.10131180","DOIUrl":"https://doi.org/10.1109/SysCon53073.2023.10131180","url":null,"abstract":"Market trends show advanced usage of safety-critical systems with novel services based on smart data analytics. Customers require continuous updates to applications and services and seek lower costs, and easy-to-install solutions (maintenance) for safety-critical cyber-physical systems (CPS). Leveraging edge and cloud technologies has the potential to enhance safety-critical CPS, also in regulated environments. This is only possible when safety, performance, cybersecurity, and privacy of data are kept at the same level as in on-device only safety-critical CPS.This paper presents thirteen selected safety and performance concepts for distributed device-edge-cloud CPS solutions. This early result of the TRANSACT project aims to ensure needed end-to-end performance and safety levels from an end-user perspective, to extend edge and cloud benefits of more rapid innovation and inclusion of value-added services, also to safety-critical CPS.","PeriodicalId":169296,"journal":{"name":"2023 IEEE International Systems Conference (SysCon)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122260971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-17DOI: 10.1109/SysCon53073.2023.10130845
Charles Mathou, Kevin Delmas, J. Chaudemar, Pierre de Saqui-Sannes
Development of unmanned aerial systems (UAS), made of an unmanned aerial vehicle (UAV) and equipment such as a ground station, has increased tremendously in recent years. This has made more pressing the need for new design methodologies that provide a reliable and thorough safety assessment throughout the entire design process. The European specific operations risk assessment (SORA) document provides recommended operational safety objectives (OSO) to achieve. The current paper lays groundwork to comply with OSOs pertaining to UAS flight procedures. Key criteria for modeling such procedures are identified and lead to the choice of the AltaRica DataFlow (ADF) language. The Cecilia Workshop is used to model three real-life UAS emergency flight procedures. Custom components developed for this model are presented while discussing the process of modeling a formal procedure from an informal text source. A safety analysis is performed on the resulting model by computing minimal cut sets on an undesired procedure outcome. The results are then reviewed, providing feedback to increase the procedures’ safety gain.
{"title":"Modeling UAS Flight Procedures for SORA Safety Objectives","authors":"Charles Mathou, Kevin Delmas, J. Chaudemar, Pierre de Saqui-Sannes","doi":"10.1109/SysCon53073.2023.10130845","DOIUrl":"https://doi.org/10.1109/SysCon53073.2023.10130845","url":null,"abstract":"Development of unmanned aerial systems (UAS), made of an unmanned aerial vehicle (UAV) and equipment such as a ground station, has increased tremendously in recent years. This has made more pressing the need for new design methodologies that provide a reliable and thorough safety assessment throughout the entire design process. The European specific operations risk assessment (SORA) document provides recommended operational safety objectives (OSO) to achieve. The current paper lays groundwork to comply with OSOs pertaining to UAS flight procedures. Key criteria for modeling such procedures are identified and lead to the choice of the AltaRica DataFlow (ADF) language. The Cecilia Workshop is used to model three real-life UAS emergency flight procedures. Custom components developed for this model are presented while discussing the process of modeling a formal procedure from an informal text source. A safety analysis is performed on the resulting model by computing minimal cut sets on an undesired procedure outcome. The results are then reviewed, providing feedback to increase the procedures’ safety gain.","PeriodicalId":169296,"journal":{"name":"2023 IEEE International Systems Conference (SysCon)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"113963625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-17DOI: 10.1109/SysCon53073.2023.10131076
Jin Zhang, Lei Zhang
Spiking Neural Network (SNN) is a particular Artificial Neural Networks (ANN) form. An SNN has similar features as an ANN, but an SNN has a different information system that will allow SNN to have higher energy efficiency than an ANN. This paper presents the design and implementation of an SNN on FPGA. The model of the SNN is designed to be lower power consumption than existing SNN models in the aspect of FPGA implementation and lower accuracy loss than the existing training method in the part of the algorithm. The coding scheme of the SNN model proposed in this paper is the rate coding scheme. This paper introduces a conversion method to directly map the trained parameters from ANN to SNN with negligible classification accuracy loss. Also, this paper demonstrates the technique of FPGA implementation for Spiking Exponential Function, Spiking SoftMax Function and Dynamic Adder Tree. This paper also presents the Time Division Component Reuse technic for lower resource utilization in the FPGA implementation of SNN. The proposed model has a power efficiency of 8841.7 frames per watt with negligible accuracy loss. The benchmark SNN model has a power efficiency of 337.6 frames per watt with an accuracy loss of 1.42 percent. The reference accuracy of the ANN model is 90.36 percent. For comparison, the specific model of the SNN has an accuracy of 90.39 percent.
{"title":"Spiking Neural Network Implementation on FPGA for Multiclass Classification","authors":"Jin Zhang, Lei Zhang","doi":"10.1109/SysCon53073.2023.10131076","DOIUrl":"https://doi.org/10.1109/SysCon53073.2023.10131076","url":null,"abstract":"Spiking Neural Network (SNN) is a particular Artificial Neural Networks (ANN) form. An SNN has similar features as an ANN, but an SNN has a different information system that will allow SNN to have higher energy efficiency than an ANN. This paper presents the design and implementation of an SNN on FPGA. The model of the SNN is designed to be lower power consumption than existing SNN models in the aspect of FPGA implementation and lower accuracy loss than the existing training method in the part of the algorithm. The coding scheme of the SNN model proposed in this paper is the rate coding scheme. This paper introduces a conversion method to directly map the trained parameters from ANN to SNN with negligible classification accuracy loss. Also, this paper demonstrates the technique of FPGA implementation for Spiking Exponential Function, Spiking SoftMax Function and Dynamic Adder Tree. This paper also presents the Time Division Component Reuse technic for lower resource utilization in the FPGA implementation of SNN. The proposed model has a power efficiency of 8841.7 frames per watt with negligible accuracy loss. The benchmark SNN model has a power efficiency of 337.6 frames per watt with an accuracy loss of 1.42 percent. The reference accuracy of the ANN model is 90.36 percent. For comparison, the specific model of the SNN has an accuracy of 90.39 percent.","PeriodicalId":169296,"journal":{"name":"2023 IEEE International Systems Conference (SysCon)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128054764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-17DOI: 10.1109/SysCon53073.2023.10131074
Viviana Lopez, Aditya Akundi
As the complexity of both products and systems increases across a wide range of industry sectors, there has been an influx in demand for methods of system organization and optimization. MBSE enhances the ability to obtain, analyze, communicate, and manage data on a comprehensive architecture of a system. In this study, a military combat surveillance scenario is modeled using SysML generating state machine diagrams and activity diagrams using the Magic Model Analyst execution framework plugin. This study seeks to prove the feasibility of an MBSE-enabled framework using SysML to create and simulate a surveillance system that monitors and reports on the health status and performance of an armored fighting vehicle (combat tank) through an Unmanned Ariel Vehicle (UAV). The Magic System of Systems Architect, which actively promotes system development architectural frameworks, was used to construct SysML-compliant models, allowing the creation of intricate model diagrams. The construction of the UAV surveillance scenario emphasized the capability of modifying a diagram feature and ensuring that the alteration is communicated to all linked model diagrams. This study builds on a previously published MBSE-enabled conceptual framework for creating digital twins. The purpose of this research is to test and validate the framework's procedures.
随着产品和系统的复杂性在广泛的工业部门中不断增加,对系统组织和优化方法的需求不断增加。MBSE增强了在系统的综合体系结构上获取、分析、通信和管理数据的能力。在本研究中,使用SysML对军事战斗监视场景进行建模,使用Magic Model Analyst执行框架插件生成状态机图和活动图。该研究旨在证明使用SysML创建和模拟监视系统的mbse支持框架的可行性,该监视系统通过无人驾驶Ariel车辆(UAV)监视和报告装甲战车(战斗坦克)的健康状态和性能。系统架构师的神奇系统,它积极地促进了系统开发架构框架,被用来构造符合sysml的模型,允许创建复杂的模型图。无人机监视场景的构建强调修改图特征的能力,并确保将更改传达给所有链接的模型图。这项研究建立在先前发表的用于创建数字双胞胎的mbse支持的概念框架之上。本研究的目的是测试和验证框架的程序。
{"title":"Modeling A UAV Surveillance Scenario- An Applied MBSE Approach","authors":"Viviana Lopez, Aditya Akundi","doi":"10.1109/SysCon53073.2023.10131074","DOIUrl":"https://doi.org/10.1109/SysCon53073.2023.10131074","url":null,"abstract":"As the complexity of both products and systems increases across a wide range of industry sectors, there has been an influx in demand for methods of system organization and optimization. MBSE enhances the ability to obtain, analyze, communicate, and manage data on a comprehensive architecture of a system. In this study, a military combat surveillance scenario is modeled using SysML generating state machine diagrams and activity diagrams using the Magic Model Analyst execution framework plugin. This study seeks to prove the feasibility of an MBSE-enabled framework using SysML to create and simulate a surveillance system that monitors and reports on the health status and performance of an armored fighting vehicle (combat tank) through an Unmanned Ariel Vehicle (UAV). The Magic System of Systems Architect, which actively promotes system development architectural frameworks, was used to construct SysML-compliant models, allowing the creation of intricate model diagrams. The construction of the UAV surveillance scenario emphasized the capability of modifying a diagram feature and ensuring that the alteration is communicated to all linked model diagrams. This study builds on a previously published MBSE-enabled conceptual framework for creating digital twins. The purpose of this research is to test and validate the framework's procedures.","PeriodicalId":169296,"journal":{"name":"2023 IEEE International Systems Conference (SysCon)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133291551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-17DOI: 10.1109/SysCon53073.2023.10131109
J. Colombi, Travis W. Odom, Warren J Connell
The research shows how to improve the Test and Evaluation Strategy (TES) during developmental test and evaluation (DT&E), supported by Model-based Systems Engineering and the System Modeling Language. Specifically, a domain-specific Department of Defense (DoD) testing profile was developed called UTP-D. The profile combines aspects of the UML Testing Profile (UTP) and the Test Description Language (TDL) standard. It captures required test information and relationships and adheres to the language used throughout DoD directives and instructions. As a demonstration, the profile was used to model and simulate developmental tests for a prototype hybrid SUV, specifically acceleration and safety tests. Using domain-specific modeling for DT&E could improve test planning and show how to continue the DoD digital transformation of acquisition processes.
{"title":"A DoD Testing Profile: MBSE for Test and Evaluation Strategy","authors":"J. Colombi, Travis W. Odom, Warren J Connell","doi":"10.1109/SysCon53073.2023.10131109","DOIUrl":"https://doi.org/10.1109/SysCon53073.2023.10131109","url":null,"abstract":"The research shows how to improve the Test and Evaluation Strategy (TES) during developmental test and evaluation (DT&E), supported by Model-based Systems Engineering and the System Modeling Language. Specifically, a domain-specific Department of Defense (DoD) testing profile was developed called UTP-D. The profile combines aspects of the UML Testing Profile (UTP) and the Test Description Language (TDL) standard. It captures required test information and relationships and adheres to the language used throughout DoD directives and instructions. As a demonstration, the profile was used to model and simulate developmental tests for a prototype hybrid SUV, specifically acceleration and safety tests. Using domain-specific modeling for DT&E could improve test planning and show how to continue the DoD digital transformation of acquisition processes.","PeriodicalId":169296,"journal":{"name":"2023 IEEE International Systems Conference (SysCon)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132868297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-17DOI: 10.1109/SysCon53073.2023.10131107
H. Y. Tao, Nicole Hutchison, Megan M. Clifford, G. Kerr, P. Beling, Tim Sherburne, Paul Wach, David Long, Craig Arndt, D. Verma, Thomas A. McDermott
This paper presents the ongoing Year 2 of digital engineering (DE) simulation curriculum development by a research team from the Systems Engineering Research Center (SERC). This task, sponsored by the Defense Acquisition University (DAU), builds on the extensive DE research portfolio in SERC and leverages the existing literature in the systems engineering and DE communities. The goal of the research is to create a robust learning platform with relevant hands-on modeling and simulation experience that can be used to improve students’ DE proficiency levels across the workforce. Part of this research effort includes DAU’s partnership with SERC to develop a Simulation Training Environment for Digital Engineering (STEDE), which is intended to provide infrastructure and example case studies that allow DAU students to interact directly with models. The paper describes the curriculum development and modeling efforts to-date and addresses challenges associated with the development of the learning materials. An Advisory Board was established to provide guidance and expert knowledge in DE as the team is developing the DE curriculum. Working with the Advisory Board, the team discovered some critical skill gaps in DE which provide an opportunity for the team to further enhance the training and curriculum development to modernize the defense acquisition workforce.
{"title":"Challenges and Opportunities in the Digital Engineering Simulation Curriculum Development","authors":"H. Y. Tao, Nicole Hutchison, Megan M. Clifford, G. Kerr, P. Beling, Tim Sherburne, Paul Wach, David Long, Craig Arndt, D. Verma, Thomas A. McDermott","doi":"10.1109/SysCon53073.2023.10131107","DOIUrl":"https://doi.org/10.1109/SysCon53073.2023.10131107","url":null,"abstract":"This paper presents the ongoing Year 2 of digital engineering (DE) simulation curriculum development by a research team from the Systems Engineering Research Center (SERC). This task, sponsored by the Defense Acquisition University (DAU), builds on the extensive DE research portfolio in SERC and leverages the existing literature in the systems engineering and DE communities. The goal of the research is to create a robust learning platform with relevant hands-on modeling and simulation experience that can be used to improve students’ DE proficiency levels across the workforce. Part of this research effort includes DAU’s partnership with SERC to develop a Simulation Training Environment for Digital Engineering (STEDE), which is intended to provide infrastructure and example case studies that allow DAU students to interact directly with models. The paper describes the curriculum development and modeling efforts to-date and addresses challenges associated with the development of the learning materials. An Advisory Board was established to provide guidance and expert knowledge in DE as the team is developing the DE curriculum. Working with the Advisory Board, the team discovered some critical skill gaps in DE which provide an opportunity for the team to further enhance the training and curriculum development to modernize the defense acquisition workforce.","PeriodicalId":169296,"journal":{"name":"2023 IEEE International Systems Conference (SysCon)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133598543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}