Objectives: Asthma is a heterogeneous disease characterized by chronic airway inflammation. Huashanshen dripping pills (HSS) are commonly utilized for relieving asthma, relieving cough, and expelling phlegm. At present, the molecular mechanism against airway inflammation remains unclear.
Methods: In this study, network pharmacology, molecular docking technology, and molecular dynamic simulation were used to predict the therapeutic pathways of HSS for asthma. The ovalbumin-induced mouse model was used to further validate the prediction by RT-qPCR, western blot, immunofluorescence, and related methods.
Key findings: The findings indicate that HSS improves lung function and relieves lung inflammation by reducing inflammatory cell infiltration around the bronchus and reducing eosinophilic counts in bronchoalveolar lavage fluid (BALF). In addition, it lowers the levels of inflammatory cytokines and the expression levels of interleukin-4, interleukin-5, and interleukin-13 mRNA. HSS also inhibits the phosphorylation and nuclear translocation of NF-κB p65 protein.
Conclusions: All results suggested that HSS can decrease airway inflammation in asthmatic mice by inhibiting NF-κB signaling pathway. This finding will shed light on how it can be used to treat asthma.
{"title":"Network pharmacology prediction, molecular docking, and molecular dynamics simulation-based strategy to explore the potential mechanism of Huashanshen dripping pill against asthma.","authors":"Xiaoyu Wang, Yansu Ji, Xin Jin, Miaomiao Zhou, Yujie Wu, Yanhong Xu, Rui Liu, Jihong Feng","doi":"10.1093/jpp/rgae081","DOIUrl":"10.1093/jpp/rgae081","url":null,"abstract":"<p><strong>Objectives: </strong>Asthma is a heterogeneous disease characterized by chronic airway inflammation. Huashanshen dripping pills (HSS) are commonly utilized for relieving asthma, relieving cough, and expelling phlegm. At present, the molecular mechanism against airway inflammation remains unclear.</p><p><strong>Methods: </strong>In this study, network pharmacology, molecular docking technology, and molecular dynamic simulation were used to predict the therapeutic pathways of HSS for asthma. The ovalbumin-induced mouse model was used to further validate the prediction by RT-qPCR, western blot, immunofluorescence, and related methods.</p><p><strong>Key findings: </strong>The findings indicate that HSS improves lung function and relieves lung inflammation by reducing inflammatory cell infiltration around the bronchus and reducing eosinophilic counts in bronchoalveolar lavage fluid (BALF). In addition, it lowers the levels of inflammatory cytokines and the expression levels of interleukin-4, interleukin-5, and interleukin-13 mRNA. HSS also inhibits the phosphorylation and nuclear translocation of NF-κB p65 protein.</p><p><strong>Conclusions: </strong>All results suggested that HSS can decrease airway inflammation in asthmatic mice by inhibiting NF-κB signaling pathway. This finding will shed light on how it can be used to treat asthma.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":"1362-1378"},"PeriodicalIF":2.8,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meng Liang, Siyu Dong, Yi Guo, Yuyi Zhang, Xiao Xiao, Jun Ma, Xiaowen Jiang, Wenhui Yu
Objectives: Non-alcoholic fatty liver disease (NAFLD) is a nutritional and metabolic disease with a high prevalence today. Artemisia capillaris has anti-inflammatory, antioxidant, and other effects. However, the mechanism of A. capillaris in treating NAFLD is still poorly understood.
Methods: This study explored the mechanism of A. capillaris in the treatment of NAFLD through network pharmacology and molecular docking, and verified the results through in vivo experiments using a high-fat diet-induced mouse model and in vitro experiments using an oleic acid-induced HepG2 cell model.
Key findings: Aqueous extract of A. capillaris (AEAC) can reduce blood lipids, reduce liver lipid accumulation and liver inflammation in NAFLD mice, and improve NAFLD. Network pharmacology analysis revealed that 51 drug ingredients in A. capillaris correspond to 370 targets that act on NAFLD. GEO data mining obtained 93 liver differentially expressed genes related to NAFLD. In the UHPLC-MS detection results, 36 components were characterized and molecular docked with JNK. Verified in vitro and in vivo, the results show that JNK and the phosphorylation levels of IL-6, IL-1β, c-Jun, c-Fos, and CCL2 are key targets and pathways.
Conclusions: This study confirmed that AEAC reduces lipid accumulation and inflammation in the liver of NAFLD mice by inhibiting the JNK/AP-1 pathway.
{"title":"Exploration of the potential mechanism of aqueous extract of Artemisia capillaris for the treatment of non-alcoholic fatty liver disease based on network pharmacology and experimental verification.","authors":"Meng Liang, Siyu Dong, Yi Guo, Yuyi Zhang, Xiao Xiao, Jun Ma, Xiaowen Jiang, Wenhui Yu","doi":"10.1093/jpp/rgae061","DOIUrl":"10.1093/jpp/rgae061","url":null,"abstract":"<p><strong>Objectives: </strong>Non-alcoholic fatty liver disease (NAFLD) is a nutritional and metabolic disease with a high prevalence today. Artemisia capillaris has anti-inflammatory, antioxidant, and other effects. However, the mechanism of A. capillaris in treating NAFLD is still poorly understood.</p><p><strong>Methods: </strong>This study explored the mechanism of A. capillaris in the treatment of NAFLD through network pharmacology and molecular docking, and verified the results through in vivo experiments using a high-fat diet-induced mouse model and in vitro experiments using an oleic acid-induced HepG2 cell model.</p><p><strong>Key findings: </strong>Aqueous extract of A. capillaris (AEAC) can reduce blood lipids, reduce liver lipid accumulation and liver inflammation in NAFLD mice, and improve NAFLD. Network pharmacology analysis revealed that 51 drug ingredients in A. capillaris correspond to 370 targets that act on NAFLD. GEO data mining obtained 93 liver differentially expressed genes related to NAFLD. In the UHPLC-MS detection results, 36 components were characterized and molecular docked with JNK. Verified in vitro and in vivo, the results show that JNK and the phosphorylation levels of IL-6, IL-1β, c-Jun, c-Fos, and CCL2 are key targets and pathways.</p><p><strong>Conclusions: </strong>This study confirmed that AEAC reduces lipid accumulation and inflammation in the liver of NAFLD mice by inhibiting the JNK/AP-1 pathway.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":"1328-1339"},"PeriodicalIF":2.8,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The management of asthma and chronic obstructive pulmonary disease (COPD) poses considerable challenges due to the intricate nature of these respiratory conditions. Fostair™ and Trimbow™, two pressurized metered dose inhalers, have emerged as noteworthy therapeutic options for treating both asthma and COPD. Fostair combines an inhaled corticosteroid, specifically beclometasone dipropionate, with a long-acting beta2-agonist, formoterol fumarate dihydrate, offering a dual-action approach to mitigate airway inflammation and bronchoconstriction. Conversely, Trimbow integrates a tri-particulate formulation consisting of beclometasone dipropionate, formoterol fumarate dihydrate, and glycopyrronium bromide, providing a comprehensive strategy to target the pathophysiology of COPD and asthma. Recent clinical trials have underscored Trimbow's superior efficacy compared with Fostair, particularly in terms of reducing exacerbation rates and enhancing lung function. However, despite their therapeutic promise, both inhalers encounter challenges, including limited generalizability of study findings and a disparity between in vitro and human trial results. This literature review offers an in-depth analysis of Fostair and Trimbow, delving into their mechanisms of action, clinical applications, and outcomes in human studies for asthma and COPD. Additionally, the review discusses the role of combination therapy in managing respiratory diseases and underscores the necessity for further research to address existing knowledge gaps and optimize therapeutic outcomes.
{"title":"Advances in inhaler therapy for asthma and chronic obstructive pulmonary disease: a comprehensive review of Fostair™ and Trimbow™.","authors":"Katie Foster, Chun Yuen Jerry Wong","doi":"10.1093/jpp/rgae090","DOIUrl":"10.1093/jpp/rgae090","url":null,"abstract":"<p><p>The management of asthma and chronic obstructive pulmonary disease (COPD) poses considerable challenges due to the intricate nature of these respiratory conditions. Fostair™ and Trimbow™, two pressurized metered dose inhalers, have emerged as noteworthy therapeutic options for treating both asthma and COPD. Fostair combines an inhaled corticosteroid, specifically beclometasone dipropionate, with a long-acting beta2-agonist, formoterol fumarate dihydrate, offering a dual-action approach to mitigate airway inflammation and bronchoconstriction. Conversely, Trimbow integrates a tri-particulate formulation consisting of beclometasone dipropionate, formoterol fumarate dihydrate, and glycopyrronium bromide, providing a comprehensive strategy to target the pathophysiology of COPD and asthma. Recent clinical trials have underscored Trimbow's superior efficacy compared with Fostair, particularly in terms of reducing exacerbation rates and enhancing lung function. However, despite their therapeutic promise, both inhalers encounter challenges, including limited generalizability of study findings and a disparity between in vitro and human trial results. This literature review offers an in-depth analysis of Fostair and Trimbow, delving into their mechanisms of action, clinical applications, and outcomes in human studies for asthma and COPD. Additionally, the review discusses the role of combination therapy in managing respiratory diseases and underscores the necessity for further research to address existing knowledge gaps and optimize therapeutic outcomes.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":"1301-1309"},"PeriodicalIF":2.8,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sajad Abolfazli, Alexandra E Butler, Prashant Kesharwani, Amirhossein Sahebkar
Lipotoxicity is defined as a prolonged metabolic imbalance of lipids that results in ectopic fat distribution in peripheral organs such as the liver, heart, and kidney. The harmful consequences of excessive lipid accumulation in cardiomyocytes cause cardiac lipotoxicity, which alters the structure and function of the heart. Obesity and diabetes are linked to lipotoxic cardiomyopathy. These anomalies might be caused by a harmful metabolic shift that accumulates toxic lipids and shifts glucose oxidation to less fatty acid oxidation. Research has linked fatty acids, fatty acyl coenzyme A, diacylglycerol, and ceramide to lipotoxic stress in cells. This stress can be brought on by apoptosis, impaired insulin signaling, endoplasmic reticulum stress, protein kinase C activation, p38 Ras-mitogen-activated protein kinase (MAPK) activation, or modification of peroxisome proliferator-activated receptors (PPARs) family members. Curcuma longa is used to extract curcumin, a hydrophobic polyphenol derivative with a variety of pharmacological characteristics. Throughout the years, curcumin has been utilized as an anti-inflammatory, antioxidant, anticancer, hepatoprotective, cardioprotective, anti-diabetic, and anti-obesity drug. Curcumin reduces cardiac lipotoxicity by inhibiting apoptosis and decreasing the expression of apoptosis-related proteins, reducing the expression of inflammatory cytokines, activating the autophagy signaling pathway, and inhibiting the expression of endoplasmic reticulum stress marker proteins.
脂肪毒性是指长期的脂质代谢失衡,导致脂肪异位分布于肝脏、心脏和肾脏等外周器官。脂质在心肌细胞中过度积聚的有害后果会导致心脏脂肪毒性,从而改变心脏的结构和功能。肥胖和糖尿病与脂毒性心肌病有关。这些异常可能是由于有害的新陈代谢转变造成的,这种转变会积累有毒的脂质,并将葡萄糖氧化转变为较少的脂肪酸氧化。研究发现,脂肪酸、脂肪酰辅酶 A、二酰甘油和神经酰胺与细胞中的脂毒性压力有关。这种应激可由细胞凋亡、胰岛素信号受损、内质网应激、蛋白激酶 C 激活、p38 Ras-丝裂原活化蛋白激酶(MAPK)激活或过氧化物酶体增殖激活受体(PPARs)家族成员的改变引起。姜黄素是一种疏水性多酚衍生物,具有多种药理特性。多年来,姜黄素一直被用作抗炎、抗氧化、抗癌、保肝、保心、抗糖尿病和抗肥胖药物。姜黄素通过抑制细胞凋亡和减少细胞凋亡相关蛋白的表达、减少炎症细胞因子的表达、激活自噬信号通路以及抑制内质网应激标志蛋白的表达,来降低心脏脂肪毒性。
{"title":"The beneficial impact of curcumin on cardiac lipotoxicity.","authors":"Sajad Abolfazli, Alexandra E Butler, Prashant Kesharwani, Amirhossein Sahebkar","doi":"10.1093/jpp/rgae102","DOIUrl":"10.1093/jpp/rgae102","url":null,"abstract":"<p><p>Lipotoxicity is defined as a prolonged metabolic imbalance of lipids that results in ectopic fat distribution in peripheral organs such as the liver, heart, and kidney. The harmful consequences of excessive lipid accumulation in cardiomyocytes cause cardiac lipotoxicity, which alters the structure and function of the heart. Obesity and diabetes are linked to lipotoxic cardiomyopathy. These anomalies might be caused by a harmful metabolic shift that accumulates toxic lipids and shifts glucose oxidation to less fatty acid oxidation. Research has linked fatty acids, fatty acyl coenzyme A, diacylglycerol, and ceramide to lipotoxic stress in cells. This stress can be brought on by apoptosis, impaired insulin signaling, endoplasmic reticulum stress, protein kinase C activation, p38 Ras-mitogen-activated protein kinase (MAPK) activation, or modification of peroxisome proliferator-activated receptors (PPARs) family members. Curcuma longa is used to extract curcumin, a hydrophobic polyphenol derivative with a variety of pharmacological characteristics. Throughout the years, curcumin has been utilized as an anti-inflammatory, antioxidant, anticancer, hepatoprotective, cardioprotective, anti-diabetic, and anti-obesity drug. Curcumin reduces cardiac lipotoxicity by inhibiting apoptosis and decreasing the expression of apoptosis-related proteins, reducing the expression of inflammatory cytokines, activating the autophagy signaling pathway, and inhibiting the expression of endoplasmic reticulum stress marker proteins.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":"1269-1283"},"PeriodicalIF":2.8,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunfang Yang, Rihong Liu, Yixuan Sun, Bo Wu, Bosai He, Ying Jia, Tingxu Yan
Background: In this study, Schisandrin B (SCHB), the main active component of Schisandra chinensis extract (SCE), was taken as the research object. From gene, microRNA (miR-124), and the level of protein expression system to study the influences of microglia phenotype to play the role of nerve inflammation.
Methods: In this study, we investigated the role of miR-124 in regulating microglial polarization alteration and NF-κB/TLR4 signaling and MAPK signaling in the LPS-induced BV2 by PCR, western blot, ELISA, immunofluorescence, and cytometry.
Results: SCE and SCHB significantly reduced the NO-releasing, decreased the levels of TNF-α, iNOS, IBA-1, and ratio of CD86+/CD206+, and increased the levels of IL-10, Arg-1. In addition, SCE and SCHB inhibited the nucleus translocation of NF-κB, decreased the expressions of IKK-α, and increased the expressions of IκB-α. Besides, the expressions of TLR4 and MyD88, and the ratios of p-p38/p38, p-ERK/ERK, and p-JNK/JNK were reduced by SCE and SCHB treatments. Furthermore, SCHB upregulated the mRNA levels of miR-124. However, the effects of SCHB were reversed by the miR-124 inhibitor.
Conclusions: These findings suggested SCHB downregulated NF-κB/TLR4/MyD88 signaling pathway and MAPK signaling pathway via miR-124 to restore M1/M2 balance and alleviate depressive symptoms.
{"title":"Schisandrin B restores M1/M2 balance through miR-124 in lipopolysaccharide-induced BV2 cells.","authors":"Yunfang Yang, Rihong Liu, Yixuan Sun, Bo Wu, Bosai He, Ying Jia, Tingxu Yan","doi":"10.1093/jpp/rgae079","DOIUrl":"10.1093/jpp/rgae079","url":null,"abstract":"<p><strong>Background: </strong>In this study, Schisandrin B (SCHB), the main active component of Schisandra chinensis extract (SCE), was taken as the research object. From gene, microRNA (miR-124), and the level of protein expression system to study the influences of microglia phenotype to play the role of nerve inflammation.</p><p><strong>Methods: </strong>In this study, we investigated the role of miR-124 in regulating microglial polarization alteration and NF-κB/TLR4 signaling and MAPK signaling in the LPS-induced BV2 by PCR, western blot, ELISA, immunofluorescence, and cytometry.</p><p><strong>Results: </strong>SCE and SCHB significantly reduced the NO-releasing, decreased the levels of TNF-α, iNOS, IBA-1, and ratio of CD86+/CD206+, and increased the levels of IL-10, Arg-1. In addition, SCE and SCHB inhibited the nucleus translocation of NF-κB, decreased the expressions of IKK-α, and increased the expressions of IκB-α. Besides, the expressions of TLR4 and MyD88, and the ratios of p-p38/p38, p-ERK/ERK, and p-JNK/JNK were reduced by SCE and SCHB treatments. Furthermore, SCHB upregulated the mRNA levels of miR-124. However, the effects of SCHB were reversed by the miR-124 inhibitor.</p><p><strong>Conclusions: </strong>These findings suggested SCHB downregulated NF-κB/TLR4/MyD88 signaling pathway and MAPK signaling pathway via miR-124 to restore M1/M2 balance and alleviate depressive symptoms.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":"1352-1361"},"PeriodicalIF":2.8,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aims: The aim of the present review was to highlight natural product investigations in silico and in vitro to find plants and chemicals that inhibit or stimulate angiotensin-converting enzyme 2 (ACE-2).
Background: The global reduction of incidents and fatalities attributable to infections with SARS-CoV-2 is one of the most public health problems. In the absence of specific therapy for coronavirus disease 2019 (COVID-19), phytocompounds generated from plant extracts may be a promising strategy worth further investigation, motivating researchers to evaluate the safety and anti-SARS-CoV-2 effectiveness of these ingredients.
Objective: To review phytochemicals in silico for anti-SARS-CoV-2 activity and to assess their safety and effectiveness in vitro and in vivo.
Methods: The present review was conducted using various scientific databases and studies on anti-SARS-CoV-2 phytochemicals were analyzed and summarized. The results obtained from the in silico screening were subjected to extraction, isolation, and purification. The in vitro studies on anti-SarcoV-2 were also included in this review. In addition, the results of this research were interpreted, analyzed, and documented on the basis of the bibliographic information obtained.
Results: This review discusses recent research on using natural remedies to cure or prevent COVID-19 infection. The literature analysis shows that the various herbal preparations (extracts) and purified compounds can block the replication or entrance of the virus directly to carry out their anti-SARS-CoV-2 effects. It is interesting to note that certain items can prevent SARS-CoV-2 from infecting human cells by blocking the ACE-2 receptor or the serine protease TMPRRS2. Moreover, natural substances have been demonstrated to block proteins involved in the SARS-CoV-2 life cycle, such as papain- or chymotrypsin-like proteases.
Conclusion: The natural products may have the potential for use singly or in combination as alternative drugs to treat/prevent COVID-19 infection, including blocking or stimulating ACE-2. In addition, their structures may provide indications for the development of anti-SARS-CoV-2 drugs.
{"title":"Phytomedical compounds as promising therapeutic agents for COVID-19 targeting angiotensin-converting enzyme 2: a review.","authors":"Smail Amtaghri, Miloudia Slaoui, Mohamed Eddouks","doi":"10.1093/jpp/rgae101","DOIUrl":"10.1093/jpp/rgae101","url":null,"abstract":"<p><strong>Aims: </strong>The aim of the present review was to highlight natural product investigations in silico and in vitro to find plants and chemicals that inhibit or stimulate angiotensin-converting enzyme 2 (ACE-2).</p><p><strong>Background: </strong>The global reduction of incidents and fatalities attributable to infections with SARS-CoV-2 is one of the most public health problems. In the absence of specific therapy for coronavirus disease 2019 (COVID-19), phytocompounds generated from plant extracts may be a promising strategy worth further investigation, motivating researchers to evaluate the safety and anti-SARS-CoV-2 effectiveness of these ingredients.</p><p><strong>Objective: </strong>To review phytochemicals in silico for anti-SARS-CoV-2 activity and to assess their safety and effectiveness in vitro and in vivo.</p><p><strong>Methods: </strong>The present review was conducted using various scientific databases and studies on anti-SARS-CoV-2 phytochemicals were analyzed and summarized. The results obtained from the in silico screening were subjected to extraction, isolation, and purification. The in vitro studies on anti-SarcoV-2 were also included in this review. In addition, the results of this research were interpreted, analyzed, and documented on the basis of the bibliographic information obtained.</p><p><strong>Results: </strong>This review discusses recent research on using natural remedies to cure or prevent COVID-19 infection. The literature analysis shows that the various herbal preparations (extracts) and purified compounds can block the replication or entrance of the virus directly to carry out their anti-SARS-CoV-2 effects. It is interesting to note that certain items can prevent SARS-CoV-2 from infecting human cells by blocking the ACE-2 receptor or the serine protease TMPRRS2. Moreover, natural substances have been demonstrated to block proteins involved in the SARS-CoV-2 life cycle, such as papain- or chymotrypsin-like proteases.</p><p><strong>Conclusion: </strong>The natural products may have the potential for use singly or in combination as alternative drugs to treat/prevent COVID-19 infection, including blocking or stimulating ACE-2. In addition, their structures may provide indications for the development of anti-SARS-CoV-2 drugs.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":"1239-1268"},"PeriodicalIF":2.8,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuwen Fan, Quyi Wang, Yun Zhang, Yu Wang, Wenwen Li, Shu Jiang, Ji-Nao Duan
Objectives: To explore the effective components of Guishao Yigong decoction (GYD) in the treatment of colorectal cancer and reveal its potential mechanism of action.
Methods: Through network pharmacology, the main target and signaling pathway of GYD therapy for colorectal cancer (CRC) were found. Subsequently, the effect of GYD was verified by in vitro cell viability measurements, colony formation, and scratch healing tests. The effects of GYD on metabolic pathways in vivo were found through plasma metabolomics. Finally, flow cytometry and qPCR experiments were used to verify the cycle-blocking effect of GYD on CRC cells.
Key findings: Based on the network pharmacological analysis and molecular docking technology, it was found that GYD could restrain the growth of CRC cells by affecting lipid metabolic pathways and mitogen-activated protein kinase (MAPK) signaling pathways. A series of cell experiments showed that GYD could inhibit the proliferation, migration and clonogenic ability of CRC cells. Furthermore, the plasma metabolomics results showed that GYD could affect the production of unsaturated fatty acids in mice. Flow cytometry and qPCR experiments further proved that GYD blocked the CRC cells in the G1 phase and modulated the expression of cell cycle-related targets, such as AKT, TP53, CDKN1A, and CDK2.
Conclusions: All the results indicated that GYD could regulate the related metabolism of unsaturated fatty acids. Thus, the cell cycle was blocked and the expressions of the key proteins such as AKT and TP53 were regulated, which achieved the purpose of intervention in colorectal cancer.
{"title":"Mechanism of Guishao Yigong decoction in treating colorectal cancer based on network pharmacology and experimental validation.","authors":"Yuwen Fan, Quyi Wang, Yun Zhang, Yu Wang, Wenwen Li, Shu Jiang, Ji-Nao Duan","doi":"10.1093/jpp/rgae045","DOIUrl":"https://doi.org/10.1093/jpp/rgae045","url":null,"abstract":"<p><strong>Objectives: </strong>To explore the effective components of Guishao Yigong decoction (GYD) in the treatment of colorectal cancer and reveal its potential mechanism of action.</p><p><strong>Methods: </strong>Through network pharmacology, the main target and signaling pathway of GYD therapy for colorectal cancer (CRC) were found. Subsequently, the effect of GYD was verified by in vitro cell viability measurements, colony formation, and scratch healing tests. The effects of GYD on metabolic pathways in vivo were found through plasma metabolomics. Finally, flow cytometry and qPCR experiments were used to verify the cycle-blocking effect of GYD on CRC cells.</p><p><strong>Key findings: </strong>Based on the network pharmacological analysis and molecular docking technology, it was found that GYD could restrain the growth of CRC cells by affecting lipid metabolic pathways and mitogen-activated protein kinase (MAPK) signaling pathways. A series of cell experiments showed that GYD could inhibit the proliferation, migration and clonogenic ability of CRC cells. Furthermore, the plasma metabolomics results showed that GYD could affect the production of unsaturated fatty acids in mice. Flow cytometry and qPCR experiments further proved that GYD blocked the CRC cells in the G1 phase and modulated the expression of cell cycle-related targets, such as AKT, TP53, CDKN1A, and CDK2.</p><p><strong>Conclusions: </strong>All the results indicated that GYD could regulate the related metabolism of unsaturated fatty acids. Thus, the cell cycle was blocked and the expressions of the key proteins such as AKT and TP53 were regulated, which achieved the purpose of intervention in colorectal cancer.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objectives This study investigated the potential therapeutic benefits of PNU120596, a positive allosteric modulator of the α7 nicotinic acetylcholine receptor (α7nAChR), in mitigating acute lung injury (ALI) induced by lipopolysaccharide (LPS) in a mouse model. Specifically, we sought to examine the impact of PNU120596 on the PI3K/AKT signaling pathway in the context of ALI. Methods ALI was induced in mice by LPS administration, and the protective effects of PNU120596 were assessed. Lung injury, lung function, and the inflammatory response were evaluated. Additionally, the activation of the PI3K/AKT signaling pathway was examined, along with the levels of inflammatory factors and oxidative stress markers. Key findings PNU120596 significantly ameliorated LPS-induced lung injury, improved lung function, and reduced the inflammatory response in the mouse model of ALI. Furthermore, we observed that PNU120596 inhibited the activation of the PI3K/AKT signaling pathway, which was associated with decreased levels of inflammatory factors and oxidative stress markers. Conclusions PNU120596 exhibits promising therapeutic potential for the treatment of acute lung injury, potentially by targeting the PI3K/AKT signaling pathway. These findings suggest that modulation of the α7 nicotinic acetylcholine receptor with PNU120596 may offer a viable strategy for the management of ALI, warranting further investigation and potential clinical applications.
{"title":"Targeting the PI3K/AKT signaling pathway with PNU120596 protects against LPS-induced acute lung injury","authors":"Zixin Hou, Fengrui Yang, Qiang Zhang, Yuxia Wang, Junwen Liu, Feng Liang","doi":"10.1093/jpp/rgae076","DOIUrl":"https://doi.org/10.1093/jpp/rgae076","url":null,"abstract":"Objectives This study investigated the potential therapeutic benefits of PNU120596, a positive allosteric modulator of the α7 nicotinic acetylcholine receptor (α7nAChR), in mitigating acute lung injury (ALI) induced by lipopolysaccharide (LPS) in a mouse model. Specifically, we sought to examine the impact of PNU120596 on the PI3K/AKT signaling pathway in the context of ALI. Methods ALI was induced in mice by LPS administration, and the protective effects of PNU120596 were assessed. Lung injury, lung function, and the inflammatory response were evaluated. Additionally, the activation of the PI3K/AKT signaling pathway was examined, along with the levels of inflammatory factors and oxidative stress markers. Key findings PNU120596 significantly ameliorated LPS-induced lung injury, improved lung function, and reduced the inflammatory response in the mouse model of ALI. Furthermore, we observed that PNU120596 inhibited the activation of the PI3K/AKT signaling pathway, which was associated with decreased levels of inflammatory factors and oxidative stress markers. Conclusions PNU120596 exhibits promising therapeutic potential for the treatment of acute lung injury, potentially by targeting the PI3K/AKT signaling pathway. These findings suggest that modulation of the α7 nicotinic acetylcholine receptor with PNU120596 may offer a viable strategy for the management of ALI, warranting further investigation and potential clinical applications.","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":"3 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Krishna C Aluri, Kalle Sigfridsson, Aixiang Xue, Diane Ramsden
Objectives The aim of this study was to investigate the pharmacokinetics (PK) of poorly soluble compounds when administered intramuscularly (i.m.) as crystalline particles of different sizes. Methods Three uncharged compounds (griseofulvin, AZ’72, and AZ’07) with varying aqueous solubility were dosed to mice at 10 and 50 mg/kg as nano- and microparticle formulations. The PK of the compounds was evaluated. Key Findings The smaller particles of the drugs resulted in higher maximum plasma concentration (Cmax) and area under the plasma concentration–time profile (AUC) at 50 mg/kg. There was a dose-proportional increase in AUC but less than dose dose-proportional increase in Cmax. The evaluation at 10 mg/kg was more complex as increased exposure for nanoparticles was only observed for griseofulvin which has the highest solubility. In addition, there was an increase in half-life with an increase in dose. Conclusions This study highlights that general expectations based on in vitro dissolution (i.e. that smaller particles dissolve faster than larger particles when surrounded by liquid) do not always translate to in vivo and demonstrates the importance of understanding the physicochemical properties of the drug, the characteristics of the formulations and the microphysiology at the delivery site.
{"title":"Pharmacokinetics of nano- and microcrystal formulations of low solubility compounds after intramuscular injection to mice","authors":"Krishna C Aluri, Kalle Sigfridsson, Aixiang Xue, Diane Ramsden","doi":"10.1093/jpp/rgae118","DOIUrl":"https://doi.org/10.1093/jpp/rgae118","url":null,"abstract":"Objectives The aim of this study was to investigate the pharmacokinetics (PK) of poorly soluble compounds when administered intramuscularly (i.m.) as crystalline particles of different sizes. Methods Three uncharged compounds (griseofulvin, AZ’72, and AZ’07) with varying aqueous solubility were dosed to mice at 10 and 50 mg/kg as nano- and microparticle formulations. The PK of the compounds was evaluated. Key Findings The smaller particles of the drugs resulted in higher maximum plasma concentration (Cmax) and area under the plasma concentration–time profile (AUC) at 50 mg/kg. There was a dose-proportional increase in AUC but less than dose dose-proportional increase in Cmax. The evaluation at 10 mg/kg was more complex as increased exposure for nanoparticles was only observed for griseofulvin which has the highest solubility. In addition, there was an increase in half-life with an increase in dose. Conclusions This study highlights that general expectations based on in vitro dissolution (i.e. that smaller particles dissolve faster than larger particles when surrounded by liquid) do not always translate to in vivo and demonstrates the importance of understanding the physicochemical properties of the drug, the characteristics of the formulations and the microphysiology at the delivery site.","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":"200 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qi Su, Jiayan Ren, Kun Chen, Sze Wei Leong, Xu Han, Na Li, Jianlin Wu, Yanmin Zhang
Objectives Hypoxia conditions promote the adaptation and progression of non-small-cell lung cancer (NSCLC) via hypoxia-inducible factors (HIF). HIF-1α may regulate estrogen receptor β (ERβ) and promote the progression of NSCLC. The phytochemical homoharringtonine (HHT) exerts strong inhibitory potency on NSCLC, with molecular mechanism under hypoxia being elusive. Methods The effects of HHT on NSCLC growth were determined by cell viability assay, colony formation, flow cytometry, and H460 xenograft models. Western blotting, molecular docking program, site-directed mutagenesis assay, immunohistochemical assay, and immunofluorescence assay were performed to explore the underlying mechanisms of HHT-induced growth inhibition in NSCLC. Key findings HIF-1α/ERβ signaling-related E2F1 is highly expressed and contributes to unfavorable survival and tumor growth. The findings in hypoxic cells, HIF-1α overexpressing cells, as well as ERβ- or E2F1-overexpressed and knockdown cells suggest that the HIF-1α/ERβ/E2F1 feedforward loop promotes NSCLC cell growth. HHT suppresses HIF-1α/ERβ/E2F1 signaling via the ubiquitin-proteasome pathway, which is dependent on the inhibition of the protein expression of HIF-1α and ERβ. Molecular docking and site-directed mutagenesis revealed that HHT binds to the GLU305 site of ERβ. HHT inhibits cell proliferation and colony formation and promotes apoptosis in both NSCLC cells and xenograft models. Conclusion The formation of the HIF-1α/ERβ/E2F1 feedforward loop promotes NSCLC growth and reveals a novel molecular mechanism by which HHT induces cell death in NSCLC.
{"title":"Homoharringtonine promotes non-small-cell lung cancer cell death via modulating HIF-1α/ERβ/E2F1 feedforward loop","authors":"Qi Su, Jiayan Ren, Kun Chen, Sze Wei Leong, Xu Han, Na Li, Jianlin Wu, Yanmin Zhang","doi":"10.1093/jpp/rgae110","DOIUrl":"https://doi.org/10.1093/jpp/rgae110","url":null,"abstract":"Objectives Hypoxia conditions promote the adaptation and progression of non-small-cell lung cancer (NSCLC) via hypoxia-inducible factors (HIF). HIF-1α may regulate estrogen receptor β (ERβ) and promote the progression of NSCLC. The phytochemical homoharringtonine (HHT) exerts strong inhibitory potency on NSCLC, with molecular mechanism under hypoxia being elusive. Methods The effects of HHT on NSCLC growth were determined by cell viability assay, colony formation, flow cytometry, and H460 xenograft models. Western blotting, molecular docking program, site-directed mutagenesis assay, immunohistochemical assay, and immunofluorescence assay were performed to explore the underlying mechanisms of HHT-induced growth inhibition in NSCLC. Key findings HIF-1α/ERβ signaling-related E2F1 is highly expressed and contributes to unfavorable survival and tumor growth. The findings in hypoxic cells, HIF-1α overexpressing cells, as well as ERβ- or E2F1-overexpressed and knockdown cells suggest that the HIF-1α/ERβ/E2F1 feedforward loop promotes NSCLC cell growth. HHT suppresses HIF-1α/ERβ/E2F1 signaling via the ubiquitin-proteasome pathway, which is dependent on the inhibition of the protein expression of HIF-1α and ERβ. Molecular docking and site-directed mutagenesis revealed that HHT binds to the GLU305 site of ERβ. HHT inhibits cell proliferation and colony formation and promotes apoptosis in both NSCLC cells and xenograft models. Conclusion The formation of the HIF-1α/ERβ/E2F1 feedforward loop promotes NSCLC growth and reveals a novel molecular mechanism by which HHT induces cell death in NSCLC.","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":"176 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}