In this paper, a handheld liquor authenticity detection system is demonstrated based on the laser spectroscopy technique, which consists of a handheld laser spectrometer and a mobile phone display terminal. In this system, the semiconductor laser is integrated into the spectrometer and the laser beam is further angled to the optical axis of the spectrometer to avoid interference of the fluorescence generated by the bottle wall. During the system operation, the laser excites the tested liquor to generate fluorescence and Raman spectroscopy signals, which are digitized and wirelessly transmitted by Wi-Fi to the Android mobile terminal. After the image processing by the mobile phone APP, the tested liquor spectrum curve is obtained. At the same time, based on the standard liquor spectrum curve stored in the database, the Pearson correlation coefficient is calculated and the matching similarity is given. In addition, this paper proposes a calibration method based on pure water Raman intensity to achieve accurate measurement of fluorescence intensity and minimize the influence of fluorescence intensity saturation on the measurement results. In the experiment, we measured the similarity of 12 brands of Chinese liquor by using our self-developed handheld laser spectrometer. Their authenticity of liquor could be given accurately and effectively.
{"title":"Development of a Handheld System for Liquor Authenticity Detection Based on Laser Spectroscopy Technique","authors":"Yuchen Tian, Yundong Sun, Yansong Wang, Xiaofang Li, Dongjie Zhu","doi":"10.1155/2022/4404749","DOIUrl":"https://doi.org/10.1155/2022/4404749","url":null,"abstract":"In this paper, a handheld liquor authenticity detection system is demonstrated based on the laser spectroscopy technique, which consists of a handheld laser spectrometer and a mobile phone display terminal. In this system, the semiconductor laser is integrated into the spectrometer and the laser beam is further angled to the optical axis of the spectrometer to avoid interference of the fluorescence generated by the bottle wall. During the system operation, the laser excites the tested liquor to generate fluorescence and Raman spectroscopy signals, which are digitized and wirelessly transmitted by Wi-Fi to the Android mobile terminal. After the image processing by the mobile phone APP, the tested liquor spectrum curve is obtained. At the same time, based on the standard liquor spectrum curve stored in the database, the Pearson correlation coefficient is calculated and the matching similarity is given. In addition, this paper proposes a calibration method based on pure water Raman intensity to achieve accurate measurement of fluorescence intensity and minimize the influence of fluorescence intensity saturation on the measurement results. In the experiment, we measured the similarity of 12 brands of Chinese liquor by using our self-developed handheld laser spectrometer. Their authenticity of liquor could be given accurately and effectively.","PeriodicalId":17079,"journal":{"name":"Journal of Spectroscopy","volume":"1 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76192393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shubao Pan, Huo Zhang, Zhi Li, Tao Chen, Xianhua Yin
This paper introduces a method to detect the content of sucrose, an adulterant of red ginseng, based on terahertz spectroscopy. Experiments were carried out on red ginseng with 6 levels of adulterated concentrations using terahertz time-domain spectroscopy (THz-TDS). We separately extracted the information of the terahertz spectral curve by principal component analysis (PCA) and Monte Carlo uninformative variable elimination (MCUVE) and then separately performed quantitative analysis by partial least squares regression (PLSR) and support vector regression (SVR). Because the nonlinear line factor in the terahertz spectral curve of red ginseng samples is considered, the MCUVE-SVR has high correlation coefficient (>0.99) and ratio prediction to deviation (>7.4), low root means square error of deviation (<1.2%), and Bias (<0.05%). The results prove that MCUVE-SVR can be regarded as an ideal quantitative analysis method in the detection of sucrose incorporation in red ginseng by terahertz spectroscopy.
{"title":"Quantitative Determination of Sucrose Adulterated in Red Ginseng by Terahertz Time-Domain Spectroscopy (THz-TDS) with Monte Carlo Uninformative Variable Elimination (MCUVE) and Support Vector Regression (SVR)","authors":"Shubao Pan, Huo Zhang, Zhi Li, Tao Chen, Xianhua Yin","doi":"10.1155/2022/5847819","DOIUrl":"https://doi.org/10.1155/2022/5847819","url":null,"abstract":"This paper introduces a method to detect the content of sucrose, an adulterant of red ginseng, based on terahertz spectroscopy. Experiments were carried out on red ginseng with 6 levels of adulterated concentrations using terahertz time-domain spectroscopy (THz-TDS). We separately extracted the information of the terahertz spectral curve by principal component analysis (PCA) and Monte Carlo uninformative variable elimination (MCUVE) and then separately performed quantitative analysis by partial least squares regression (PLSR) and support vector regression (SVR). Because the nonlinear line factor in the terahertz spectral curve of red ginseng samples is considered, the MCUVE-SVR has high correlation coefficient (>0.99) and ratio prediction to deviation (>7.4), low root means square error of deviation (<1.2%), and Bias (<0.05%). The results prove that MCUVE-SVR can be regarded as an ideal quantitative analysis method in the detection of sucrose incorporation in red ginseng by terahertz spectroscopy.","PeriodicalId":17079,"journal":{"name":"Journal of Spectroscopy","volume":"676 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74753129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. S. Jenifer Isabella, K. Sunitha, K. T. Magesh, S. Arjunan, B. Pesala
The application of Terahertz electromagnetic waves to diagnose oral cancer was investigated. A single case of formalin-fixed oral squamous cell carcinoma (malignant), ameloblastoma (benign), and odontogenic keratocyst was examined using terahertz pulsed spectroscopy in the frequency span of 0.1–2 THz. The measured absorption coefficient, refractive index, and the extinction coefficient were reported to be high for malignant samples than benign and cyst. The THz results are validated with hematoxylin and eosin-stained microscopic images. The results demonstrate that the THz signal was shown to be consistently higher for the malignant sample compared to benign and the cyst. These results indicate that THz signals responded to the cell density by eliminating the effect of water.
{"title":"Investigation of Formalin-Fixed Tissue Optical Characteristics in the Range of 200–500 GHz Using Pulsed Terahertz Reflection Spectroscopy to Differentiate Oral Malignant, Benign, and Cyst","authors":"S. S. Jenifer Isabella, K. Sunitha, K. T. Magesh, S. Arjunan, B. Pesala","doi":"10.1155/2022/3627705","DOIUrl":"https://doi.org/10.1155/2022/3627705","url":null,"abstract":"The application of Terahertz electromagnetic waves to diagnose oral cancer was investigated. A single case of formalin-fixed oral squamous cell carcinoma (malignant), ameloblastoma (benign), and odontogenic keratocyst was examined using terahertz pulsed spectroscopy in the frequency span of 0.1–2 THz. The measured absorption coefficient, refractive index, and the extinction coefficient were reported to be high for malignant samples than benign and cyst. The THz results are validated with hematoxylin and eosin-stained microscopic images. The results demonstrate that the THz signal was shown to be consistently higher for the malignant sample compared to benign and the cyst. These results indicate that THz signals responded to the cell density by eliminating the effect of water.","PeriodicalId":17079,"journal":{"name":"Journal of Spectroscopy","volume":"139 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74584048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Samoudi, O. Bendaou, I. Hanafi, A. Asselman, K. Haboubi
Even at low concentrations, poly-aromatic hydrocarbons found in soot have substantial health implications. Soot deposits have been reported and studied using FTIR and Raman spectroscopy. Using a CO2 photolysis laser, the samples were obtained via infrared multiphoton dissociation (IRMPD) of vinyl bromide (VBr, C2H3Br) molecules. The solid deposit formed in the IRMPD of VBr when a relatively high fluence of the order of 204 J.cm−2 was analyzed by FTIR, and it was discovered that the majority of its composition is aromatic and aliphatic hydrocarbons. Significant fullerene-type carbonaceous soot particles are also found, which could correspond to C60 and C70 or other carbonaceous agglomerates of a higher order; however, the disappearance of this fullerene on Raman spectra cast doubt on this explanation. Our samples’ Raman spectroscopy has been compared to Tamor and Vassell’s research, which may indicate that they have a lesser degree of hardness and density than these authors’ results, indicating a larger hydrogen content in our samples. The optical gap has been calculated, yielding a very limited range of values ranging only between 1.0 and 1.2 eV, resulting in a crystalline size of 0.58 to 1.12 nm.
{"title":"FTIR and Raman Spectroscopy Study of Soot Deposits Produced in the Infrared Multiphoton Dissociation of Vinyl Bromide","authors":"B. Samoudi, O. Bendaou, I. Hanafi, A. Asselman, K. Haboubi","doi":"10.1155/2022/9942870","DOIUrl":"https://doi.org/10.1155/2022/9942870","url":null,"abstract":"Even at low concentrations, poly-aromatic hydrocarbons found in soot have substantial health implications. Soot deposits have been reported and studied using FTIR and Raman spectroscopy. Using a CO2 photolysis laser, the samples were obtained via infrared multiphoton dissociation (IRMPD) of vinyl bromide (VBr, C2H3Br) molecules. The solid deposit formed in the IRMPD of VBr when a relatively high fluence of the order of 204 J.cm−2 was analyzed by FTIR, and it was discovered that the majority of its composition is aromatic and aliphatic hydrocarbons. Significant fullerene-type carbonaceous soot particles are also found, which could correspond to C60 and C70 or other carbonaceous agglomerates of a higher order; however, the disappearance of this fullerene on Raman spectra cast doubt on this explanation. Our samples’ Raman spectroscopy has been compared to Tamor and Vassell’s research, which may indicate that they have a lesser degree of hardness and density than these authors’ results, indicating a larger hydrogen content in our samples. The optical gap has been calculated, yielding a very limited range of values ranging only between 1.0 and 1.2 eV, resulting in a crystalline size of 0.58 to 1.12 nm.","PeriodicalId":17079,"journal":{"name":"Journal of Spectroscopy","volume":"14 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73282220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to its high spatial and spectral information content, hyperspectral imaging opens up new possibilities for a better understanding of data and scenes in a wide variety of applications. An essential part of this process of understanding is the classification part. However, the high spatial and spectral resolution also leads to enormous amounts of data. The effective handling and use of such datasets for classification requires processing steps (dimensionality reduction through feature selection or feature extraction) that are not always goal-oriented. In this article, a new general classification approach is presented that uses the geometric shape of spectral signatures instead of purely statistical methods. In contrast to classical classification approaches (e.g., SVM, KNN), not only are reflectance values taken into account, but also parameters such as curvature points, curvature values, and the curvature behavior of spectral signatures are used to develop shape-describing rules in order to use them for classification by a rule-based procedure with IF-THEN queries. The flexibility and efficiency of the methodology are demonstrated on datasets from two different application domains and lead to convincing results with good performance.
{"title":"A New Rule-Based Classification Method Using Shape-Based Properties of Spectral Curves","authors":"Songuel Polat, A. Trémeau, F. Boochs","doi":"10.1155/2022/7416046","DOIUrl":"https://doi.org/10.1155/2022/7416046","url":null,"abstract":"Due to its high spatial and spectral information content, hyperspectral imaging opens up new possibilities for a better understanding of data and scenes in a wide variety of applications. An essential part of this process of understanding is the classification part. However, the high spatial and spectral resolution also leads to enormous amounts of data. The effective handling and use of such datasets for classification requires processing steps (dimensionality reduction through feature selection or feature extraction) that are not always goal-oriented. In this article, a new general classification approach is presented that uses the geometric shape of spectral signatures instead of purely statistical methods. In contrast to classical classification approaches (e.g., SVM, KNN), not only are reflectance values taken into account, but also parameters such as curvature points, curvature values, and the curvature behavior of spectral signatures are used to develop shape-describing rules in order to use them for classification by a rule-based procedure with IF-THEN queries. The flexibility and efficiency of the methodology are demonstrated on datasets from two different application domains and lead to convincing results with good performance.","PeriodicalId":17079,"journal":{"name":"Journal of Spectroscopy","volume":"42 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90266623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Achir, A. Servent, Marvin Soto, C. Dhuique-Mayer
A fast and low-cost analytical method to determine the concentrations of carotenoids (β-carotene, lutein, and lycopene) from mixed standard solutions or from fruit extracts (kiwi fruits, tomato paste, pink grapefruit juice, kiwi-pineapple smoothie, and apricot nectar) was tested. The methodology was based on UV-Vis spectrophotometry and Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS). Results showed that relative concentrations of β-carotene, lutein, and lycopene in solvent were successfully determined by this technique with an error inferior to 6%. In real extracts, the procedure succeeded well in identifying the major carotenoid type of the fruit samples but also a more complex profile of a fruit mixture. The results also showed that accuracy of carotenoids determination by UV-Vis spectrophotometry-MCR-ALS in fruit extracts was conditioned by their spectral characteristics (III/II ratios and λmax), their relative proportion, and the extract purity.
{"title":"Feasibility of Individual Carotenoid Quantification in Mixtures Using UV-Vis Spectrophotometry with Multivariate Curve Resolution Alternating Least Squares (MCR-ALS)","authors":"N. Achir, A. Servent, Marvin Soto, C. Dhuique-Mayer","doi":"10.1155/2022/4509523","DOIUrl":"https://doi.org/10.1155/2022/4509523","url":null,"abstract":"A fast and low-cost analytical method to determine the concentrations of carotenoids (β-carotene, lutein, and lycopene) from mixed standard solutions or from fruit extracts (kiwi fruits, tomato paste, pink grapefruit juice, kiwi-pineapple smoothie, and apricot nectar) was tested. The methodology was based on UV-Vis spectrophotometry and Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS). Results showed that relative concentrations of β-carotene, lutein, and lycopene in solvent were successfully determined by this technique with an error inferior to 6%. In real extracts, the procedure succeeded well in identifying the major carotenoid type of the fruit samples but also a more complex profile of a fruit mixture. The results also showed that accuracy of carotenoids determination by UV-Vis spectrophotometry-MCR-ALS in fruit extracts was conditioned by their spectral characteristics (III/II ratios and λmax), their relative proportion, and the extract purity.","PeriodicalId":17079,"journal":{"name":"Journal of Spectroscopy","volume":"142 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73011342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Victor De La Cruz Cortes, Kristian Segura Félix, F. F. Flores García, M. F. J. Cepeda Rubio
Diabetes mellitus is one of the most relevant noncommunicable diseases; the WHO figures in its latest update that 422 million people suffer from it; additionally, it has remained for more than 20 years within the 10 main causes of death worldwide; this disease affects the population at any age; glucose measurement is used to assist the treatment of this disease by different methods that are classified as invasive, minimally invasive, and noninvasive, the latter being an area of recent development due that it is not traumatic for patients. This work consists of the experimental characterization of an optical system for plasma glucometry using near infrared by spectrophotometry. This glucometry system is based on the employ of an infrared LED with a wavelength of 1650 nm, a beam angle of 16°, and an output power of 1.6 mW that passes through the analyte (glucose in blood plasma) that is contained in cuvettes of different materials (acrylic and quartz) to subsequently affect a photodiode with different active areas ranging from 0.06 mm to 1.5 mm in order to evaluate the efficiency by comparing the sensitivity in the presence of glucose making additions ranging 100 mg/dl–1000 mg/dl within a dark chamber. The experiments showed that the use of photodiodes with a larger active area and the use of quartz cuvettes show a higher sensitivity compared to photodiodes with small active areas and the use of acrylic cuvettes. This configuration presented an R2 of 0.99 and a sensitivity of 0.225 mV/1 mg/dl of glucose; despite the fact that the initial voltage in each of the experimental repetitions varies, the downward voltage pattern is maintained; based on this, it is concluded that this method using this setup is feasible for plasma glucose measurement.
{"title":"Comparison of Performance of Photodiodes with Different Active Areas Using Acrylic and Quartz Cuvettes for Spectrophotometry in Direct Measurements of Glucose in Water and Human Blood Plasma by Optical Means Using Near-Infrared","authors":"Victor De La Cruz Cortes, Kristian Segura Félix, F. F. Flores García, M. F. J. Cepeda Rubio","doi":"10.1155/2022/5071553","DOIUrl":"https://doi.org/10.1155/2022/5071553","url":null,"abstract":"Diabetes mellitus is one of the most relevant noncommunicable diseases; the WHO figures in its latest update that 422 million people suffer from it; additionally, it has remained for more than 20 years within the 10 main causes of death worldwide; this disease affects the population at any age; glucose measurement is used to assist the treatment of this disease by different methods that are classified as invasive, minimally invasive, and noninvasive, the latter being an area of recent development due that it is not traumatic for patients. This work consists of the experimental characterization of an optical system for plasma glucometry using near infrared by spectrophotometry. This glucometry system is based on the employ of an infrared LED with a wavelength of 1650 nm, a beam angle of 16°, and an output power of 1.6 mW that passes through the analyte (glucose in blood plasma) that is contained in cuvettes of different materials (acrylic and quartz) to subsequently affect a photodiode with different active areas ranging from 0.06 mm to 1.5 mm in order to evaluate the efficiency by comparing the sensitivity in the presence of glucose making additions ranging 100 mg/dl–1000 mg/dl within a dark chamber. The experiments showed that the use of photodiodes with a larger active area and the use of quartz cuvettes show a higher sensitivity compared to photodiodes with small active areas and the use of acrylic cuvettes. This configuration presented an R2 of 0.99 and a sensitivity of 0.225 mV/1 mg/dl of glucose; despite the fact that the initial voltage in each of the experimental repetitions varies, the downward voltage pattern is maintained; based on this, it is concluded that this method using this setup is feasible for plasma glucose measurement.","PeriodicalId":17079,"journal":{"name":"Journal of Spectroscopy","volume":"133 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73743022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Chang, S. He, Mingyuan Sun, Aixia Xiao, Jiaxin Zhao, Lulu Ma, W. Qiu
Monocrystalline silicon (c-Si) is still an important material related to microelectronics/optoelectronics. The nondestructive measurement of the c-Si material and its microstructure is commonly required in scientific research and industrial applications, for which Raman spectroscopy is an indispensable method. However, Raman measurements based on the specific fixed Raman geometry/polarization configuration are limited for the quantified analysis of c-Si performance, which makes it difficult to meet the high-end requirements of advanced silicon-based microelectronics and optoelectronics. Angle-resolved Raman measurements have become a new trend of experimental analysis in the field of materials, physics, mechanics, and optics. In this paper, the characteristics of the angle-resolved polarized Raman scattering of c-Si under the in-axis and off-axis configurations are systematically analyzed. A general theoretical model of the angle-resolved Raman intensity is established, which includes several alterable angle parameters, including the inclination angle, rotation angle of the sample, and polarization directions of the incident laser and scattered light. The diversification of the Raman intensity is given at different angles for various geometries and polarization configurations. The theoretical model is verified and calibrated by typical experiments. In addition, this work provides a reliable basis for the analysis of complex polarized Raman experiments on silicon-based structures.
{"title":"Angle-Resolved Intensity of In-Axis/Off-Axis Polarized Micro-Raman Spectroscopy for Monocrystalline Silicon","authors":"Y. Chang, S. He, Mingyuan Sun, Aixia Xiao, Jiaxin Zhao, Lulu Ma, W. Qiu","doi":"10.1155/2021/2860007","DOIUrl":"https://doi.org/10.1155/2021/2860007","url":null,"abstract":"Monocrystalline silicon (c-Si) is still an important material related to microelectronics/optoelectronics. The nondestructive measurement of the c-Si material and its microstructure is commonly required in scientific research and industrial applications, for which Raman spectroscopy is an indispensable method. However, Raman measurements based on the specific fixed Raman geometry/polarization configuration are limited for the quantified analysis of c-Si performance, which makes it difficult to meet the high-end requirements of advanced silicon-based microelectronics and optoelectronics. Angle-resolved Raman measurements have become a new trend of experimental analysis in the field of materials, physics, mechanics, and optics. In this paper, the characteristics of the angle-resolved polarized Raman scattering of c-Si under the in-axis and off-axis configurations are systematically analyzed. A general theoretical model of the angle-resolved Raman intensity is established, which includes several alterable angle parameters, including the inclination angle, rotation angle of the sample, and polarization directions of the incident laser and scattered light. The diversification of the Raman intensity is given at different angles for various geometries and polarization configurations. The theoretical model is verified and calibrated by typical experiments. In addition, this work provides a reliable basis for the analysis of complex polarized Raman experiments on silicon-based structures.","PeriodicalId":17079,"journal":{"name":"Journal of Spectroscopy","volume":"83 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88220645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Binding and conformational change of all-trans-retinoic acid (ATRA) with peptidyl prolyl cis/trans isomerase Pin1 were investigated systematically by spectroscopic and computational techniques under experimentally optimized physiological conditions. The intrinsic fluorescence of Pin1 was quenched through a static quenching mechanism in the presence of ATRA with binding constants on the order of 105 mol/L. Thermodynamic parameters (ΔH = 15.76 kJ/mol and ΔS = 158.36 J/mol·K at 293 K) and computational results illustrated that the hydrophobic interactions played a significant role in the binding process of ATRA to Pin1, but electrostatic forces, weak van der Waals, and hydrogen bonds cannot be ignored. Circular dichroism, fluorescence spectra, and computational simulations revealed that ATRA interacted with residues Lys63 and Arg69 of Pin1 to affect its conformational changes. Molecular dynamic simulation, principal component analysis, and free energy landscape monitored the dynamical conformational characteristics of ATRA binding to Pin1. All in all, the present research might provide a reference for the development and design of retinoic acid drugs that inhibit the activity of Pin1.
{"title":"Investigation on the Binding and Conformational Change of All-trans-Retinoic Acid with Peptidyl Prolyl cis/trans Isomerase Pin1 Using Spectroscopic and Computational Techniques","authors":"G. Zhu, ShaoLi Lyu, Yang Liu, Chao Ma, Wen Wang","doi":"10.1155/2021/1012078","DOIUrl":"https://doi.org/10.1155/2021/1012078","url":null,"abstract":"Binding and conformational change of all-trans-retinoic acid (ATRA) with peptidyl prolyl cis/trans isomerase Pin1 were investigated systematically by spectroscopic and computational techniques under experimentally optimized physiological conditions. The intrinsic fluorescence of Pin1 was quenched through a static quenching mechanism in the presence of ATRA with binding constants on the order of 105 mol/L. Thermodynamic parameters (ΔH = 15.76 kJ/mol and ΔS = 158.36 J/mol·K at 293 K) and computational results illustrated that the hydrophobic interactions played a significant role in the binding process of ATRA to Pin1, but electrostatic forces, weak van der Waals, and hydrogen bonds cannot be ignored. Circular dichroism, fluorescence spectra, and computational simulations revealed that ATRA interacted with residues Lys63 and Arg69 of Pin1 to affect its conformational changes. Molecular dynamic simulation, principal component analysis, and free energy landscape monitored the dynamical conformational characteristics of ATRA binding to Pin1. All in all, the present research might provide a reference for the development and design of retinoic acid drugs that inhibit the activity of Pin1.","PeriodicalId":17079,"journal":{"name":"Journal of Spectroscopy","volume":"10 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85432738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Levofloxacin (LVF) and norfloxacin (NRF) are a group of fluoroquinolone antibiotics, broad spectrum used to treat various infections caused by many bacterial species. The drugs contain functional groups which control the type and degree of interaction with different solvents. In this research, the ground and excited state dipole moments of LVF and NRF drugs were estimated using solvatochromic effects and computational work. The dipole moments were estimated from absorption and emission spectra in polar and nonpolar solvents using Bakhshiev’s, Kawski–Chamma–Viallet, Lippert–Mataga, and Reichardt models. The results indicated the emission spectra are more strongly affected by solvent polarity than the absorption spectra. The calculated excited state dipole moment is larger than that of the ground state, indicating that the probe compounds are significantly more polarized in the excited state than in the ground state. From computational work, the HOMO-LUMO energy band gap, the dipole moments, electron charge density distribution, and oscillator strength were determined using the semiempirical MP6 method, DFT-B3LYP-6-31G, and DFT-B3LYP-3-21G employing Gaussian 09 software. In general, larger dipole moments were obtained by computation rather than from experiments due to the absence of solvent effects.
{"title":"Estimating the Ground and Excited State Dipole Moments of Levofloxacin and Norfloxacin Drugs Using Solvatochromic Effects and Computational Work","authors":"Kinfe Woldegiorges, A. Belay, A. Kebede, T. Abebe","doi":"10.1155/2021/7214182","DOIUrl":"https://doi.org/10.1155/2021/7214182","url":null,"abstract":"Levofloxacin (LVF) and norfloxacin (NRF) are a group of fluoroquinolone antibiotics, broad spectrum used to treat various infections caused by many bacterial species. The drugs contain functional groups which control the type and degree of interaction with different solvents. In this research, the ground and excited state dipole moments of LVF and NRF drugs were estimated using solvatochromic effects and computational work. The dipole moments were estimated from absorption and emission spectra in polar and nonpolar solvents using Bakhshiev’s, Kawski–Chamma–Viallet, Lippert–Mataga, and Reichardt models. The results indicated the emission spectra are more strongly affected by solvent polarity than the absorption spectra. The calculated excited state dipole moment is larger than that of the ground state, indicating that the probe compounds are significantly more polarized in the excited state than in the ground state. From computational work, the HOMO-LUMO energy band gap, the dipole moments, electron charge density distribution, and oscillator strength were determined using the semiempirical MP6 method, DFT-B3LYP-6-31G, and DFT-B3LYP-3-21G employing Gaussian 09 software. In general, larger dipole moments were obtained by computation rather than from experiments due to the absence of solvent effects.","PeriodicalId":17079,"journal":{"name":"Journal of Spectroscopy","volume":"18 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83748032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}