首页 > 最新文献

Journal of Sustainable Metallurgy最新文献

英文 中文
Preparation of Reduced Iron Powder and Cement Raw Material from Red Mud Using Reduction Roasting with CaO 利用 CaO 还原焙烧从赤泥中制备还原铁粉和水泥原料
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-07-12 DOI: 10.1007/s40831-024-00868-5
Fuqiang Zheng, Yuqi Zhao, Hongyang Wang, Bin Hu, Chen Liu

Reduction roasting‒magnetic separation was adopted to extract iron in red mud containing 47.45% Fe and 11.58% Al2O3. The process mineralogy and phase transformation of red mud during reduction roasting with CaO were studied using advanced mineral identification and characterization system, X-ray diffraction, scanning electron microscope, and energy-dispersive spectrometer. Results show that the main Fe-bearing minerals in red mud are hematite and alumogeothite, with corresponding contents of 47.99% and 37.81%, respectively. After reduction roasting with CaO, red mud is converted into metallic iron and Ca–Al compounds, and the iron grain size increases with roasting temperature. After roasting at 1175 °C for 60 min, the iron grain size reaches 18.85 μm. Under the conditions of grinding size of − 44 μm of 86.57%, and magnetic intensity of 1000 Gs, a concentrate with Fe grade of 90.14% and Fe recovery of 85.68% is obtained. Meanwhile, there are 40.01% of CaO and 23.96% of Al2O3 in magnetic tailing, which can be used as cement raw materials. This study lays the foundation for the resource utilization of red mud.

Graphical Abstract

采用还原焙烧-磁选法提取含铁 47.45% 和 Al2O3 11.58% 的赤泥中的铁。利用先进的矿物鉴定和表征系统、X 射线衍射、扫描电子显微镜和能量色散光谱仪,研究了赤泥在氧化钙还原焙烧过程中的过程矿物学和相变。结果表明,赤泥中的主要含铁矿物是赤铁矿和赤铝矿,其含量分别为 47.99% 和 37.81%。用 CaO 还原焙烧后,赤泥转化为金属铁和 CaAl 化合物,铁的粒度随焙烧温度的升高而增大。在 1175 °C 下焙烧 60 分钟后,铁的粒度达到 18.85 μm。在磨矿粒度为 - 44 μm 的 86.57% 和磁强为 1000 Gs 的条件下,精矿的铁品位为 90.14%,铁回收率为 85.68%。同时,磁性尾矿中含有 40.01% 的 CaO 和 23.96% 的 Al2O3,可用作水泥原料。该研究为赤泥的资源化利用奠定了基础。 图文摘要
{"title":"Preparation of Reduced Iron Powder and Cement Raw Material from Red Mud Using Reduction Roasting with CaO","authors":"Fuqiang Zheng, Yuqi Zhao, Hongyang Wang, Bin Hu, Chen Liu","doi":"10.1007/s40831-024-00868-5","DOIUrl":"https://doi.org/10.1007/s40831-024-00868-5","url":null,"abstract":"<p>Reduction roasting‒magnetic separation was adopted to extract iron in red mud containing 47.45% Fe and 11.58% Al<sub>2</sub>O<sub>3</sub>. The process mineralogy and phase transformation of red mud during reduction roasting with CaO were studied using advanced mineral identification and characterization system, X-ray diffraction, scanning electron microscope, and energy-dispersive spectrometer. Results show that the main Fe-bearing minerals in red mud are hematite and alumogeothite, with corresponding contents of 47.99% and 37.81%, respectively. After reduction roasting with CaO, red mud is converted into metallic iron and Ca–Al compounds, and the iron grain size increases with roasting temperature. After roasting at 1175 °C for 60 min, the iron grain size reaches 18.85 μm. Under the conditions of grinding size of − 44 μm of 86.57%, and magnetic intensity of 1000 Gs, a concentrate with Fe grade of 90.14% and Fe recovery of 85.68% is obtained. Meanwhile, there are 40.01% of CaO and 23.96% of Al<sub>2</sub>O<sub>3</sub> in magnetic tailing, which can be used as cement raw materials. This study lays the foundation for the resource utilization of red mud.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"78 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141608333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance Metrics of the Newly Introduced Britannia Silver Process: Significant Reductions in Operating Costs, Energy Usage, and Scope 1 Carbon Emissions in the Industrial-Scale Refining of Silver 新引进的不列颠尼亚银工艺的性能指标:大幅降低工业规模白银精炼的运营成本、能源使用量和范围 1 碳排放量
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-07-05 DOI: 10.1007/s40831-024-00872-9
Steven King, Alberto Striolo

The current pyrometallurgical silver refining process involves high energy consumption and a proportional carbon footprint. Developmental work conducted by Glencore at Britannia Refined Metals, UK, has achieved a fundamental redesign of the silver refining process. The new process, tested at the pilot plant scale, has removed the liquation stage in the original process and introduced a vacuum dezincing unit with significantly superior energy efficiency to the original vacuum induction dezincing operation. The redesigned dezincing unit demonstrates dezincing kinetics 44% greater than the original unit, as well as a higher purity and recovery efficiency of zinc. Utilizing a pilot plant at nominally ¼ scale of the full-scale process, the new Britannia Silver Process has been operated as an experimental facility to examine all aspects of the new operation and its integration into larger full-scale plant. The extended operation demonstrated a 37% reduction in energy usage and a 31% reduction in carbon footprint, as assessed at Scope 1 resolution, compared to the original process, per unit of produced silver, at equal or better purity. The favorable results have secured the approval of construction of a demonstration plant.

Graphical Abstract

目前的火法冶金银精炼工艺能耗高、碳足迹大。Glencore 在英国不列颠精炼金属公司(Britannia Refined Metals)进行的开发工作从根本上重新设计了银精炼工艺。新工艺在试验工厂进行了测试,取消了原工艺中的液化阶段,并引入了真空脱锌装置,其能效明显优于原来的真空感应脱锌操作。重新设计的脱锌装置的脱锌动力学性能比原来的装置高出 44%,锌的纯度和回收效率也更高。新的不列颠尼亚银矿工艺利用名义上为全规模工艺 1/4规模的试验工厂,作为实验设施运行,以检查新操作的各个方面及其与更大规模全规模工厂的整合情况。扩展后的运行表明,在纯度相同或更高的情况下,与原有工艺相比,单位银产量的能源使用量减少了 37%,碳足迹减少了 31%(以范围 1 的分辨率评估)。良好的结果确保了示范工厂的建设获得批准。
{"title":"Performance Metrics of the Newly Introduced Britannia Silver Process: Significant Reductions in Operating Costs, Energy Usage, and Scope 1 Carbon Emissions in the Industrial-Scale Refining of Silver","authors":"Steven King, Alberto Striolo","doi":"10.1007/s40831-024-00872-9","DOIUrl":"https://doi.org/10.1007/s40831-024-00872-9","url":null,"abstract":"<p>The current pyrometallurgical silver refining process involves high energy consumption and a proportional carbon footprint. Developmental work conducted by Glencore at Britannia Refined Metals, UK, has achieved a fundamental redesign of the silver refining process. The new process, tested at the pilot plant scale, has removed the liquation stage in the original process and introduced a vacuum dezincing unit with significantly superior energy efficiency to the original vacuum induction dezincing operation. The redesigned dezincing unit demonstrates dezincing kinetics 44% greater than the original unit, as well as a higher purity and recovery efficiency of zinc. Utilizing a pilot plant at nominally ¼ scale of the full-scale process, the new Britannia Silver Process has been operated as an experimental facility to examine all aspects of the new operation and its integration into larger full-scale plant. The extended operation demonstrated a 37% reduction in energy usage and a 31% reduction in carbon footprint, as assessed at Scope 1 resolution, compared to the original process, per unit of produced silver, at equal or better purity. The favorable results have secured the approval of construction of a demonstration plant.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"86 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141568278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Metallization Degree of DRI on the Yield and CO2 Emission in Reduction Shaft Furnace Process DRI 金属化程度对还原竖炉工艺产量和二氧化碳排放量的影响
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-07-01 DOI: 10.1007/s40831-024-00824-3
Yulu Zhou, Xin Jiang, Xiaoai Wang, Haiyan Zheng, Qiangjian Gao, Fengman Shen

Reduction shaft furnace process is one of the future directions for low-carbon ironmaking. Different parameters can affect the yield and CO2 emissions. In the present work, the effect of metallization degree (MD) of direct reduced iron (DRI) on the yield and CO2 emission in reduction shaft furnace process was calculated by thermodynamics, considering the partial oxidation of coke oven gas (COG). The results indicate that (1) at a reduction temperature of 850 °C and an MD of 90%, COG partial oxidation in shaft furnace can increase DRI yield by 0.266 kg/100mol COG and reduce CO2 emissions by 72.664 kg/t-DRI compared to heating furnace; (2) reducing reduction temperature and MD will increase DRI yield and reduce CO2 emission. At 800 °C with a 90% MD, the highest DRI yield (2.599 kg/100mol COG) and lowest CO2 emission (626.406 kg/t-DRI) were achieved, which mark a significant 0.138 kg/100mol COG increase in DRI yield and a notable 43.331 kg/t-DRI decrease in CO2 emission compared to 950 °C with a 100% MD; (3) high CO2 removal rates from the top gas not only slightly reduces the heat load of the heating furnace but also provides more heat and reducing gas for top gas recycling. The results of this study may provide guidance in selecting optimal parameters for practical shaft furnace processes and reducing CO2 emissions.

Graphical Abstract

还原竖炉工艺是未来低碳炼铁的发展方向之一。不同的参数会影响产量和二氧化碳排放量。在本研究中,考虑到焦炉煤气(COG)的部分氧化,通过热力学计算了直接还原铁(DRI)的金属化程度(MD)对还原竖炉工艺的产量和二氧化碳排放量的影响。结果表明:(1) 在还原温度为 850 ℃、MD 为 90% 的条件下,与加热炉相比,在竖炉中 COG 部分氧化可提高 DRI 产量 0.266 kg/100mol COG,减少 CO2 排放 72.664 kg/t-DRI;(2) 降低还原温度和 MD 可提高 DRI 产量,减少 CO2 排放。与 950 °C 和 100% MD 相比,在 800 °C 和 90% MD 条件下,DRI 产量最高(2.599 kg/100mol COG),CO2 排放量最低(626.406 kg/t-DRI),DRI 产量显著增加 0.138 kg/100mol COG,CO2 排放量显著减少 43.331 kg/t-DRI;(3)顶部煤气中 CO2 的高去除率不仅能略微降低加热炉的热负荷,还能为顶部煤气循环提供更多热量和还原气。本研究的结果可为实际竖炉工艺选择最佳参数和减少二氧化碳排放提供指导。
{"title":"Effects of Metallization Degree of DRI on the Yield and CO2 Emission in Reduction Shaft Furnace Process","authors":"Yulu Zhou, Xin Jiang, Xiaoai Wang, Haiyan Zheng, Qiangjian Gao, Fengman Shen","doi":"10.1007/s40831-024-00824-3","DOIUrl":"https://doi.org/10.1007/s40831-024-00824-3","url":null,"abstract":"<p>Reduction shaft furnace process is one of the future directions for low-carbon ironmaking. Different parameters can affect the yield and CO<sub>2</sub> emissions. In the present work, the effect of metallization degree (MD) of direct reduced iron (DRI) on the yield and CO<sub>2</sub> emission in reduction shaft furnace process was calculated by thermodynamics, considering the partial oxidation of coke oven gas (COG). The results indicate that (1) at a reduction temperature of 850 °C and an MD of 90%, COG partial oxidation in shaft furnace can increase DRI yield by 0.266 kg/100mol COG and reduce CO<sub>2</sub> emissions by 72.664 kg/t-DRI compared to heating furnace; (2) reducing reduction temperature and MD will increase DRI yield and reduce CO<sub>2</sub> emission. At 800 °C with a 90% MD, the highest DRI yield (2.599 kg/100mol COG) and lowest CO<sub>2</sub> emission (626.406 kg/t-DRI) were achieved, which mark a significant 0.138 kg/100mol COG increase in DRI yield and a notable 43.331 kg/t-DRI decrease in CO<sub>2</sub> emission compared to 950 °C with a 100% MD; (3) high CO<sub>2</sub> removal rates from the top gas not only slightly reduces the heat load of the heating furnace but also provides more heat and reducing gas for top gas recycling. The results of this study may provide guidance in selecting optimal parameters for practical shaft furnace processes and reducing CO<sub>2</sub> emissions.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"169 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green Ironmaking at Higher H2 Pressure: Reduction Kinetics and Microstructure Formation During Hydrogen-Based Direct Reduction of Hematite Pellets 较高氢气压力下的绿色炼铁:基于氢气的赤铁矿球团直接还原过程中的还原动力学和微观结构形成
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-07-01 DOI: 10.1007/s40831-024-00877-4
Özge Özgün, Imants Dirba, Oliver Gutfleisch, Yan Ma, Dierk Raabe

Hydrogen-based direct reduction (HyDR) of iron ores has attracted immense attention and is considered a forerunner technology for sustainable ironmaking. It has a high potential to mitigate CO2 emissions in the steel industry, which accounts today for ~ 8–10% of all global CO2 emissions. Direct reduction produces highly porous sponge iron via natural-gas-based or gasified-coal-based reducing agents that contain hydrogen and organic molecules. Commercial technologies usually operate at elevated pressure, e.g., the MIDREX process at 2 bar and the HyL/Energiron process at 6–8 bar. However, the impact of H2 pressure on reduction kinetics and microstructure evolution of hematite pellets during hydrogen-based direct reduction has not been well understood. Here, we present a study about the influence of H2 pressure on the reduction kinetics of hematite pellets with pure H2 at 700 °C at various pressures, i.e., 1, 10, and 100 bar under static gas exposure, and 1.3 and 50 bar under dynamic gas exposure. The microstructure of the reduced pellets was characterized by combining X-ray diffraction and scanning electron microscopy equipped with electron backscatter diffraction. The results provide new insights into the critical role of H2 pressure in the hydrogen-based direct reduction process and establish a direction for future furnace design and process optimization.

Graphical Abstract

铁矿石的氢基直接还原(HyDR)技术引起了广泛关注,被认为是可持续炼铁的先驱技术。目前,钢铁行业的二氧化碳排放量约占全球总排放量的 8-10%。直接还原法通过含氢和有机分子的天然气还原剂或气化煤还原剂生产高孔隙海绵铁。商业技术通常在高压下运行,例如 MIDREX 工艺在 2 bar 压力下运行,HyL/Energiron 工艺在 6-8 bar 压力下运行。然而,在氢基直接还原过程中,氢气压力对赤铁矿球团的还原动力学和微观结构演变的影响尚未得到很好的了解。在此,我们介绍了一项关于氢气压力对赤铁矿球团在不同压力(静态气体暴露下为 1、10 和 100 巴,动态气体暴露下为 1.3 和 50 巴)、700 °C、纯 H2 还原动力学的影响的研究。通过结合 X 射线衍射和配备电子反向散射衍射的扫描电子显微镜,对还原颗粒的微观结构进行了表征。研究结果为氢气压力在氢基直接还原过程中的关键作用提供了新的见解,并为未来的熔炉设计和工艺优化指明了方向。
{"title":"Green Ironmaking at Higher H2 Pressure: Reduction Kinetics and Microstructure Formation During Hydrogen-Based Direct Reduction of Hematite Pellets","authors":"Özge Özgün, Imants Dirba, Oliver Gutfleisch, Yan Ma, Dierk Raabe","doi":"10.1007/s40831-024-00877-4","DOIUrl":"https://doi.org/10.1007/s40831-024-00877-4","url":null,"abstract":"<p>Hydrogen-based direct reduction (HyDR) of iron ores has attracted immense attention and is considered a forerunner technology for sustainable ironmaking. It has a high potential to mitigate CO<sub>2</sub> emissions in the steel industry, which accounts today for ~ 8–10% of all global CO<sub>2</sub> emissions. Direct reduction produces highly porous sponge iron via natural-gas-based or gasified-coal-based reducing agents that contain hydrogen and organic molecules. Commercial technologies usually operate at elevated pressure, e.g., the MIDREX process at 2 bar and the HyL/Energiron process at 6–8 bar. However, the impact of H<sub>2</sub> pressure on reduction kinetics and microstructure evolution of hematite pellets during hydrogen-based direct reduction has not been well understood. Here, we present a study about the influence of H<sub>2</sub> pressure on the reduction kinetics of hematite pellets with pure H<sub>2</sub> at 700 °C at various pressures, i.e., 1, 10, and 100 bar under static gas exposure, and 1.3 and 50 bar under dynamic gas exposure. The microstructure of the reduced pellets was characterized by combining X-ray diffraction and scanning electron microscopy equipped with electron backscatter diffraction. The results provide new insights into the critical role of H<sub>2</sub> pressure in the hydrogen-based direct reduction process and establish a direction for future furnace design and process optimization.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"31 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructural Investigation of Discarded NdFeB Magnets After Low-Temperature Hydrogenation 低温氢化后废弃钕铁硼磁体的微观结构研究
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-06-26 DOI: 10.1007/s40831-024-00873-8
Alireza Habibzadeh, Mehmet Ali Kucuker, Öznur Çakır, Mertol Gökelma

Due to continuously increasing demand and limited resources of rare-earth elements (REEs), new solutions are being sought to overcome the supply risk of REEs. To mitigate the supply risk of REEs, much attention has recently been paid to recycling. Despite the more common recycling methods, including hydrometallurgical and pyrometallurgical processes, hydrogen processing of magnetic scrap (HPMS) is still in the development stage. Magnet-to-magnet recycling via hydrogenation of discarded NdFeB magnets provides a fine powder suitable for the production of new magnets from secondary sources. One of the crucial aspects of HPMS is the degree of recovery of the magnetic properties, as the yield efficiency can easily reach over 95%. The amount, morphology, and distribution of the Nd-rich phase are the key parameters to achieve the excellent performance of the magnet by isolating the matrix grain. Therefore, a better insight into the microstructure of the matrix grains and the Nd-rich phase before and after hydrogenation is essential. In this study, a low-temperature hydrogenation process in the range of room temperature to 400 °C was conducted as the first step to recycle NdFeB magnets from discarded hard disk drives (HDDs), and the hydrogenated powder was characterized by electron microscopy and X-ray diffraction. The results show that there are three different morphologies of the Nd-rich phase, which undergo two different transformations through oxidation and hydride formation. While at lower temperatures (below 250 °C) the degree of pulverization is higher and the experimental evidence of hydride formation is less clear, at higher temperatures the degree of pulverization decreases. The formation of neodymium hydride at higher temperatures prevents further oxidation of the Nd-rich phase due to its high stability.

Graphical Abstract

由于稀土元素(REEs)的需求持续增长而资源有限,人们正在寻求新的解决方案来克服稀土元素的供应风险。为了降低稀土元素的供应风险,最近人们开始关注回收利用问题。尽管有了更常见的回收方法,包括湿法冶金和火法冶金工艺,但磁性废料的氢处理(HPMS)仍处于开发阶段。通过氢化废弃的钕铁硼磁铁进行磁铁到磁铁的回收利用,可提供适用于利用二次资源生产新磁铁的细粉。HPMS 的一个关键方面是磁性能的恢复程度,因为产量效率可以轻松达到 95% 以上。富钕相的数量、形态和分布是通过分离基体晶粒实现磁体优异性能的关键参数。因此,更好地了解氢化前后基体晶粒和富钕相的微观结构至关重要。在本研究中,首先在室温至 400 ℃ 范围内进行了低温氢化处理,以回收废弃硬盘驱动器(HDD)中的钕铁硼磁体,并通过电子显微镜和 X 射线衍射对氢化粉末进行了表征。结果表明,富钕相有三种不同的形态,它们通过氧化和氢化物形成发生了两种不同的转变。在较低温度下(低于 250 °C),粉化程度较高,氢化物形成的实验证据不太明显;而在较高温度下,粉化程度降低。在较高温度下形成的氢化钕因其高稳定性而阻止了富钕相的进一步氧化。
{"title":"Microstructural Investigation of Discarded NdFeB Magnets After Low-Temperature Hydrogenation","authors":"Alireza Habibzadeh, Mehmet Ali Kucuker, Öznur Çakır, Mertol Gökelma","doi":"10.1007/s40831-024-00873-8","DOIUrl":"https://doi.org/10.1007/s40831-024-00873-8","url":null,"abstract":"<p>Due to continuously increasing demand and limited resources of rare-earth elements (REEs), new solutions are being sought to overcome the supply risk of REEs. To mitigate the supply risk of REEs, much attention has recently been paid to recycling. Despite the more common recycling methods, including hydrometallurgical and pyrometallurgical processes, hydrogen processing of magnetic scrap (HPMS) is still in the development stage. Magnet-to-magnet recycling via hydrogenation of discarded NdFeB magnets provides a fine powder suitable for the production of new magnets from secondary sources. One of the crucial aspects of HPMS is the degree of recovery of the magnetic properties, as the yield efficiency can easily reach over 95%. The amount, morphology, and distribution of the Nd-rich phase are the key parameters to achieve the excellent performance of the magnet by isolating the matrix grain. Therefore, a better insight into the microstructure of the matrix grains and the Nd-rich phase before and after hydrogenation is essential. In this study, a low-temperature hydrogenation process in the range of room temperature to 400 °C was conducted as the first step to recycle NdFeB magnets from discarded hard disk drives (HDDs), and the hydrogenated powder was characterized by electron microscopy and X-ray diffraction. The results show that there are three different morphologies of the Nd-rich phase, which undergo two different transformations through oxidation and hydride formation. While at lower temperatures (below 250 °C) the degree of pulverization is higher and the experimental evidence of hydride formation is less clear, at higher temperatures the degree of pulverization decreases. The formation of neodymium hydride at higher temperatures prevents further oxidation of the Nd-rich phase due to its high stability.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"9 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NdFeB Magnets Recycling via High-Pressure Selective Leaching and the Impurities Behaviors 通过高压选择性浸出回收钕铁硼磁铁及其杂质行为
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-06-26 DOI: 10.1007/s40831-024-00871-w
Zhiming Yan, Zushu Li, Mingrui Yang, Wei Lv, Anwar Sattar

Global concerns about climate change are driving increased demand of electric vehicles for sustainable transportation and turbines in emerging energy solutions, where permanent magnets (PMs) and rare earth elements (REEs) play a critical role. However, global REEs recycling rates are only 3% and 8% for light and heavy REEs, respectively. This work proposes an effective approach to separate the REEs and iron via high-pressure selective leaching by low-concentrated nitric acid from the end-of-life NdFeB magnet and investigates the impurities behavior during the leaching and precipitation steps. The results from the optimized leaching conditions demonstrated over 95% REEs leaching efficiency with less than 0.3% Fe dissolution. Approximately 70% of Al and B were leached as well, while other elements (Co, Ni, Cu) had leaching efficiencies below 40%, leaving a hematite rich residue. Adjusting the pH removes Al and Fe in leachate but minimally affects Cu, Co, and Ni. Na2S addition is more effective against transition metals, but both methods result in around 10% REEs loss. Direct oxalate precipitation is suggested for the obtained leachate, which can yield over 97.5% REEs oxides with approximately 1.0% alumina, which is acceptable for magnet remanufacturing due to the aluminum content commonly found in magnets. The technology developed in this study offers opportunities for closed-loop recycling and remanufacturing of PMs, benefiting the environment, economy, and supply chain security.

Graphical Abstract

全球对气候变化的关注推动了对用于可持续交通的电动汽车和新兴能源解决方案中的涡轮机需求的增长,而永磁体 (PM) 和稀土元素 (REE) 在其中发挥着至关重要的作用。然而,全球轻稀土和重稀土的回收率分别仅为 3% 和 8%。本研究提出了一种有效方法,通过低浓硝酸高压选择性浸出法从报废钕铁硼磁体中分离出稀土元素和铁,并研究了浸出和沉淀步骤中的杂质行为。优化浸出条件的结果表明,REEs 的浸出效率超过 95%,铁的溶解低于 0.3%。约 70% 的铝和硼也被浸出,而其他元素(钴、镍、铜)的浸出效率低于 40%,残留物中富含赤铁矿。调节 pH 值可以去除沥滤液中的铝和铁,但对铜、钴和镍的影响很小。添加 Na2S 对过渡金属更有效,但两种方法都会导致约 10% 的稀土元素损失。建议对所获得的浸出液直接进行草酸盐沉淀,这样可获得超过 97.5% 的 REEs 氧化物,氧化铝含量约为 1.0%,由于磁体中铝含量普遍较高,这对于磁体再制造是可以接受的。本研究开发的技术为永磁体的闭环回收和再制造提供了机会,有利于环境、经济和供应链安全。
{"title":"NdFeB Magnets Recycling via High-Pressure Selective Leaching and the Impurities Behaviors","authors":"Zhiming Yan, Zushu Li, Mingrui Yang, Wei Lv, Anwar Sattar","doi":"10.1007/s40831-024-00871-w","DOIUrl":"https://doi.org/10.1007/s40831-024-00871-w","url":null,"abstract":"<p>Global concerns about climate change are driving increased demand of electric vehicles for sustainable transportation and turbines in emerging energy solutions, where permanent magnets (PMs) and rare earth elements (REEs) play a critical role. However, global REEs recycling rates are only 3% and 8% for light and heavy REEs, respectively. This work proposes an effective approach to separate the REEs and iron via high-pressure selective leaching by low-concentrated nitric acid from the end-of-life NdFeB magnet and investigates the impurities behavior during the leaching and precipitation steps. The results from the optimized leaching conditions demonstrated over 95% REEs leaching efficiency with less than 0.3% Fe dissolution. Approximately 70% of Al and B were leached as well, while other elements (Co, Ni, Cu) had leaching efficiencies below 40%, leaving a hematite rich residue. Adjusting the pH removes Al and Fe in leachate but minimally affects Cu, Co, and Ni. Na<sub>2</sub>S addition is more effective against transition metals, but both methods result in around 10% REEs loss. Direct oxalate precipitation is suggested for the obtained leachate, which can yield over 97.5% REEs oxides with approximately 1.0% alumina, which is acceptable for magnet remanufacturing due to the aluminum content commonly found in magnets. The technology developed in this study offers opportunities for closed-loop recycling and remanufacturing of PMs, benefiting the environment, economy, and supply chain security.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"16 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review of Biocarbon Substitutes in Electrodes and Refractories for the Metallurgical Industries 冶金工业电极和耐火材料中的生物碳替代品综述
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-06-25 DOI: 10.1007/s40831-024-00870-x
Jesse Franklin White, Luis Miguel López Renau, Björn Glaser

The chemical and thermophysical properties of carbon make it essentially irreplaceable for non-reductant uses in many high-temperature metallurgical processes. At present, biocarbon substitutes are not technically feasible for large-scale application in electrode and refractory materials that are such vital consumables in the steel, aluminum, and non-ferrous metal industries. Carbon electrodes of all types, including Söderberg, prebaked, and anodes/cathodes for Al, graphite electrodes, as well as carbon lining pastes are all similar in that they are comprised of a granular carbon aggregate bonded in a carbon-based binder matrix. Similarly, refractories such as MgO–C utilize both natural (mined) graphite and carbon-based binders. Replacement of fossil carbon materials with biocarbon substitutes has the potential to dramatically reduce the carbon footprints of these products. However, there are considerable materials engineering challenges that must be surmounted. The technological demands for these applications and potential for substitution with biogenic carbon are explored.

Graphical Abstract

碳的化学和热物理性质使其在许多高温冶金工艺的非还原剂用途中基本上是不可替代的。目前,生物碳替代品大规模应用于电极和耐火材料在技术上还不可行,而电极和耐火材料是钢铁、铝和有色金属工业的重要消耗品。各种类型的碳电极,包括索德伯格电极、预焙电极、铝阳极/阴极电极、石墨电极以及碳衬膏,都是由粘结在碳基粘结剂基质中的颗粒状碳集合体组成。同样,MgO-C 等耐火材料也同时使用天然(开采的)石墨和碳基粘结剂。用生物碳替代品取代化石碳材料有可能显著减少这些产品的碳足迹。然而,在材料工程方面还必须克服相当大的挑战。本文探讨了这些应用的技术需求以及用生物碳替代的潜力。
{"title":"A Review of Biocarbon Substitutes in Electrodes and Refractories for the Metallurgical Industries","authors":"Jesse Franklin White, Luis Miguel López Renau, Björn Glaser","doi":"10.1007/s40831-024-00870-x","DOIUrl":"https://doi.org/10.1007/s40831-024-00870-x","url":null,"abstract":"<p>The chemical and thermophysical properties of carbon make it essentially irreplaceable for non-reductant uses in many high-temperature metallurgical processes. At present, biocarbon substitutes are not technically feasible for large-scale application in electrode and refractory materials that are such vital consumables in the steel, aluminum, and non-ferrous metal industries. Carbon electrodes of all types, including Söderberg, prebaked, and anodes/cathodes for Al, graphite electrodes, as well as carbon lining pastes are all similar in that they are comprised of a granular carbon aggregate bonded in a carbon-based binder matrix. Similarly, refractories such as MgO–C utilize both natural (mined) graphite and carbon-based binders. Replacement of fossil carbon materials with biocarbon substitutes has the potential to dramatically reduce the carbon footprints of these products. However, there are considerable materials engineering challenges that must be surmounted. The technological demands for these applications and potential for substitution with biogenic carbon are explored.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"224 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iron Oxide Direct Reduction and Iron Nitride Formation Using Ammonia: Review and Thermodynamic Analysis 使用氨直接还原氧化铁和形成氮化铁:回顾与热力学分析
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-06-21 DOI: 10.1007/s40831-024-00860-z
Tiara Triana, Geoffrey A. Brooks, M. Akbar Rhamdhani, Mark I. Pownceby

The steel industry is one of the main contributors to global greenhouse gas emissions, responsible for about 7 to 9% of the world’s total output. The steel sector is under pressure to move toward net-zero emissions by reducing its consumption of coke as the main method of reducing iron-rich feed materials to iron. Due to its well-developed synthesis process, high supply chain, straightforward handling technologies, and highly developed long-standing infrastructure, ammonia has the potential to become a replacement for coke as a future iron ore reductant. This work reviews previous research on ammonia direct reduction of iron oxides and the possible formation of iron nitrides. A thermodynamic assessment using FactSage 8.2 thermochemical software was carried out examining the behavior of ammonia gas as the reductant upon heating, detailed evaluations of the stable phases present under different reaction conditions and using different feed materials, and the formation and stability of iron nitride phases. The results suggest that the reduction of hematite with ammonia occurs in two steps below 570 °C and three steps above 570 °C. The ratio of Fe2O3/NH3 was predicted to affect the reduction reactions by promoting a greater reduction degree and simultaneously lowering the initial temperature needed for reduction, while the excess gas concentration can suppress FeO formation. A predominance area diagram was developed showing the main areas of stable phases as a function of the partial pressure of NH3 and temperature. The formation of iron nitrides during the process was predicted and these were not expected to cause issues for the formation of iron due to their instability under the conditions studied. This analysis can be used to inform further experimental studies regarding ammonia reduction of iron oxide.

Graphical Abstract

钢铁行业是全球温室气体排放的主要贡献者之一,约占全球总产量的 7% 至 9%。焦炭是将富含铁的原料还原成铁的主要方法,钢铁行业面临着通过减少焦炭消耗实现净零排放的压力。由于氨具有完善的合成工艺、高度的供应链、直接的处理技术和高度发达的长期基础设施,氨有可能成为焦炭的替代品,成为未来的铁矿石还原剂。本研究回顾了之前关于氨直接还原氧化铁以及可能形成氮化铁的研究。使用 FactSage 8.2 热化学软件进行了热力学评估,检查了氨气作为还原剂在加热时的行为,详细评估了在不同反应条件下和使用不同进料时出现的稳定相,以及氮化铁相的形成和稳定性。结果表明,赤铁矿与氨气的还原反应在 570 °C 以下分两步进行,在 570 °C 以上分三步进行。据预测,Fe2O3/NH3 的比例会影响还原反应,促进更大的还原度,同时降低还原所需的初始温度,而过量的气体浓度则会抑制 FeO 的形成。根据 NH3 分压和温度的函数关系,绘制出了显示主要稳定相区域的优势区域图。预测了工艺过程中氮化铁的形成,由于在研究条件下氮化铁的不稳定性,预计这些氮化铁不会对铁的形成造成问题。这一分析可为氨还原氧化铁的进一步实验研究提供依据。
{"title":"Iron Oxide Direct Reduction and Iron Nitride Formation Using Ammonia: Review and Thermodynamic Analysis","authors":"Tiara Triana, Geoffrey A. Brooks, M. Akbar Rhamdhani, Mark I. Pownceby","doi":"10.1007/s40831-024-00860-z","DOIUrl":"https://doi.org/10.1007/s40831-024-00860-z","url":null,"abstract":"<p>The steel industry is one of the main contributors to global greenhouse gas emissions, responsible for about 7 to 9% of the world’s total output. The steel sector is under pressure to move toward net-zero emissions by reducing its consumption of coke as the main method of reducing iron-rich feed materials to iron. Due to its well-developed synthesis process, high supply chain, straightforward handling technologies, and highly developed long-standing infrastructure, ammonia has the potential to become a replacement for coke as a future iron ore reductant. This work reviews previous research on ammonia direct reduction of iron oxides and the possible formation of iron nitrides. A thermodynamic assessment using FactSage 8.2 thermochemical software was carried out examining the behavior of ammonia gas as the reductant upon heating, detailed evaluations of the stable phases present under different reaction conditions and using different feed materials, and the formation and stability of iron nitride phases. The results suggest that the reduction of hematite with ammonia occurs in two steps below 570 °C and three steps above 570 °C. The ratio of Fe<sub>2</sub>O<sub>3</sub>/NH<sub>3</sub> was predicted to affect the reduction reactions by promoting a greater reduction degree and simultaneously lowering the initial temperature needed for reduction, while the excess gas concentration can suppress FeO formation. A predominance area diagram was developed showing the main areas of stable phases as a function of the partial pressure of NH<sub>3</sub> and temperature. The formation of iron nitrides during the process was predicted and these were not expected to cause issues for the formation of iron due to their instability under the conditions studied. This analysis can be used to inform further experimental studies regarding ammonia reduction of iron oxide.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"8 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic Extraction of Valuable Elements from High-Alumina Fly Ash via Carbochlorination 通过羧基氯化法协同提取高铝粉煤灰中的有价元素
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-06-21 DOI: 10.1007/s40831-024-00865-8
Xinxin Zhao, Long Wang, Tianhao Cheng, Yan Liu, Ting-an Zhang, Qiuyue Zhao

Carbochlorination was employed to synergistically extract valuable components (Al and Si) and critical metals (Li, Ga, and Sc) from high-alumina fly ash (HAFA). The effects of gas flow, chlorination time, oxygen content, coking coal addition amount, and chlorination temperature on HAFAcarbochlorination were experimentally investigated. Then, the phase transformation of HAFA was systemically investigated via XRD, SEM/EDS, and FT-IR analysis to determine the carbochlorination mechanism. Experimental investigation shows that under the optimal experimental conditions (gas flow, 10 L/min; oxygen concentration, 15%; C/O molar ratio, 1.379; chlorination temperature, 1100 °C; and chlorination time, 60 min), the chlorination rates of Al2O3, SiO2, Li2O, Ga2O3, and Sc2O3 reach 89.04%, 72.02%, 96.15%, 97.02%, and 95.30%, respectively. Chlorination residue characterizations show that the main phase mullite in HAFA is involved in carbochlorination, the aluminum in mullite is the first to complete chlorination, and the unreacted silicon is transformed into the cristobalite phase. Part of the aluminum and silicon in mullite participate in carbochlorination, resulting in the defects of mullite structure and transformation into mullite mesophase (Al1.69Si1.22O4.85). Finally, SiO2 participated in carbochlorination to produce SiCl4. Since Li, Ga, and Sc are coated in aluminum–silicon glass, they all participate in the carbochlorination after the mullite structure is broken, transforming into the corresponding metal chlorides. AlCl3, SiCl4, GaCl3, and ScCl3 are collected in the condensing tubes, while LiCl and CaCl2 remain in the chlorination residues.

Graphical Abstract

采用羧基氯化法协同提取高铝粉煤灰(HAFA)中的有价成分(Al 和 Si)和临界金属(Li、Ga 和 Sc)。实验研究了气体流量、氯化时间、氧含量、焦煤添加量和氯化温度对 HAFA羧基氯化的影响。然后,通过 XRD、SEM/EDS 和 FT-IR 分析系统研究了 HAFA 的相变,确定了羧基氯化机理。实验研究表明,在最佳实验条件下(气体流量 10 L/min;氧气浓度 15%;C/O 摩尔比 1.379;氯化温度 1100 ℃;氯化时间 60 min),Al2O3、SiO2、Li2O、Ga2O3 和 Sc2O3 的氯化率分别达到 89.04%、72.02%、96.15%、97.02% 和 95.30%。氯化残留物特征表明,HAFA 中的主要相莫来石参与了羧基氯化,莫来石中的铝首先完成氯化,未反应的硅转化为嵴钙钛矿相。莫来石中的部分铝和硅参与了羧基氯化,导致莫来石结构缺陷并转化为莫来石介相(Al1.69Si1.22O4.85)。最后,SiO2 参与羧氯化反应生成 SiCl4。由于锂、镓和钪被包裹在铝硅玻璃中,它们在莫来石结构被打破后都参与了羧基氯化反应,转化为相应的金属氯化物。AlCl3、SiCl4、GaCl3 和 ScCl3 被收集到冷凝管中,而 LiCl 和 CaCl2 则留在氯化残留物中。
{"title":"Synergistic Extraction of Valuable Elements from High-Alumina Fly Ash via Carbochlorination","authors":"Xinxin Zhao, Long Wang, Tianhao Cheng, Yan Liu, Ting-an Zhang, Qiuyue Zhao","doi":"10.1007/s40831-024-00865-8","DOIUrl":"https://doi.org/10.1007/s40831-024-00865-8","url":null,"abstract":"<p>Carbochlorination was employed to synergistically extract valuable components (Al and Si) and critical metals (Li, Ga, and Sc) from high-alumina fly ash (HAFA). The effects of gas flow, chlorination time, oxygen content, coking coal addition amount, and chlorination temperature on HAFA\u0000carbochlorination were experimentally investigated. Then, the phase transformation of HAFA was systemically investigated via XRD, SEM/EDS, and FT-IR analysis to determine the carbochlorination mechanism. Experimental investigation shows that under the optimal experimental conditions (gas flow, 10 L/min; oxygen concentration, 15%; C/O molar ratio, 1.379; chlorination temperature, 1100 °C; and chlorination time, 60 min), the chlorination rates of Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub>, Li<sub>2</sub>O, Ga<sub>2</sub>O<sub>3</sub>, and Sc<sub>2</sub>O<sub>3</sub> reach 89.04%, 72.02%, 96.15%, 97.02%, and 95.30%, respectively. Chlorination residue characterizations show that the main phase mullite in HAFA is involved in carbochlorination, the aluminum in mullite is the first to complete chlorination, and the unreacted silicon is transformed into the cristobalite phase. Part of the aluminum and silicon in mullite participate in carbochlorination, resulting in the defects of mullite structure and transformation into mullite mesophase (Al<sub>1.69</sub>Si<sub>1.22</sub>O<sub>4.85</sub>). Finally, SiO<sub>2</sub> participated in carbochlorination to produce SiCl<sub>4</sub>. Since Li, Ga, and Sc are coated in aluminum–silicon glass, they all participate in the carbochlorination after the mullite structure is broken, transforming into the corresponding metal chlorides. AlCl<sub>3</sub>, SiCl<sub>4</sub>, GaCl<sub>3</sub>, and ScCl<sub>3</sub> are collected in the condensing tubes, while LiCl and CaCl<sub>2</sub> remain in the chlorination residues.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"36 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on Sintering Technology of Manganese Ore Fines Strengthened by Pellet-Sintering Process 球团-烧结工艺强化锰矿粉烧结技术研究
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-06-20 DOI: 10.1007/s40831-024-00866-7
Wei Liu, Deqing Zhu, Jian Pan, Zhenning Wei, Congcong Yang, Zhengqi Guo, Wuju Zhang, Zhiyong Ruan, Lirong Jiang

The experimentation allowing comparison of manganese ore fines pellet sintering and traditional sintering of manganese ore fines in terms of sintering performance are studied. The results show that, compared with traditional sintering, the pellet-sintering process can significantly reduce the coke level while ensuring the quality of sinter. Pellet sintering required 10.54 kgce/t lower solid fuel rate in total and 26.28 kgCO2/t lower CO2 emission rate than traditional one, of which solid fuel consumption and CO2 emission rate are 88.7 kgce/t and 221.13 kgCO2/t, respectively. In addition, pellet-sintering products exhibit higher electrical resistivity and a superior tumble index compared to traditional manganese sintered products. Compared with traditional sintering, the electrical resistivity and tumbling index of pellet-sintering products are changed from 30.6 MΩ·m, 51.7% to 49.9 MΩ·m, and 62.5%, respectively. It provides a new method for low-carbon production of manganese ore fines.

Graphical Abstract

通过实验对锰矿粉球团烧结和传统锰矿粉烧结的烧结性能进行了比较研究。结果表明,与传统烧结工艺相比,球团烧结工艺在保证烧结矿质量的同时,还能显著降低焦炭含量。与传统烧结工艺相比,球团烧结所需的固体燃料总量降低了 10.54 kgce/t,CO2 排放量降低了 26.28 kgCO2/t,其中固体燃料消耗量和 CO2 排放量分别为 88.7 kgce/t 和 221.13 kgCO2/t。此外,与传统的锰烧结产品相比,球团烧结产品具有更高的电阻率和更优越的翻滚指数。与传统烧结相比,球团烧结产品的电阻率和翻滚指数分别从 30.6 MΩ-m、51.7% 提高到 49.9 MΩ-m、62.5%。它为锰矿粉的低碳生产提供了一种新方法。 图文摘要
{"title":"Study on Sintering Technology of Manganese Ore Fines Strengthened by Pellet-Sintering Process","authors":"Wei Liu, Deqing Zhu, Jian Pan, Zhenning Wei, Congcong Yang, Zhengqi Guo, Wuju Zhang, Zhiyong Ruan, Lirong Jiang","doi":"10.1007/s40831-024-00866-7","DOIUrl":"https://doi.org/10.1007/s40831-024-00866-7","url":null,"abstract":"<p>The experimentation allowing comparison of manganese ore fines pellet sintering and traditional sintering of manganese ore fines in terms of sintering performance are studied. The results show that, compared with traditional sintering, the pellet-sintering process can significantly reduce the coke level while ensuring the quality of sinter. Pellet sintering required 10.54 kgce/t lower solid fuel rate in total and 26.28 kgCO<sub>2</sub>/t lower CO<sub>2</sub> emission rate than traditional one, of which solid fuel consumption and CO<sub>2</sub> emission rate are 88.7 kgce/t and 221.13 kgCO<sub>2</sub>/t, respectively. In addition, pellet-sintering products exhibit higher electrical resistivity and a superior tumble index compared to traditional manganese sintered products. Compared with traditional sintering, the electrical resistivity and tumbling index of pellet-sintering products are changed from 30.6 MΩ·m, 51.7% to 49.9 MΩ·m, and 62.5%, respectively. It provides a new method for low-carbon production of manganese ore fines.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"12 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Sustainable Metallurgy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1