Yang Yue, Da-Hu Zou, Shi-Lin Tian, Heng-Wu Jiao, Hua-Bin Zhao
Dietary specialization stands as a major factor in the study of adaptive evolution and the field of conservation biology among animals. Although bats show unparalleled dietary diversification among mammals, specialized carnivory remains relatively rare within this group. Consequently, our comprehension of the genetic and conservation aspects associated with this specific dietary niche in bats has largely remained uncharted. To investigate molecular adaptations and conservation genetics in carnivorous bats, we produced a new draft genome assembly for the carnivorous bat Vampyrum spectrum. Furthermore, we utilized this genome alongside another distantly related carnivorous bat Megaderma lyra, to conduct genome-wide comparative analyses with other bat species. Our findings unveil that genes linked to lipid metabolism exhibit signatures of positive selection and convergent molecular adaptation in the two divergent lineages of carnivorous bats. Intriguingly, we have uncovered that the evolution of dietary specialization in carnivorous bats is accompanied by molecular adaptations acting on genes in the peroxisome proliferator-activated receptors pathways, which are crucial in regulating plasma lipid metabolism and sustaining lipid homeostasis. Additionally, our genomic analyses also reveal low genetic diversity in both carnivorous bat species. This pattern is attributed to their continuously declining population sizes and low levels of heterozygosity, signaling their vulnerability and emphasizing the pressing need for conservation efforts. These genomic discoveries advance our understanding of genetic underpinnings of carnivory in bats and underscore substantial conservation concerns associated with carnivorous bat species.
{"title":"Comparative genomics reveals convergent adaptations in lipid metabolism and low genetic diversity in carnivorous bats","authors":"Yang Yue, Da-Hu Zou, Shi-Lin Tian, Heng-Wu Jiao, Hua-Bin Zhao","doi":"10.1111/jse.13060","DOIUrl":"https://doi.org/10.1111/jse.13060","url":null,"abstract":"Dietary specialization stands as a major factor in the study of adaptive evolution and the field of conservation biology among animals. Although bats show unparalleled dietary diversification among mammals, specialized carnivory remains relatively rare within this group. Consequently, our comprehension of the genetic and conservation aspects associated with this specific dietary niche in bats has largely remained uncharted. To investigate molecular adaptations and conservation genetics in carnivorous bats, we produced a new draft genome assembly for the carnivorous bat <i>Vampyrum spectrum</i>. Furthermore, we utilized this genome alongside another distantly related carnivorous bat <i>Megaderma lyra</i>, to conduct genome-wide comparative analyses with other bat species. Our findings unveil that genes linked to lipid metabolism exhibit signatures of positive selection and convergent molecular adaptation in the two divergent lineages of carnivorous bats. Intriguingly, we have uncovered that the evolution of dietary specialization in carnivorous bats is accompanied by molecular adaptations acting on genes in the peroxisome proliferator-activated receptors pathways, which are crucial in regulating plasma lipid metabolism and sustaining lipid homeostasis. Additionally, our genomic analyses also reveal low genetic diversity in both carnivorous bat species. This pattern is attributed to their continuously declining population sizes and low levels of heterozygosity, signaling their vulnerability and emphasizing the pressing need for conservation efforts. These genomic discoveries advance our understanding of genetic underpinnings of carnivory in bats and underscore substantial conservation concerns associated with carnivorous bat species.","PeriodicalId":17087,"journal":{"name":"Journal of Systematics and Evolution","volume":"25 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139987759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roser Vilatersana, Juan Antonio Calleja, Sonia Herrando‐Moraira, Núria Garcia‐Jacas, Alfonso Susanna
Understanding the richness and diversification processes in the Mediterranean basin requires both knowledge of the current environmental complexity and paleogeographic and paleoclimate events and information from studies that introduce the temporal dimension. The Carthamus–Carduncellus complex (Cardueae, Compositae) constitutes a good case study to investigate the biogeographic history of this region because it evolved throughout the basin. We performed molecular dating, ancestral area estimation, and diversification analyses based on previous phylogenetic studies of a nearly complete taxon sampling of the complex. The main aims were to determine the role of tectonic and climatic events in the disjunction of the complex and the expansion route of the two main lineages, Carduncellus s.l. and Carthamus. Our results suggest that the main lineages in the complex originated during the Miocene. Later, all main paleogeographic and paleoclimatic events during the Neogene and Pleistocene in the Mediterranean basin had an important imprint on the evolutionary history of the complex. The Messinian Salinity Crisis facilitated the dispersion of the genus Carduncellus from North Africa to the Iberian Peninsula and the split of the genera Phonus and Femeniasia from the Carduncellus lineage. The onset of the Mediterranean climate in the Pliocene together with some orogenic processes could be the main causes of the diversification of the genus Carduncellus. In contrast, Pleistocene glaciations played a key role in the species diversification of Carthamus. In addition, we emphasize the problems derived from secondary dating and the existing differences between two previous dating analyses of the tribe Cardueae.
{"title":"Untangling the origin and diversification of the Carthamus–Carduncellus complex (Cardueae, Compositae) in the Mediterranean basin","authors":"Roser Vilatersana, Juan Antonio Calleja, Sonia Herrando‐Moraira, Núria Garcia‐Jacas, Alfonso Susanna","doi":"10.1111/jse.13057","DOIUrl":"https://doi.org/10.1111/jse.13057","url":null,"abstract":"Understanding the richness and diversification processes in the Mediterranean basin requires both knowledge of the current environmental complexity and paleogeographic and paleoclimate events and information from studies that introduce the temporal dimension. The <jats:italic>Carthamus–Carduncellus</jats:italic> complex (Cardueae, Compositae) constitutes a good case study to investigate the biogeographic history of this region because it evolved throughout the basin. We performed molecular dating, ancestral area estimation, and diversification analyses based on previous phylogenetic studies of a nearly complete taxon sampling of the complex. The main aims were to determine the role of tectonic and climatic events in the disjunction of the complex and the expansion route of the two main lineages, <jats:italic>Carduncellus</jats:italic> s.l. and <jats:italic>Carthamus</jats:italic>. Our results suggest that the main lineages in the complex originated during the Miocene. Later, all main paleogeographic and paleoclimatic events during the Neogene and Pleistocene in the Mediterranean basin had an important imprint on the evolutionary history of the complex. The Messinian Salinity Crisis facilitated the dispersion of the genus <jats:italic>Carduncellus</jats:italic> from North Africa to the Iberian Peninsula and the split of the genera <jats:italic>Phonus</jats:italic> and <jats:italic>Femeniasia</jats:italic> from the <jats:italic>Carduncellus</jats:italic> lineage. The onset of the Mediterranean climate in the Pliocene together with some orogenic processes could be the main causes of the diversification of the genus <jats:italic>Carduncellus</jats:italic>. In contrast, Pleistocene glaciations played a key role in the species diversification of <jats:italic>Carthamus</jats:italic>. In addition, we emphasize the problems derived from secondary dating and the existing differences between two previous dating analyses of the tribe Cardueae.","PeriodicalId":17087,"journal":{"name":"Journal of Systematics and Evolution","volume":"19 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139949720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pterocarya (Juglandaceae) is disjunctly distributed in East Asia and the Caucasus region today, but its fossils are widely distributed in the Northern Hemisphere. We first inferred phylogeny with time estimation of Pterocarya under node‐dating (ND) based on plastomes of all eight extant species and tip‐dating (TD) based on plastomes and 69 morphological characters of 19 extant and extinct species, respectively. We compared the biogeographical reconstructions on the timetrees from ND and TD, respectively, and then compiled 83 fossil records and 599 current occurrences for predicting the potential distributions for the past and the future. The most recent comment ancestor of Pterocarya is inferred in East Asia at 40.46 Ma (95% highest posterior density [HPD]: 28.04–54.86) under TD and 26.81 Ma (95% HPD: 23.03–33.12) under ND. The current distribution was attributed to one dispersal and one vicariant event without fossils, but as many as six dispersal, six vicariant, and 11 local extinction events when considering fossils. Pterocarya migrated between East Asia and North America via the Bering Land Bridge during the early Oligocene and the early Miocene periods. With the closure of Turgai Strait, Pterocarya dispersed between East Asia and Europe through the Miocene. The potential distribution analyses indicated that Pterocarya preferred warm temperate regions across the Northern Hemisphere since the Oligocene, but the drastic temperature decline caused its extinction in high latitudes. Except for Pterocarya fraxinifolia and Pterocarya stenoptera, suitable habitats for this genus are predicted to contract by 2070 due to climate change.
{"title":"Biogeographic history of Pterocarya (Juglandaceae) inferred from phylogenomic and fossil data","authors":"Hua Yan, Peng Zhou, Wei Wang, Jian‐Fei Ye, Shao‐Lin Tan, Chun‐Ce Guo, Wen‐Gen Zhang, Zi‐Wei Zhu, Yi‐Zhen Liu, Xiao‐Guo Xiang","doi":"10.1111/jse.13055","DOIUrl":"https://doi.org/10.1111/jse.13055","url":null,"abstract":"<jats:italic>Pterocarya</jats:italic> (Juglandaceae) is disjunctly distributed in East Asia and the Caucasus region today, but its fossils are widely distributed in the Northern Hemisphere. We first inferred phylogeny with time estimation of <jats:italic>Pterocarya</jats:italic> under node‐dating (ND) based on plastomes of all eight extant species and tip‐dating (TD) based on plastomes and 69 morphological characters of 19 extant and extinct species, respectively. We compared the biogeographical reconstructions on the timetrees from ND and TD, respectively, and then compiled 83 fossil records and 599 current occurrences for predicting the potential distributions for the past and the future. The most recent comment ancestor of <jats:italic>Pterocarya</jats:italic> is inferred in East Asia at 40.46 Ma (95% highest posterior density [HPD]: 28.04–54.86) under TD and 26.81 Ma (95% HPD: 23.03–33.12) under ND. The current distribution was attributed to one dispersal and one vicariant event without fossils, but as many as six dispersal, six vicariant, and 11 local extinction events when considering fossils. <jats:italic>Pterocarya</jats:italic> migrated between East Asia and North America via the Bering Land Bridge during the early Oligocene and the early Miocene periods. With the closure of Turgai Strait, <jats:italic>Pterocarya</jats:italic> dispersed between East Asia and Europe through the Miocene. The potential distribution analyses indicated that <jats:italic>Pterocarya</jats:italic> preferred warm temperate regions across the Northern Hemisphere since the Oligocene, but the drastic temperature decline caused its extinction in high latitudes. Except for <jats:italic>Pterocarya fraxinifolia</jats:italic> and <jats:italic>Pterocarya stenoptera</jats:italic>, suitable habitats for this genus are predicted to contract by 2070 due to climate change.","PeriodicalId":17087,"journal":{"name":"Journal of Systematics and Evolution","volume":"36 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139949625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luísa Azevedo, Daniela Cristina Zappi, Daniela Melo Garcia de Oliveira, Leila Meyer, Eimear Nic Lughadha, Rosie Clegg, Leonardo Dias Meireles, Pablo Hendrigo Alves de Melo, R. Toby Pennington, Danilo M. Neves
The geodiversity of rocky ecosystems includes diverse plant communities with specific names, but their continental‐scale floristic identity and the knowledge on the role of macroclimate remain patchy. Here, we assessed the identity of plant communities in eastern Brazil across multiple types of rocky landscapes and evaluated the relative importance of climatic variables in constraining floristic differentiation. We provided lists of diagnostic species and an assessment of the conservation status of the identified floristic groups. We compiled a data set of 151 sites (4498 species) from rocky ecosystems, including campos rupestres, campos de altitude, granitic‐gneiss lowland inselbergs, and limestone outcrops. We used unsupervised clustering analysis followed by ANOSIM to assess floristic groups among sites. We performed a random forest variable selection to test whether the identified floristic groups occupy distinct climatic spaces. Six groups (lithobiomes) segregated floristically according to lithology and climate. Alongside campos de altitude and limestone outcrops, inselbergs were divided according to the biome in which they occur (Atlantic Forest or Caatinga), and campos rupestres were largely segregated according to their lithological matrix (ironstone or quartzitic). Plant communities of Caatinga inselbergs were more similar to limestone outcrops, while Atlantic Forest inselbergs communities resembled campos de altitude. The composition of plant communities on outcrops seems to be largely constrained by lithology, but climatic factors are also meaningful for sites with similar lithology. The current network of protected areas does not cover these unique ecosystems and their floristic heterogeneity, with Caatinga inselbergs and limestone outcrops being the least protected.
{"title":"On the rocks: Biogeography and floristic identity of rocky ecosystems in eastern South America","authors":"Luísa Azevedo, Daniela Cristina Zappi, Daniela Melo Garcia de Oliveira, Leila Meyer, Eimear Nic Lughadha, Rosie Clegg, Leonardo Dias Meireles, Pablo Hendrigo Alves de Melo, R. Toby Pennington, Danilo M. Neves","doi":"10.1111/jse.13052","DOIUrl":"https://doi.org/10.1111/jse.13052","url":null,"abstract":"The geodiversity of rocky ecosystems includes diverse plant communities with specific names, but their continental‐scale floristic identity and the knowledge on the role of macroclimate remain patchy. Here, we assessed the identity of plant communities in eastern Brazil across multiple types of rocky landscapes and evaluated the relative importance of climatic variables in constraining floristic differentiation. We provided lists of diagnostic species and an assessment of the conservation status of the identified floristic groups. We compiled a data set of 151 sites (4498 species) from rocky ecosystems, including <jats:italic>campos rupestres, campos de altitude</jats:italic>, granitic‐gneiss lowland inselbergs, and limestone outcrops. We used unsupervised clustering analysis followed by ANOSIM to assess floristic groups among sites. We performed a random forest variable selection to test whether the identified floristic groups occupy distinct climatic spaces. Six groups (lithobiomes) segregated floristically according to lithology and climate. Alongside <jats:italic>campos de altitude</jats:italic> and limestone outcrops, inselbergs were divided according to the biome in which they occur (Atlantic Forest or Caatinga), and <jats:italic>campos rupestres</jats:italic> were largely segregated according to their lithological matrix (ironstone or quartzitic). Plant communities of Caatinga inselbergs were more similar to limestone outcrops, while Atlantic Forest inselbergs communities resembled <jats:italic>campos de altitude</jats:italic>. The composition of plant communities on outcrops seems to be largely constrained by lithology, but climatic factors are also meaningful for sites with similar lithology. The current network of protected areas does not cover these unique ecosystems and their floristic heterogeneity, with Caatinga inselbergs and limestone outcrops being the least protected.","PeriodicalId":17087,"journal":{"name":"Journal of Systematics and Evolution","volume":"249 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139949718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jay Edneil C. Olivar, Frank Hauenschild, Hannah J. Atkins, Gemma L.C. Bramley, Alexandra N. Muellner‐Riehl
The general dynamic model (GDM) of oceanic island biogeography views oceanic islands predominantly as sinks rather than sources of dispersing lineages. To test this, we conducted a biogeographic analysis of a highly successful insular plant taxon, Cyrtandra, and inferred the directionality of dispersal and founder events throughout the four biogeographical units of the Indo‐Australian Archipelago (IAA), namely Sunda, Wallacea, Philippines, and Sahul. Sunda was recovered as the major source area, followed by Wallacea, a system of oceanic islands. The relatively high number of events originating from Wallacea is attributed to its central location in the IAA and its complex geological history selecting for increased dispersibility. We also tested if diversification dynamics in Cyrtandra follow predictions of adaptive radiation, which is the dominant process as per the GDM. Diversification dynamics of dispersing lineages of Cyrtandra in the Southeast Asian grade showed early bursts followed by a plateau, which is consistent with adaptive radiation. We did not detect signals of diversity‐dependent diversification, and this is attributed to Southeast Asian cyrtandras occupying various niche spaces, evident by their wide morphological range in habit and floral characters. The Pacific clade, which arrived at the immaturity phase of the Pacific Islands, showed diversification dynamics predicted by the island immaturity speciation pulse model (IISP), wherein rates increase exponentially, and their morphological range is controlled by the least action effect favoring woodiness and fleshy fruits. Our study provides a first step toward a framework for investigating diversification dynamics as predicted by the GDM in highly successful insular taxa.
{"title":"Early diversification dynamics in a highly successful insular plant taxon are consistent with the general dynamic model of oceanic island biogeography","authors":"Jay Edneil C. Olivar, Frank Hauenschild, Hannah J. Atkins, Gemma L.C. Bramley, Alexandra N. Muellner‐Riehl","doi":"10.1111/jse.13049","DOIUrl":"https://doi.org/10.1111/jse.13049","url":null,"abstract":"The general dynamic model (GDM) of oceanic island biogeography views oceanic islands predominantly as sinks rather than sources of dispersing lineages. To test this, we conducted a biogeographic analysis of a highly successful insular plant taxon, <jats:italic>Cyrtandra</jats:italic>, and inferred the directionality of dispersal and founder events throughout the four biogeographical units of the Indo‐Australian Archipelago (IAA), namely Sunda, Wallacea, Philippines, and Sahul. Sunda was recovered as the major source area, followed by Wallacea, a system of oceanic islands. The relatively high number of events originating from Wallacea is attributed to its central location in the IAA and its complex geological history selecting for increased dispersibility. We also tested if diversification dynamics in <jats:italic>Cyrtandra</jats:italic> follow predictions of adaptive radiation, which is the dominant process as per the GDM. Diversification dynamics of dispersing lineages of <jats:italic>Cyrtandra</jats:italic> in the Southeast Asian grade showed early bursts followed by a plateau, which is consistent with adaptive radiation. We did not detect signals of diversity‐dependent diversification, and this is attributed to Southeast Asian cyrtandras occupying various niche spaces, evident by their wide morphological range in habit and floral characters. The Pacific clade, which arrived at the immaturity phase of the Pacific Islands, showed diversification dynamics predicted by the island immaturity speciation pulse model (IISP), wherein rates increase exponentially, and their morphological range is controlled by the least action effect favoring woodiness and fleshy fruits. Our study provides a first step toward a framework for investigating diversification dynamics as predicted by the GDM in highly successful insular taxa.","PeriodicalId":17087,"journal":{"name":"Journal of Systematics and Evolution","volume":"34 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139949923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana M. Bossa‐Castro, Matheus Colli‐Silva, José R. Pirani, Barbara A. Whitlock, Laura T. Morales Mancera, Natalia Contreras‐Ortiz, Martha L. Cepeda‐Hernández, Federica Di Palma, Martha Vives, James E. Richardson
Crop wild relatives (CWRs) of cultivated species may provide a source of genetic variation that can contribute to improving product quantity and quality. To adequately use these potential resources, it is useful to understand how CWRs are related to the cultivated species and to each other to determine how key crop traits have evolved and discover potentially usable genetic information. The chocolate industry is expanding and yet is under threat from a variety of causes, including pathogens and climate change. Theobroma cacao L. (Malvaceae), the source of chocolate, is a representative of the tribe Theobromateae that consists of four genera and c. 40 species that began to diversify over 25 million years ago. The great diversity within the tribe suggests that its representatives could exhibit advantageous agronomic traits. In this study, we present the most taxonomically comprehensive phylogeny of Theobromateae to date. DNA sequence data from WRKY genes were assembled into a matrix that included 56 morphological characters and analyzed using a Bayesian approach. The inclusion of a morphological data set increased resolution and support for some branches of the phylogenetic tree. The evolutionary trajectory of selected morphological characters was reconstructed onto the phylogeny. This phylogeny provides a framework for the study of morphological and physiological trait evolution, which can facilitate the search for agronomically relevant traits.
{"title":"A phylogenetic framework to study desirable traits in the wild relatives of Theobroma cacao (Malvaceae)","authors":"Ana M. Bossa‐Castro, Matheus Colli‐Silva, José R. Pirani, Barbara A. Whitlock, Laura T. Morales Mancera, Natalia Contreras‐Ortiz, Martha L. Cepeda‐Hernández, Federica Di Palma, Martha Vives, James E. Richardson","doi":"10.1111/jse.13045","DOIUrl":"https://doi.org/10.1111/jse.13045","url":null,"abstract":"Crop wild relatives (CWRs) of cultivated species may provide a source of genetic variation that can contribute to improving product quantity and quality. To adequately use these potential resources, it is useful to understand how CWRs are related to the cultivated species and to each other to determine how key crop traits have evolved and discover potentially usable genetic information. The chocolate industry is expanding and yet is under threat from a variety of causes, including pathogens and climate change. <jats:italic>Theobroma cacao</jats:italic> L. (Malvaceae), the source of chocolate, is a representative of the tribe Theobromateae that consists of four genera and <jats:italic>c</jats:italic>. 40 species that began to diversify over 25 million years ago. The great diversity within the tribe suggests that its representatives could exhibit advantageous agronomic traits. In this study, we present the most taxonomically comprehensive phylogeny of Theobromateae to date. DNA sequence data from <jats:italic>WRKY</jats:italic> genes were assembled into a matrix that included 56 morphological characters and analyzed using a Bayesian approach. The inclusion of a morphological data set increased resolution and support for some branches of the phylogenetic tree. The evolutionary trajectory of selected morphological characters was reconstructed onto the phylogeny. This phylogeny provides a framework for the study of morphological and physiological trait evolution, which can facilitate the search for agronomically relevant traits.","PeriodicalId":17087,"journal":{"name":"Journal of Systematics and Evolution","volume":"8 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139949623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alba Rodríguez-Pacheco, Victoria Formoso-Freire, M. Olalla Lorenzo-Carballa, Andrés Baselga, Carola Gómez-Rodríguez
Given the sensitivity of mountain biodiversity to human pressure, it is essential to quantify changes in montane biological communities and contrast them with expectations based on potential drivers of change. This need is particularly pressing for biological groups representing important but little-studied fractions of biodiversity, such as insects. We analyze the temporal changes (between 1998 and 2015) of leaf beetle communities in an altitudinal gradient in the Sierra de Ancares (NW Spain). Our results show temporal changes in the composition of local communities, with a tendency to assemblage thermophilization, as well as a homogenization of the spatial turnover pattern, mostly driven by an increased similarity between communities at the lower and intermediate altitudes. These temporal changes in community composition and in the spatial structure of biodiversity were associated with upward shifts of the upper altitudinal limit of warm-adapted species and with downward shifts of the lower altitudinal limit of cold-adapted species. While this upward shift is consistent with expectations of climate change effects, the observed downward shift suggests a land-use change effect. Our results point to the joint effect of multiple factors (climate and land-use change) behind temporal changes of these leaf beetle communities, which result in compositional reorganization and biotic homogenization, rather than a mere coherent displacement toward higher altitudes. More generally, we show that understanding temporal change of biodiversity requires assessing multiple community-level metrics (e.g., variation in assemblage composition and/or changes in spatial turnover) for the detection of tendencies among the species-specific signals (e.g., altitudinal range shifts).
{"title":"Thermophilization and reshuffling of montane leaf beetle communities over a two-decade period","authors":"Alba Rodríguez-Pacheco, Victoria Formoso-Freire, M. Olalla Lorenzo-Carballa, Andrés Baselga, Carola Gómez-Rodríguez","doi":"10.1111/jse.13054","DOIUrl":"https://doi.org/10.1111/jse.13054","url":null,"abstract":"Given the sensitivity of mountain biodiversity to human pressure, it is essential to quantify changes in montane biological communities and contrast them with expectations based on potential drivers of change. This need is particularly pressing for biological groups representing important but little-studied fractions of biodiversity, such as insects. We analyze the temporal changes (between 1998 and 2015) of leaf beetle communities in an altitudinal gradient in the Sierra de Ancares (NW Spain). Our results show temporal changes in the composition of local communities, with a tendency to assemblage thermophilization, as well as a homogenization of the spatial turnover pattern, mostly driven by an increased similarity between communities at the lower and intermediate altitudes. These temporal changes in community composition and in the spatial structure of biodiversity were associated with upward shifts of the upper altitudinal limit of warm-adapted species and with downward shifts of the lower altitudinal limit of cold-adapted species. While this upward shift is consistent with expectations of climate change effects, the observed downward shift suggests a land-use change effect. Our results point to the joint effect of multiple factors (climate and land-use change) behind temporal changes of these leaf beetle communities, which result in compositional reorganization and biotic homogenization, rather than a mere coherent displacement toward higher altitudes. More generally, we show that understanding temporal change of biodiversity requires assessing multiple community-level metrics (e.g., variation in assemblage composition and/or changes in spatial turnover) for the detection of tendencies among the species-specific signals (e.g., altitudinal range shifts).","PeriodicalId":17087,"journal":{"name":"Journal of Systematics and Evolution","volume":"12 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139752933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrés A. Del Risco, Diego A. Chacón, Lucia Ángel, David A. García
Since the concept of the tree of life was introduced about 150 years ago, a considerable fraction of the scientific community has focused its efforts on its reconstruction, with remarkable progress during the last two decades with the advent of DNA sequences. However, the assemblage of a comprehensive and explorable tree of life has been a difficult task to achieve due to two main obstacles: (i) information is scattered into several individual sources and (ii) practical visualization tools for exploring large trees are needed. To overcome both challenges, we aimed to synthesize a family-level tree of life by compiling over 1400 published phylogenetic studies, choosing the source trees that represent the best phylogenetic hypotheses to date based on a set of objective criteria. Moreover, we dated the tree by employing over 550 secondary calibrations using publicly available sequences for more than 5000 taxa and by incorporating age ranges from the fossil record for over 2800 taxa. Additionally, we developed a mobile app for smartphones to facilitate the visualization and exploration of the resulting tree. Interactive features include exploration by the zooming and panning gestures of touch screens, collapsing branches, visualizing specific clades as subtrees, a search engine, and a timescale to determine extinction and divergence dates, among others. Small illustrations of organisms are displayed at the terminals to better visualize the morphological diversity of life. Our assembled tree currently includes over 7000 families, and its content will be expanded through regular updates to cover all life on earth at the family level.
{"title":"Assembling an illustrated family-level tree of life for exploration in mobile devices","authors":"Andrés A. Del Risco, Diego A. Chacón, Lucia Ángel, David A. García","doi":"10.1111/jse.13053","DOIUrl":"https://doi.org/10.1111/jse.13053","url":null,"abstract":"Since the concept of the tree of life was introduced about 150 years ago, a considerable fraction of the scientific community has focused its efforts on its reconstruction, with remarkable progress during the last two decades with the advent of DNA sequences. However, the assemblage of a comprehensive and explorable tree of life has been a difficult task to achieve due to two main obstacles: (i) information is scattered into several individual sources and (ii) practical visualization tools for exploring large trees are needed. To overcome both challenges, we aimed to synthesize a family-level tree of life by compiling over 1400 published phylogenetic studies, choosing the source trees that represent the best phylogenetic hypotheses to date based on a set of objective criteria. Moreover, we dated the tree by employing over 550 secondary calibrations using publicly available sequences for more than 5000 taxa and by incorporating age ranges from the fossil record for over 2800 taxa. Additionally, we developed a mobile app for smartphones to facilitate the visualization and exploration of the resulting tree. Interactive features include exploration by the zooming and panning gestures of touch screens, collapsing branches, visualizing specific clades as subtrees, a search engine, and a timescale to determine extinction and divergence dates, among others. Small illustrations of organisms are displayed at the terminals to better visualize the morphological diversity of life. Our assembled tree currently includes over 7000 families, and its content will be expanded through regular updates to cover all life on earth at the family level.","PeriodicalId":17087,"journal":{"name":"Journal of Systematics and Evolution","volume":"39 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139665575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heng-Ling Zhou, Lei Wang, Yun-Xia Yue, Zhi Luo, Shun-Jie Wang, Li-Guo Zhou, Li-Jun Luo, Hui Xia, Ming Yan
The soil-nitrogen condition, which differs greatly between paddy fields (mainly in the form of ammonium, NH4+) and dry fields (mainly in the form of nitrate, NO3−), is a main environmental factor that drives the adaptive differentiation between upland and lowland rice ecotypes. However, the adaptive differentiation in terms of the nitrogen use efficiency (NUE) between upland and lowland rice has not been well addressed. In this study, we evaluated NUE-related traits among rice landraces as well as the genetic differentiation between NUE-associated genes and quantitative trait loci (QTLs). The japonica upland and lowland rice ecotypes showed large differences in their NUE-related traits such as the absorption ability for NH4+ and NO3−. The indica upland and lowland rice exhibited similar performances when cultivated in solutions containing NH4+ or NO3− or when planted in paddy or dry fields. However, the indica upland rice possessed a greater ability to absorb NO3−. We identified 76 QTLs for 25 measured traits using genome-wide association analysis. The highly differentiated NUE-associated genes or QTLs between ecotypes were rarely shared by japonica and indica subspecies, indicating an independent genetic basis for their soil-nitrogen adaptations. We suggested four genes in three QTLs as the candidates contributing to rice NUE during the ecotypic differentiation. In summary, the soil-nitrogen condition drives the adaptive differentiation of NUE between upland and lowland rice independently within the japonica and indica subspecies. These findings can strengthen our understanding of rice adaptation to divergent soil-nitrogen conditions and have implications for the improvement of NUE.
{"title":"Independent genetic differentiation between upland and lowland rice ecotypes within japonica and indica subspecies during their adaptations to different soil-nitrogen conditions","authors":"Heng-Ling Zhou, Lei Wang, Yun-Xia Yue, Zhi Luo, Shun-Jie Wang, Li-Guo Zhou, Li-Jun Luo, Hui Xia, Ming Yan","doi":"10.1111/jse.13046","DOIUrl":"https://doi.org/10.1111/jse.13046","url":null,"abstract":"The soil-nitrogen condition, which differs greatly between paddy fields (mainly in the form of ammonium, NH<sub>4</sub><sup>+</sup>) and dry fields (mainly in the form of nitrate, NO<sub>3</sub><sup>−</sup>), is a main environmental factor that drives the adaptive differentiation between upland and lowland rice ecotypes. However, the adaptive differentiation in terms of the nitrogen use efficiency (NUE) between upland and lowland rice has not been well addressed. In this study, we evaluated NUE-related traits among rice landraces as well as the genetic differentiation between NUE-associated genes and quantitative trait loci (QTLs). The <i>japonica</i> upland and lowland rice ecotypes showed large differences in their NUE-related traits such as the absorption ability for NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>−</sup>. The <i>indica</i> upland and lowland rice exhibited similar performances when cultivated in solutions containing NH<sub>4</sub><sup>+</sup> or NO<sub>3</sub><sup>−</sup> or when planted in paddy or dry fields. However, the <i>indica</i> upland rice possessed a greater ability to absorb NO<sub>3</sub><sup>−</sup>. We identified 76 QTLs for 25 measured traits using genome-wide association analysis. The highly differentiated NUE-associated genes or QTLs between ecotypes were rarely shared by <i>japonica</i> and <i>indica</i> subspecies, indicating an independent genetic basis for their soil-nitrogen adaptations. We suggested four genes in three QTLs as the candidates contributing to rice NUE during the ecotypic differentiation. In summary, the soil-nitrogen condition drives the adaptive differentiation of NUE between upland and lowland rice independently within the <i>japonica</i> and <i>indica</i> subspecies. These findings can strengthen our understanding of rice adaptation to divergent soil-nitrogen conditions and have implications for the improvement of NUE.","PeriodicalId":17087,"journal":{"name":"Journal of Systematics and Evolution","volume":"16 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139555732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Darya Khan, AJ Harris, Qamar U. Zaman, Hong-Xin Wang, Jun Wen, Jacob B. Landis, Hua-Feng Wang
The angiosperm family Cactaceae, a member of the Caryophyllales, is a large and diverse group of stem succulents comprising 1438–1870 species within approximately 130 genera predominantly distributed from northern Canada to Patagonia. Four centers of diversity from Central and North America (Chihuahua, Puebla-Oaxaca, Sonora-Sinaloan, and Jalisco) and three centers of diversity from South America (Southern Central Andes, Caatinga, and Mara Atlantica) have played a pivotal role in disbursing cacti around the globe. Mexico is considered the richest area in cacti species with close to 563 species grouped into 50 genera. Approximately 118 species have been domesticated by Mesoamerican people as food crops and for ornamental purposes. Cacti inhabit a wide range of ecosystems and climate regions, ranging from tropical to subtropical and from arid to semiarid regions. Species belonging to the genus Opuntia are the major food crop producers in the family. Cacti have derived characteristics from familial synapomorphies within the Caryophyllales. Reproduction occurs through pollination facilitated by birds, bats, bees, and other insects. Climate variability, whether natural or human-induced threatens global crop production including high temperatures, salinity, drought, flood, changes in soil pH, and urbanization. Cacti have several adaptations that are important for coping with abiotic stresses, such as crassulacean acid metabolism (CAM photosynthesis), as well as modifications to root and stem physiological pathways. This review aims to provide a comprehensive view of the fruit crops in Cactaceae, including their evolution, worldwide distribution, and the environmental factors impacting cultivation.
{"title":"The evolutionary history and distribution of cactus germplasm resources, as well as potential domestication under a changing climate","authors":"Darya Khan, AJ Harris, Qamar U. Zaman, Hong-Xin Wang, Jun Wen, Jacob B. Landis, Hua-Feng Wang","doi":"10.1111/jse.13042","DOIUrl":"https://doi.org/10.1111/jse.13042","url":null,"abstract":"The angiosperm family Cactaceae, a member of the Caryophyllales, is a large and diverse group of stem succulents comprising 1438–1870 species within approximately 130 genera predominantly distributed from northern Canada to Patagonia. Four centers of diversity from Central and North America (Chihuahua, Puebla-Oaxaca, Sonora-Sinaloan, and Jalisco) and three centers of diversity from South America (Southern Central Andes, Caatinga, and Mara Atlantica) have played a pivotal role in disbursing cacti around the globe. Mexico is considered the richest area in cacti species with close to 563 species grouped into 50 genera. Approximately 118 species have been domesticated by Mesoamerican people as food crops and for ornamental purposes. Cacti inhabit a wide range of ecosystems and climate regions, ranging from tropical to subtropical and from arid to semiarid regions. Species belonging to the genus <i>Opuntia</i> are the major food crop producers in the family. Cacti have derived characteristics from familial synapomorphies within the Caryophyllales. Reproduction occurs through pollination facilitated by birds, bats, bees, and other insects. Climate variability, whether natural or human-induced threatens global crop production including high temperatures, salinity, drought, flood, changes in soil pH, and urbanization. Cacti have several adaptations that are important for coping with abiotic stresses, such as crassulacean acid metabolism (CAM photosynthesis), as well as modifications to root and stem physiological pathways. This review aims to provide a comprehensive view of the fruit crops in Cactaceae, including their evolution, worldwide distribution, and the environmental factors impacting cultivation.","PeriodicalId":17087,"journal":{"name":"Journal of Systematics and Evolution","volume":"6 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139555575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}