Randall M. Feenstra, G. R. Frazier, Yi Pan, Stefan Fölsch, Yu-Chuan Lin, B. Jariwala, Kehao Zhang, Joshua A. Robinson
{"title":"Erratum: “Acquisition and analysis of scanning tunneling spectroscopy data—WSe2 monolayer” [J. Vac. Sci. Technol. A 39, 011001 (2021)]","authors":"Randall M. Feenstra, G. R. Frazier, Yi Pan, Stefan Fölsch, Yu-Chuan Lin, B. Jariwala, Kehao Zhang, Joshua A. Robinson","doi":"10.1116/6.0003535","DOIUrl":"https://doi.org/10.1116/6.0003535","url":null,"abstract":"","PeriodicalId":170900,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"77 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140080316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The formation mechanism of a highly adherent silicon dioxide (SiO2) film on gallium arsenide (GaAs) substrate by plasma enhanced chemical vapor deposition (PECVD) is proposed. Ar, N2, and NH3 were used as pre-treatment gas to improve the interfacial adhesion. The interfacial adhesion was measured by the cross-cut tape test. By the measurement of spectroscopic ellipsometry and x-ray photoelectron spectroscopy (XPS), it is revealed that nitrogen plasma pre-treatment had formed a very thin GaN transition layer on the surface, which was responsible for the improvement of interfacial adhesion. XPS depth-profiling further confirmed various pre-treatment gases generate plasma mixtures and form thin film layers with different compositions on the GaAs surface. These layers have a significant impact on the adhesion of the subsequently prepared SiO2 film. The primary mechanism for improving interfacial adhesion is the renovation of the substrate composition via plasma pre-treatment by PECVD, which forms a transition layer of nitrides that eliminates the negative effects of oxides on adhesion. This study reveals the mechanism of interfacial adhesion enhancement between SiO2 film and GaAs substrate, which is of significant importance in fabricating high-performance and reliable semiconductor devices.
提出了等离子体增强化学气相沉积(PECVD)技术在砷化镓(GaAs)衬底上形成高附着性二氧化硅(SiO2)薄膜的机理。预处理气体为 Ar、N2 和 NH3,以提高界面附着力。界面附着力是通过横切带试验测量的。通过光谱椭偏仪和 X 射线光电子能谱(XPS)的测量,发现氮等离子体预处理在表面形成了很薄的氮化镓过渡层,这是改善界面附着力的原因。XPS 深度分析进一步证实,各种预处理气体会产生等离子混合物,并在砷化镓表面形成不同成分的薄膜层。这些薄膜层对随后制备的二氧化硅薄膜的附着力有重大影响。改善界面附着力的主要机制是通过 PECVD 等离子预处理翻新基底成分,形成氮化物过渡层,消除氧化物对附着力的负面影响。这项研究揭示了二氧化硅薄膜与砷化镓衬底之间界面附着力增强的机理,这对于制造高性能、高可靠性的半导体器件具有重要意义。
{"title":"Revealing the mechanism of interfacial adhesion enhancement between the SiO2 film and the GaAs substrate via plasma pre-treatments","authors":"Zhiwei He, Chanjuan Liu, Jiuru Gao, Zichao Li, Kaidong Xu, Shiwei Zhuang","doi":"10.1116/6.0003412","DOIUrl":"https://doi.org/10.1116/6.0003412","url":null,"abstract":"The formation mechanism of a highly adherent silicon dioxide (SiO2) film on gallium arsenide (GaAs) substrate by plasma enhanced chemical vapor deposition (PECVD) is proposed. Ar, N2, and NH3 were used as pre-treatment gas to improve the interfacial adhesion. The interfacial adhesion was measured by the cross-cut tape test. By the measurement of spectroscopic ellipsometry and x-ray photoelectron spectroscopy (XPS), it is revealed that nitrogen plasma pre-treatment had formed a very thin GaN transition layer on the surface, which was responsible for the improvement of interfacial adhesion. XPS depth-profiling further confirmed various pre-treatment gases generate plasma mixtures and form thin film layers with different compositions on the GaAs surface. These layers have a significant impact on the adhesion of the subsequently prepared SiO2 film. The primary mechanism for improving interfacial adhesion is the renovation of the substrate composition via plasma pre-treatment by PECVD, which forms a transition layer of nitrides that eliminates the negative effects of oxides on adhesion. This study reveals the mechanism of interfacial adhesion enhancement between SiO2 film and GaAs substrate, which is of significant importance in fabricating high-performance and reliable semiconductor devices.","PeriodicalId":170900,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"1 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140410727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Brabant, A. Demaude, J. Zveny, A. Remy, T. Segato, D. Petitjean, M. Delplancke-Ogletree, F. Reniers
The one-step deposition of spatially differentiated crystalline vanadium oxide coatings (V2O5) using an atmospheric pressure dielectric barrier discharge is reported. This feasibility study uses an original combination of immobilized filaments inside the plasma and an inductive heating device. Preliminary results show that thick crystalline deposits are achieved under the immobilized filaments, whether the interfilament spacing leads to much thinner deposits, with a different chemical composition. The gas flow inside the reactor, combined to the filament reactivity, leads to local depletions of reactants.
{"title":"Spatially differentiated crystalline inorganic coatings deposited by an atmospheric pressure dielectric barrier discharge with immobilized filaments","authors":"M. Brabant, A. Demaude, J. Zveny, A. Remy, T. Segato, D. Petitjean, M. Delplancke-Ogletree, F. Reniers","doi":"10.1116/6.0003268","DOIUrl":"https://doi.org/10.1116/6.0003268","url":null,"abstract":"The one-step deposition of spatially differentiated crystalline vanadium oxide coatings (V2O5) using an atmospheric pressure dielectric barrier discharge is reported. This feasibility study uses an original combination of immobilized filaments inside the plasma and an inductive heating device. Preliminary results show that thick crystalline deposits are achieved under the immobilized filaments, whether the interfilament spacing leads to much thinner deposits, with a different chemical composition. The gas flow inside the reactor, combined to the filament reactivity, leads to local depletions of reactants.","PeriodicalId":170900,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"7 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140411218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Copper has been used as an interconnect material in integrated semiconductor devices because of its excellent conductivity, mechanical strength, and electromigration resistance. Introducing a diffusion barrier layer using transition metals such as Ti, Ta, W, Mo, and their nitrides can effectively prevent copper diffusion into the transistor region. TiN is widely used as the diffusion barrier. Plasma-enhanced atomic layer deposition (PEALD), which uses plasma to activate molecular reactions, can be used to fabricate high-quality thin films at lower temperatures than thermal atomic layer deposition. However, its high electrical resistivity and poor step coverage are disadvantageous for its adoption in highly scaled three-dimensional structures. In this study, TiN thin films were fabricated using PEALD with a hollow cathode plasma (HCP) source. The fabricated TiN exhibited a high density (5.29 g/cm3), which was very close to the theoretical density of TiN. Moreover, it has low electrical resistivity (132 μΩ cm) and excellent step coverage (>98%) in a trench pattern with a high aspect ratio of 32:1. These results suggest the possible application of the PEALD of TiN films using HCP sources in semiconductor device manufacturing.
铜具有出色的导电性、机械强度和抗电迁移性,因此一直被用作集成半导体器件的互连材料。利用过渡金属(如 Ti、Ta、W、Mo 及其氮化物)引入扩散阻挡层可以有效防止铜扩散到晶体管区域。TiN 被广泛用作扩散屏障。等离子体增强原子层沉积(PEALD)是一种利用等离子体激活分子反应的方法,与热原子层沉积相比,它可以在更低的温度下制造出高质量的薄膜。然而,它的高电阻率和较差的阶跃覆盖率不利于其在高比例三维结构中的应用。在本研究中,使用带有空心阴极等离子体 (HCP) 源的 PEALD 制造了 TiN 薄膜。制备的 TiN 密度很高(5.29 克/立方厘米),非常接近 TiN 的理论密度。此外,它还具有较低的电阻率(132 μΩ cm)和出色的阶跃覆盖率(>98%),沟槽图案的高宽比为 32:1。这些结果表明,使用 HCP 源对 TiN 薄膜进行 PEALD 可应用于半导体器件制造。
{"title":"Growth of conformal TiN thin film with low resistivity and impurity via hollow cathode plasma atomic layer deposition","authors":"Ha Young Lee, Jeong Hwan Han, Byung Joon Choi","doi":"10.1116/6.0003319","DOIUrl":"https://doi.org/10.1116/6.0003319","url":null,"abstract":"Copper has been used as an interconnect material in integrated semiconductor devices because of its excellent conductivity, mechanical strength, and electromigration resistance. Introducing a diffusion barrier layer using transition metals such as Ti, Ta, W, Mo, and their nitrides can effectively prevent copper diffusion into the transistor region. TiN is widely used as the diffusion barrier. Plasma-enhanced atomic layer deposition (PEALD), which uses plasma to activate molecular reactions, can be used to fabricate high-quality thin films at lower temperatures than thermal atomic layer deposition. However, its high electrical resistivity and poor step coverage are disadvantageous for its adoption in highly scaled three-dimensional structures. In this study, TiN thin films were fabricated using PEALD with a hollow cathode plasma (HCP) source. The fabricated TiN exhibited a high density (5.29 g/cm3), which was very close to the theoretical density of TiN. Moreover, it has low electrical resistivity (132 μΩ cm) and excellent step coverage (>98%) in a trench pattern with a high aspect ratio of 32:1. These results suggest the possible application of the PEALD of TiN films using HCP sources in semiconductor device manufacturing.","PeriodicalId":170900,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"90 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140414899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We successfully developed an atomic layer deposition (ALD) method for making Ag noble nanoparticles on cheap, commercial filter paper consisting of three-dimensional porous glass fibers and investigated the evolution of Ag nanostructures with some key process parameters. By tuning Ag particle sizes and controlling the cycle numbers of ALD deposited Ag films, we were able to obtain high-density isolated Ag nanoparticles with average sizes in 3–9 nm without the formation of agglomerates and continuous Ag films. We proved the presence of strong localized surface plasmon resonance peaks near a target wavelength of 632 nm. We further proved the presence of surface enhanced Raman scattering (SERS) signals on the Ag coated filter paper substrates using pyridine as the test analyte. Our results demonstrate that ALD is a very promising technique for a rational design of SERS substrates and, thus, has great potential for the fabrication of large-area, low-cost SERS substrates for future commercial applications, as compared to other existing techniques.
{"title":"High enhancement, low cost, large area surface enhanced Raman scattering substrates all by atomic layer deposition on porous filter paper","authors":"Feng Niu, Yimin Hu, Stephen LeKarz, Wei Lu","doi":"10.1116/6.0003352","DOIUrl":"https://doi.org/10.1116/6.0003352","url":null,"abstract":"We successfully developed an atomic layer deposition (ALD) method for making Ag noble nanoparticles on cheap, commercial filter paper consisting of three-dimensional porous glass fibers and investigated the evolution of Ag nanostructures with some key process parameters. By tuning Ag particle sizes and controlling the cycle numbers of ALD deposited Ag films, we were able to obtain high-density isolated Ag nanoparticles with average sizes in 3–9 nm without the formation of agglomerates and continuous Ag films. We proved the presence of strong localized surface plasmon resonance peaks near a target wavelength of 632 nm. We further proved the presence of surface enhanced Raman scattering (SERS) signals on the Ag coated filter paper substrates using pyridine as the test analyte. Our results demonstrate that ALD is a very promising technique for a rational design of SERS substrates and, thus, has great potential for the fabrication of large-area, low-cost SERS substrates for future commercial applications, as compared to other existing techniques.","PeriodicalId":170900,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"86 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140408328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Layiq Zia, Eesha Tur Razia, G. Hassnain Jaffari, S. Ismat Shah
Multiferroic (BiFeO3)1−x-(PbTiO3)x (1−x)BF−xPT thin films exhibit very high electromechanical properties in the vicinity of the morphotropic phase boundary (MPB), making them important candidates for use in several modern device applications. However, preparing high-quality (1−x)BF−xPT thin films is challenging due to the high conductivity caused by oxygen vacancies produced during the synthesis process. This study aims to understand the effect of size and porosity density on the electrical properties of (1−x)BF−xPT thin films. A series of (1−x)BF−xPT solid solution thin films were fabricated using the spin-coating method on Pt/TiO2/SiO2/Si(100) substrates through chemical solution deposition. X-ray diffraction studies revealed a polycrystalline structure. Surface SEM images showed that the films have a uniform surface with average grain sizes ranging between 50 and 200 nm and an average film thickness of 1.5 μm. A decrease in average pore size and an increase in the number of pores were observed with the increase in PT concentration in the prepared films. Ferroelectric characterization revealed that the films exhibit room-temperature ferroelectric hysteresis loops. Sources of various contributions to polarization were extracted from hysteresis loops, including true ferroelectric switching and space charge contributions. Thin films with 0.30 < x < 0.45 show higher remanent and saturation polarization values, suggesting that these compositions exhibit the MPB. The highest remanent polarization value (PR = 16.68 μC/cm2) was observed for the thin film with x = 0.40. The correlation between the phase, composition, film morphology, and ferroelectric response is described and discussed.
{"title":"Intrinsic and extrinsic contributions in the ferroelectric response of chemically synthesized BiFeO3-xPbTiO3 thin films","authors":"Layiq Zia, Eesha Tur Razia, G. Hassnain Jaffari, S. Ismat Shah","doi":"10.1116/6.0003371","DOIUrl":"https://doi.org/10.1116/6.0003371","url":null,"abstract":"Multiferroic (BiFeO3)1−x-(PbTiO3)x (1−x)BF−xPT thin films exhibit very high electromechanical properties in the vicinity of the morphotropic phase boundary (MPB), making them important candidates for use in several modern device applications. However, preparing high-quality (1−x)BF−xPT thin films is challenging due to the high conductivity caused by oxygen vacancies produced during the synthesis process. This study aims to understand the effect of size and porosity density on the electrical properties of (1−x)BF−xPT thin films. A series of (1−x)BF−xPT solid solution thin films were fabricated using the spin-coating method on Pt/TiO2/SiO2/Si(100) substrates through chemical solution deposition. X-ray diffraction studies revealed a polycrystalline structure. Surface SEM images showed that the films have a uniform surface with average grain sizes ranging between 50 and 200 nm and an average film thickness of 1.5 μm. A decrease in average pore size and an increase in the number of pores were observed with the increase in PT concentration in the prepared films. Ferroelectric characterization revealed that the films exhibit room-temperature ferroelectric hysteresis loops. Sources of various contributions to polarization were extracted from hysteresis loops, including true ferroelectric switching and space charge contributions. Thin films with 0.30 < x < 0.45 show higher remanent and saturation polarization values, suggesting that these compositions exhibit the MPB. The highest remanent polarization value (PR = 16.68 μC/cm2) was observed for the thin film with x = 0.40. The correlation between the phase, composition, film morphology, and ferroelectric response is described and discussed.","PeriodicalId":170900,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"18 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140409545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lewen Qian, Xin Sun, Tao Liu, Ziqiang Huang, Xinlong Guo, Maolin Pan, Dawei Wang, Saisheng Xu, Min Xu, Chen Wang, Chunlei Wu, David Wei Zhang
In advanced CMOS technology, a suitable spacer scheme is crucial to alleviate the effects of increasing parasitic resistance and capacitance on device performance as the critical dimensions shrinking. Low dielectric constant (low-k) films, possessing a tunable k value ranging from 3.5 to 6.5, were fabricated using plasma-enhanced atomic layer deposition in a single chamber. The fabrication process involved the deposition of the SiN film via SiH2I2 with N2 plasma, as well as the deposition of the SiOX, SiOCN, and SiON films using diisopropylamino silane with O2, Ar/O2, and N2/O2 plasmas, respectively. The introduction of groups containing carbon (C) tended to loosen the film structure, due to its weak bond strength with Si, thus made distinctions in structural and electrical stability. We developed such a process which can adjust the C-group concentration and O, N content to tune the film k value. The SiOx, SiOCN, SiON, and SiN films had high breakdown strength of 9.04, 7.23, 9.41, and over 11 MV cm−1, and meanwhile low leakage current density of 2.42 × 10−9, 4.78 × 10−8, 1.29 × 10−9, and 9.26 × 10−10 A cm−2, respectively. The films exhibited remarkable thermal stability, enhanced breakdown strength, and suppressed leakage with annealing treatment, which could be attributed to the desorption of —CHX groups. Moreover, the low-k materials demonstrated excellent step coverage both in the inner-spacer cavity and on sidewalls, exploring the potential application as spacers in advanced CMOS structure.
在先进的 CMOS 技术中,一个合适的隔层方案对于缓解临界尺寸缩小时寄生电阻和电容增加对器件性能的影响至关重要。利用等离子体增强原子层沉积技术在单室中制造出了低介电常数(低 k)薄膜,其 k 值可调,范围在 3.5 到 6.5 之间。制备过程包括在 N2 等离子体中通过 SiH2I2 沉积 SiN 薄膜,以及在 O2、Ar/O2 和 N2/O2 等离子体中分别使用二异丙基氨基硅烷沉积 SiOX、SiOCN 和 SiON 薄膜。引入含碳(C)的基团后,由于碳与硅的结合强度较弱,薄膜结构趋于松散,因此在结构和电气稳定性方面有所区别。我们开发了这样一种工艺,可以通过调节 C 基团浓度和 O、N 含量来调整薄膜的 k 值。SiOx、SiOCN、SiON 和 SiN 薄膜的击穿强度分别为 9.04、7.23、9.41 和超过 11 MV cm-1,同时漏电流密度分别为 2.42 × 10-9、4.78 × 10-8、1.29 × 10-9 和 9.26 × 10-10 A cm-2。这些薄膜表现出显著的热稳定性,击穿强度增强,退火处理后漏电抑制,这可能归功于 -CHX 基团的解吸。此外,低 k 材料在内层间隔腔和侧壁上都表现出了极好的阶跃覆盖性,从而探索了在先进 CMOS 结构中用作间隔层的潜在应用。
{"title":"Fabrication of the low-k films with tunable k value as spacers in advanced CMOS technology","authors":"Lewen Qian, Xin Sun, Tao Liu, Ziqiang Huang, Xinlong Guo, Maolin Pan, Dawei Wang, Saisheng Xu, Min Xu, Chen Wang, Chunlei Wu, David Wei Zhang","doi":"10.1116/6.0003357","DOIUrl":"https://doi.org/10.1116/6.0003357","url":null,"abstract":"In advanced CMOS technology, a suitable spacer scheme is crucial to alleviate the effects of increasing parasitic resistance and capacitance on device performance as the critical dimensions shrinking. Low dielectric constant (low-k) films, possessing a tunable k value ranging from 3.5 to 6.5, were fabricated using plasma-enhanced atomic layer deposition in a single chamber. The fabrication process involved the deposition of the SiN film via SiH2I2 with N2 plasma, as well as the deposition of the SiOX, SiOCN, and SiON films using diisopropylamino silane with O2, Ar/O2, and N2/O2 plasmas, respectively. The introduction of groups containing carbon (C) tended to loosen the film structure, due to its weak bond strength with Si, thus made distinctions in structural and electrical stability. We developed such a process which can adjust the C-group concentration and O, N content to tune the film k value. The SiOx, SiOCN, SiON, and SiN films had high breakdown strength of 9.04, 7.23, 9.41, and over 11 MV cm−1, and meanwhile low leakage current density of 2.42 × 10−9, 4.78 × 10−8, 1.29 × 10−9, and 9.26 × 10−10 A cm−2, respectively. The films exhibited remarkable thermal stability, enhanced breakdown strength, and suppressed leakage with annealing treatment, which could be attributed to the desorption of —CHX groups. Moreover, the low-k materials demonstrated excellent step coverage both in the inner-spacer cavity and on sidewalls, exploring the potential application as spacers in advanced CMOS structure.","PeriodicalId":170900,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"19 48","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140409240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Herein, we report the transport properties of Ge films. The variable-range hopping transport at low temperatures (T≲50K) and thermal activation transport at high temperatures (T≳50K) are observed in our Ge films. In the different temperature regimes, the anomalous magnetotransport properties are observed. In the low-temperature regime (T≲15K), the negative magnetoresistance (MR) at low field and positive MR at high field can be seen. In the moderate-temperature regime (15K≲T≲100K), the positive MR curve gradually evolves from a linear curve to a parabolic curve with increasing temperature, and the MR magnitude appears to be insensitive to temperature. In the high-temperature regime (T≳100K), the positive MR value increases with increasing temperature. By considering the angular-dependent MR, we can determine that the negative MR comes from the spin-related mechanism, and the positive MR is caused by the orbital-related mechanism. However, further study is required to determine the exact mechanisms behind the anomalous magnetotransport properties.
在此,我们报告了 Ge 薄膜的传输特性。在我们的 Ge 薄膜中观察到了低温(T≲50K)下的变程跳跃传输和高温(T≲50K)下的热激活传输。在不同的温度条件下,都能观察到反常的磁传输特性。在低温状态(T≲15K)下,可以看到低磁场下的负磁阻(MR)和高磁场下的正磁阻。在中温区(15K≲T≲100K),随着温度的升高,正磁阻曲线逐渐从线性曲线演变为抛物线曲线,而且磁阻大小似乎对温度不敏感。在高温区(T≲100K),MR 正值随温度升高而增加。通过考虑随角度变化的磁共振,我们可以确定负磁共振来自自旋相关机制,而正磁共振由轨道相关机制引起。然而,要确定异常磁传输特性背后的确切机制,还需要进一步的研究。
{"title":"Spin-related negative magnetoresistance in germanium films","authors":"Zhaoguo Li, Yuechuan Luo, Jia Li, Jicheng Zhang","doi":"10.1116/6.0003337","DOIUrl":"https://doi.org/10.1116/6.0003337","url":null,"abstract":"Herein, we report the transport properties of Ge films. The variable-range hopping transport at low temperatures (T≲50K) and thermal activation transport at high temperatures (T≳50K) are observed in our Ge films. In the different temperature regimes, the anomalous magnetotransport properties are observed. In the low-temperature regime (T≲15K), the negative magnetoresistance (MR) at low field and positive MR at high field can be seen. In the moderate-temperature regime (15K≲T≲100K), the positive MR curve gradually evolves from a linear curve to a parabolic curve with increasing temperature, and the MR magnitude appears to be insensitive to temperature. In the high-temperature regime (T≳100K), the positive MR value increases with increasing temperature. By considering the angular-dependent MR, we can determine that the negative MR comes from the spin-related mechanism, and the positive MR is caused by the orbital-related mechanism. However, further study is required to determine the exact mechanisms behind the anomalous magnetotransport properties.","PeriodicalId":170900,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"14 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140412837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Currently, high-energy resolution Auger electron spectroscopy (AES) is utilized for chemical-state qualitative analysis, such as x-ray photoelectron spectroscopy. It is highly desirable to perform quantitative analysis using the high-energy resolution direct spectra used for qualitative analysis. However, AES analysis parameters, such as relative sensitivity factors (RSFs), derived from conventional-energy resolution differentiated spectra cannot be adopted for high-energy resolution direct spectra. Furthermore, for quantification by high-energy resolution direct spectra, there is no established method for determining peak intensity, and no database of RSFs is available in surface analysis communities. Therefore, we tasked ourselves with investigating the use of the analysis parameters obtained from conventional-energy resolution-differentiated spectra obtained with a cylindrical mirror analyzer (CMA)-type AES instrument for high-energy resolution direct spectra measured with a spherical capacitor analyzer (SCA)-type AES instrument. The convolution technique proposed here is achieved by using a conventional-energy resolution spectral dataset obtained with CMA-AES as a target. By applying the convolution with the window function of the convoluted function of the Gaussian function and rectangular function, high-energy resolution direct spectra containing the inherent nature of fine structures are converted to the similar shapes of conventional-energy resolution direct spectra after the Shirley type background subtraction [Watanabe et al., J. Vac. Sci. Technol. A 41, 043209 (2023)]. Results revealed that for all spectra of conventional-energy resolution spectra taken with CMA-AES, as well as high-energy resolution spectra taken with SCA-AES with various energy resolutions, the ratios of the background-subtracted direct peak areas and the differentiated peak-to-peak intensities were well-aligned along the identical parabolic curve as a function of the kinetic energy (KE). Experimental results also revealed that the generalized conversion function f(KE;ΔE)=IareacmaIareaconv.sca(KE;ΔE), which is the ratio of the conventional-energy resolution spectral area (Iareacma) and the convoluted high-energy resolution spectral area (Iareaconv.sca), which can transform differentiated intensities of convoluted high-energy resolution spectra, such that they are similar to those of conventional-energy resolution spectra obtained using the CMA-AES instrument, being a function of KE and the energy resolution ΔE. By applying the conversion function, the historically accumulated AES analysis parameters for conventional-energy resolution differentiated spectra can be adopted to differentiated high-energy resolution spectra. Finally, the results revealed the sufficiency of the conversion function obtained by the actual measurements of the four reference specimens for the practical quantification of high-energy resolution AES direct spectra.
{"title":"Quantification in high-energy resolution Auger electron spectroscopy; Proposal of a reference target convolution technique for direct spectra","authors":"Katsumi Watanabe, Daisuke Watanabe, Kazutoshi Mamiya, Seiji Koizumi, Noriaki Sanada, Mineharu Suzuki","doi":"10.1116/6.0003379","DOIUrl":"https://doi.org/10.1116/6.0003379","url":null,"abstract":"Currently, high-energy resolution Auger electron spectroscopy (AES) is utilized for chemical-state qualitative analysis, such as x-ray photoelectron spectroscopy. It is highly desirable to perform quantitative analysis using the high-energy resolution direct spectra used for qualitative analysis. However, AES analysis parameters, such as relative sensitivity factors (RSFs), derived from conventional-energy resolution differentiated spectra cannot be adopted for high-energy resolution direct spectra. Furthermore, for quantification by high-energy resolution direct spectra, there is no established method for determining peak intensity, and no database of RSFs is available in surface analysis communities. Therefore, we tasked ourselves with investigating the use of the analysis parameters obtained from conventional-energy resolution-differentiated spectra obtained with a cylindrical mirror analyzer (CMA)-type AES instrument for high-energy resolution direct spectra measured with a spherical capacitor analyzer (SCA)-type AES instrument. The convolution technique proposed here is achieved by using a conventional-energy resolution spectral dataset obtained with CMA-AES as a target. By applying the convolution with the window function of the convoluted function of the Gaussian function and rectangular function, high-energy resolution direct spectra containing the inherent nature of fine structures are converted to the similar shapes of conventional-energy resolution direct spectra after the Shirley type background subtraction [Watanabe et al., J. Vac. Sci. Technol. A 41, 043209 (2023)]. Results revealed that for all spectra of conventional-energy resolution spectra taken with CMA-AES, as well as high-energy resolution spectra taken with SCA-AES with various energy resolutions, the ratios of the background-subtracted direct peak areas and the differentiated peak-to-peak intensities were well-aligned along the identical parabolic curve as a function of the kinetic energy (KE). Experimental results also revealed that the generalized conversion function f(KE;ΔE)=IareacmaIareaconv.sca(KE;ΔE), which is the ratio of the conventional-energy resolution spectral area (Iareacma) and the convoluted high-energy resolution spectral area (Iareaconv.sca), which can transform differentiated intensities of convoluted high-energy resolution spectra, such that they are similar to those of conventional-energy resolution spectra obtained using the CMA-AES instrument, being a function of KE and the energy resolution ΔE. By applying the conversion function, the historically accumulated AES analysis parameters for conventional-energy resolution differentiated spectra can be adopted to differentiated high-energy resolution spectra. Finally, the results revealed the sufficiency of the conversion function obtained by the actual measurements of the four reference specimens for the practical quantification of high-energy resolution AES direct spectra.","PeriodicalId":170900,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"708 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140416989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Saravade, Zhe Chuan Feng, Manika Tun Nafisa, Chuanle Zhou, N. Lu, B. Klein, Ian Ferguson
Zinc oxide is a breakthrough multifunctional material of emerging interest applicable in the areas of electronics, computing, energy harvesting, sensing, optoelectronics, and biomedicine. ZnO has a direct and wide bandgap and high exciton binding energy. It is nontoxic, earth-abundant, and biocompatible. However, the growth and characterization of high-quality ZnO has been a challenge and bottleneck in its development. Efforts have been made to synthesize device-quality zinc oxide and unleash its potential for multiple advanced applications. ZnO could be grown as thin films, nanostructures, or bulk, and its properties could be optimized by tuning the growth techniques, conditions, and doping. Zinc oxide could be a suitable material for next generation devices including spintronics, sensors, solar cells, light-emitting diodes, thermoelectrics, etc. It is important and urgent to collate recent advances in this material, which would strategically help in further research and developments in ZnO. This paper provides a coherent review of developments in ZnO growth, leading to its advancing applications. Recent developments in growth technologies that address native defects, current challenges in zinc oxide, and its emerging applications are reviewed and discussed in this article.
{"title":"Advances in growth, doping, and devices and applications of zinc oxide","authors":"V. Saravade, Zhe Chuan Feng, Manika Tun Nafisa, Chuanle Zhou, N. Lu, B. Klein, Ian Ferguson","doi":"10.1116/6.0003171","DOIUrl":"https://doi.org/10.1116/6.0003171","url":null,"abstract":"Zinc oxide is a breakthrough multifunctional material of emerging interest applicable in the areas of electronics, computing, energy harvesting, sensing, optoelectronics, and biomedicine. ZnO has a direct and wide bandgap and high exciton binding energy. It is nontoxic, earth-abundant, and biocompatible. However, the growth and characterization of high-quality ZnO has been a challenge and bottleneck in its development. Efforts have been made to synthesize device-quality zinc oxide and unleash its potential for multiple advanced applications. ZnO could be grown as thin films, nanostructures, or bulk, and its properties could be optimized by tuning the growth techniques, conditions, and doping. Zinc oxide could be a suitable material for next generation devices including spintronics, sensors, solar cells, light-emitting diodes, thermoelectrics, etc. It is important and urgent to collate recent advances in this material, which would strategically help in further research and developments in ZnO. This paper provides a coherent review of developments in ZnO growth, leading to its advancing applications. Recent developments in growth technologies that address native defects, current challenges in zinc oxide, and its emerging applications are reviewed and discussed in this article.","PeriodicalId":170900,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"14 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140412159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}