The N-terminal regions of SLC6 transporters are sequentially unrelated, and the majority of such transporters contain only relatively short peptide N-terminal extensions. Currently, it is not clear if a diversity of N-terminal sequences represents diverse functions among the transporters or if there are common functions hidden behind similar, as yet unidentified, structures. Using alignment of amino acid sequences with the hydropathy plot, disorder prediction, and calpain recognition sites, we show that common structural features among the N-termini of some transporters might exist. We previously showed that polymeric neurotransmitter transporter N-termini exhibit very similar profiles of dynamic, time-dependent 465-595-350-750 nm absorbance metachromasia in the Bradford assay. Here we report that under certain mild denaturing conditions, filamentous aggregation of glutathione S-transferase (GST) protein results in similar near-infrared metachromasia. This effect was eliminated by further GST protein denaturation and solubilization. The results suggest that aggregation of partially denatured GST stabilizes Coomassie dye docking sites, producing a near-infrared absorbance shift similar to that observed in the polymeric unstructured N-termini of transporters.