首页 > 最新文献

Journal of Sustainable Metallurgy最新文献

英文 中文
Gradient Separation and Recovery of Pb, Se, Cu, and Hg from Acid Sludge by a Sustainable Hydrometallurgical Process 利用可持续水冶工艺从酸性污泥中梯度分离和回收铅、硒、铜和汞
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-08-14 DOI: 10.1007/s40831-024-00892-5
Xuexian Jiang, Wenyun Zhu, Wei Liu, Guixiang He, Tao Wei, Yongming Yang, Zhonglin Li, Changmao Liao, Cheng Li, Weiguang Zhang, Yibing Li, Xuejiao Cao

Acid sludge, a by-product of the Cu smelting process rich in Pb, Se, Cu, Hg, and other valuable metals, is a highly recyclable smelting material. Due to its high selenium content and various phase structures that form inter-chemical and inclusion structures with associated minerals such as copper and mercury, selective separation and recovery of Pb, Cu, Se, Hg and other components are limited. To address this problem, a cascade separation process of “H2SO4 + NaClO3 oxidized coordinated leaching—HCl and Na2SO3 selective reduction of selenium—H2C2O4 reduction of copper precipitation—NaH2PO2 reduction of mercury precipitation” was used for the efficient recovery of these metals from acidic sludge. The results showed that excellent outcomes have been obtained under optimal process parameters at each stage. In the oxidation leaching stage, Pb remains in the slag, Se, Cu, and Hg are leached into the solution, and the leaching rate is above 99%. Under appropriate concentrations of hydrochloric acid, Se was selectively separated in a complexation reaction with Na2SO3. The precipitation rate for Se was almost 100%, with Se product purity reaching up to 99.4%. After that, the precipitation rate of Cu in the oxalic acid precipitation is more than 99%, and the precipitation rate of Hg in the sodium hypophosphite reduction process is more than 99%. In addition, 99.09% of total lead, 97.64% of total selenium, 98.97% of total copper and 98.08% of total mercury in the acid sludge entered their separation products. During the process, the acid sludge's metals are effectively separated without introducing difficult impurity ions.

Graphical Abstract

酸性污泥是铜冶炼过程中产生的一种副产品,富含铅、硒、铜、汞和其他有价金属,是一种高度可回收的冶炼材料。由于其硒含量高,且具有各种相结构,与铜和汞等伴生矿物形成化学间结构和包裹结构,因此铅、铜、硒、汞和其他成分的选择性分离和回收受到限制。针对这一问题,采用了 "H2SO4 + NaClO3 氧化协调浸出-HCl 和 Na2SO3 选择性还原硒-H2C2O4 还原铜沉淀-NaH2PO2 还原汞沉淀 "的级联分离工艺,从酸性污泥中高效回收这些金属。结果表明,在每个阶段的最佳工艺参数下,都取得了很好的效果。在氧化浸出阶段,铅留在渣中,硒、铜和汞被浸入溶液中,浸出率超过 99%。在适当浓度的盐酸中,硒在与 Na2SO3 的络合反应中被选择性地分离出来。硒的沉淀率几乎达到 100%,硒产品纯度高达 99.4%。之后,草酸沉淀中 Cu 的沉淀率超过 99%,次磷酸钠还原过程中 Hg 的沉淀率超过 99%。此外,酸性污泥中 99.09% 的总铅、97.64% 的总硒、98.97% 的总铜和 98.08% 的总汞进入了它们的分离产物。在这一过程中,酸性污泥中的金属得到了有效分离,而且没有引入难以分离的杂质离子。 图文摘要
{"title":"Gradient Separation and Recovery of Pb, Se, Cu, and Hg from Acid Sludge by a Sustainable Hydrometallurgical Process","authors":"Xuexian Jiang, Wenyun Zhu, Wei Liu, Guixiang He, Tao Wei, Yongming Yang, Zhonglin Li, Changmao Liao, Cheng Li, Weiguang Zhang, Yibing Li, Xuejiao Cao","doi":"10.1007/s40831-024-00892-5","DOIUrl":"https://doi.org/10.1007/s40831-024-00892-5","url":null,"abstract":"<p>Acid sludge, a by-product of the Cu smelting process rich in Pb, Se, Cu, Hg, and other valuable metals, is a highly recyclable smelting material. Due to its high selenium content and various phase structures that form inter-chemical and inclusion structures with associated minerals such as copper and mercury, selective separation and recovery of Pb, Cu, Se, Hg and other components are limited. To address this problem, a cascade separation process of “H<sub>2</sub>SO<sub>4</sub> + NaClO<sub>3</sub> oxidized coordinated leaching—HCl and Na<sub>2</sub>SO<sub>3</sub> selective reduction of selenium—H<sub>2</sub>C<sub>2</sub>O<sub>4</sub> reduction of copper precipitation—NaH<sub>2</sub>PO<sub>2</sub> reduction of mercury precipitation” was used for the efficient recovery of these metals from acidic sludge. The results showed that excellent outcomes have been obtained under optimal process parameters at each stage. In the oxidation leaching stage, Pb remains in the slag, Se, Cu, and Hg are leached into the solution, and the leaching rate is above 99%. Under appropriate concentrations of hydrochloric acid, Se was selectively separated in a complexation reaction with Na<sub>2</sub>SO<sub>3</sub>. The precipitation rate for Se was almost 100%, with Se product purity reaching up to 99.4%. After that, the precipitation rate of Cu in the oxalic acid precipitation is more than 99%, and the precipitation rate of Hg in the sodium hypophosphite reduction process is more than 99%. In addition, 99.09% of total lead, 97.64% of total selenium, 98.97% of total copper and 98.08% of total mercury in the acid sludge entered their separation products. During the process, the acid sludge's metals are effectively separated without introducing difficult impurity ions.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"5 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Separation and Characterization of Multiple Rare Earth Phases in CaO-SiO2-La2O3 Basic Slag System CaO-SiO2-La2O3 碱性矿渣体系中多种稀土相的分离与表征
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-08-12 DOI: 10.1007/s40831-024-00896-1
Yulin Li, Jintao Gao, Xi Lan, Xiang Ji, Zhancheng Guo

Bayan Obo, located in Inner Mongolia, China, is renowned for housing the world’s largest deposit of iron-niobium-rare earth polymetallic co-associated minerals. During the process of developing and exploiting this deposit, rare earth elements and other valuable minerals are incorporated into the slag phase, resulting in a significant secondary source of rare earth resources. To effectively recover the rare earth elements, supergravity technology was used to selectively separate the three distinct rare earth phases in the CaO-SiO2-La2O3 basic slag system. The process yielded three rare earth phase pure crystals, namely La2Ca3(SiO3)6, CaxLa4.67-x(SiO4)3O1-0.5x, and LaxCa2-x(SiO4)O0.5x, which were obtained under specific conditions: a gravity coefficient of G = 1000, separation time of t = 10 min, and crystallization temperature for respective each rare earth phase (1330 °C, 1350 °C, 1600 °C). Comprehensive characterization of these crystals was conducted using Raman spectroscopy, EPMA, and XRF. The results indicated that the La2O3 content in the three rare earth phases was approximately 40 wt.%, 75 wt.%, and 20 wt.%, respectively. Notably, the CaxLa4.67-x(SiO4)3O1-0.5× phase exhibited the highest La2O3 content, making it the most valuable phase for rare earth enrichment. This study supplements the knowledge of rare earth phases in CaO-SiO2-La2O3 basic slag system, providing a theoretical reference for efficient recovery of rare earth resources and sustainable utilization of RE-bearing slag.

Graphical Abstract

巴彦鄂博位于中国内蒙古,因拥有世界上最大的铁铌稀土多金属共伴生矿物矿床而闻名于世。在开发和利用该矿床的过程中,稀土元素和其他有价值的矿物会融入矿渣相中,从而形成重要的稀土二次资源。为了有效地回收稀土元素,我们采用了超重力技术来选择性地分离 CaO-SiO2-La2O3 碱渣体系中三种不同的稀土相。该过程产生了三种稀土相纯晶体,即 La2Ca3(SiO3)6、CaxLa4.67-x(SiO4)3O1-0.5x 和 LaxCa2-x(SiO4)O0.5x,它们是在特定条件下获得的:重力系数 G = 1000,分离时间 t = 10 分钟,以及每种稀土相的结晶温度(1330 °C、1350 °C、1600 °C)。利用拉曼光谱、EPMA 和 XRF 对这些晶体进行了综合表征。结果表明,三种稀土相中的 La2O3 含量分别约为 40 wt.%、75 wt.% 和 20 wt.%。值得注意的是,CaxLa4.67-x(SiO4)3O1-0.5×相的 La2O3 含量最高,因此是最有价值的稀土富集相。该研究补充了对 CaO-SiO2-La2O3 碱渣体系中稀土相的认识,为高效回收稀土资源和可持续利用含稀土矿渣提供了理论参考。 图文摘要
{"title":"Separation and Characterization of Multiple Rare Earth Phases in CaO-SiO2-La2O3 Basic Slag System","authors":"Yulin Li, Jintao Gao, Xi Lan, Xiang Ji, Zhancheng Guo","doi":"10.1007/s40831-024-00896-1","DOIUrl":"https://doi.org/10.1007/s40831-024-00896-1","url":null,"abstract":"<p>Bayan Obo, located in Inner Mongolia, China, is renowned for housing the world’s largest deposit of iron-niobium-rare earth polymetallic co-associated minerals. During the process of developing and exploiting this deposit, rare earth elements and other valuable minerals are incorporated into the slag phase, resulting in a significant secondary source of rare earth resources. To effectively recover the rare earth elements, supergravity technology was used to selectively separate the three distinct rare earth phases in the CaO-SiO<sub>2</sub>-La<sub>2</sub>O<sub>3</sub> basic slag system. The process yielded three rare earth phase pure crystals, namely La<sub>2</sub>Ca<sub>3</sub>(SiO<sub>3</sub>)<sub>6</sub>, Ca<sub>x</sub>La<sub>4.67-x</sub>(SiO<sub>4</sub>)<sub>3</sub>O<sub>1-0.5x</sub>, and La<sub>x</sub>Ca<sub>2-x</sub>(SiO<sub>4</sub>)O<sub>0.5x</sub>, which were obtained under specific conditions: a gravity coefficient of <i>G</i> = 1000, separation time of <i>t</i> = 10 min, and crystallization temperature for respective each rare earth phase (1330 °C, 1350 °C, 1600 °C). Comprehensive characterization of these crystals was conducted using Raman spectroscopy, EPMA, and XRF. The results indicated that the La<sub>2</sub>O<sub>3</sub> content in the three rare earth phases was approximately 40 wt.%, 75 wt.%, and 20 wt.%, respectively. Notably, the Ca<sub>x</sub>La<sub>4.67-x</sub>(SiO<sub>4</sub>)<sub>3</sub>O<sub>1-0.5×</sub> phase exhibited the highest La<sub>2</sub>O<sub>3</sub> content, making it the most valuable phase for rare earth enrichment. This study supplements the knowledge of rare earth phases in CaO-SiO<sub>2</sub>-La<sub>2</sub>O<sub>3</sub> basic slag system, providing a theoretical reference for efficient recovery of rare earth resources and sustainable utilization of RE-bearing slag.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"91 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on Solid Suspension Characteristics in a Laboratory-Scale Slurry Electrolysis Stirring Tank 实验室规模浆料电解搅拌槽中的固体悬浮特性研究
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-08-12 DOI: 10.1007/s40831-024-00894-3
Tingting Lu, Zhengbiao Hu, Hongliang Zhao, Shuai Deng

Slurry electrolysis (SE) is a hydrometallurgical technology that offers notable advantages in the efficient extraction of metals from complex minerals while minimizing carbon emissions. This study aimed to investigate the characteristics of solid suspension within a 1:6 scaled cold water model, employing a combination of high-speed imaging and fiber probe measurements. The effects of stirring speed (N, 60–200 rpm), solid mass concentration (c, 175–357 g/L), liquid level height (H, 270–330 mm) on the clear liquid layer, axial and radial solid concentrations, and tank homogeneity were assessed. It was found that the flow was smooth at the solid–liquid interface, with the absence of significant vortexes formations at the center. On the horizontal plane, the distribution of solid concentration was observed to be uniform in the middle region, gradually increasing toward the edges. Notably, when the stirring speed reached N = 200 rpm, the tank achieved uniform suspension, which corresponds to a speed range of 33–52 rpm in the SE prototype. The relationship between stirring speed and solid concentration was analyzed, showing that the interaction between particles cannot be ignored. Furthermore, increasing the liquid level contributes to reducing fluctuation in the liquid surface, the tank exhibited the highest level of homogeneity when the liquid level height was set to H = 300 mm.

Graphical Abstract

泥浆电解(SE)是一种湿法冶金技术,在从复杂矿物中高效提取金属方面具有显著优势,同时还能最大限度地减少碳排放。本研究采用高速成像和纤维探针测量相结合的方法,旨在研究 1:6 比例冷水模型中固体悬浮物的特性。研究评估了搅拌速度(N,60-200 rpm)、固体质量浓度(c,175-357 g/L)、液面高度(H,270-330 mm)对透明液层、轴向和径向固体浓度以及水槽均匀性的影响。结果发现,固液界面处的流动平稳,中心没有明显的涡流形成。在水平面上,观察到固体浓度在中间区域分布均匀,向边缘逐渐增加。值得注意的是,当搅拌速度达到 N = 200 rpm 时,罐内的悬浮液达到均匀,这与 SE 原型中 33-52 rpm 的速度范围相对应。分析了搅拌速度与固体浓度之间的关系,结果表明颗粒之间的相互作用不容忽视。此外,提高液面高度有助于减少液面波动,当液面高度设定为 H = 300 毫米时,罐体表现出最高的均匀度。
{"title":"Study on Solid Suspension Characteristics in a Laboratory-Scale Slurry Electrolysis Stirring Tank","authors":"Tingting Lu, Zhengbiao Hu, Hongliang Zhao, Shuai Deng","doi":"10.1007/s40831-024-00894-3","DOIUrl":"https://doi.org/10.1007/s40831-024-00894-3","url":null,"abstract":"<p>Slurry electrolysis (SE) is a hydrometallurgical technology that offers notable advantages in the efficient extraction of metals from complex minerals while minimizing carbon emissions. This study aimed to investigate the characteristics of solid suspension within a 1:6 scaled cold water model, employing a combination of high-speed imaging and fiber probe measurements. The effects of stirring speed (<i>N</i>, 60–200 rpm), solid mass concentration (<i>c</i>, 175–357 g/L), liquid level height (<i>H</i>, 270–330 mm) on the clear liquid layer, axial and radial solid concentrations, and tank homogeneity were assessed. It was found that the flow was smooth at the solid–liquid interface, with the absence of significant vortexes formations at the center. On the horizontal plane, the distribution of solid concentration was observed to be uniform in the middle region, gradually increasing toward the edges. Notably, when the stirring speed reached <i>N</i> = 200 rpm, the tank achieved uniform suspension, which corresponds to a speed range of 33–52 rpm in the SE prototype. The relationship between stirring speed and solid concentration was analyzed, showing that the interaction between particles cannot be ignored. Furthermore, increasing the liquid level contributes to reducing fluctuation in the liquid surface, the tank exhibited the highest level of homogeneity when the liquid level height was set to <i>H</i> = 300 mm.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"52 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the Carbonation of Steel Slags Through Concurrent Wet Milling 通过同时湿法研磨提高钢渣碳化效果
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-08-12 DOI: 10.1007/s40831-024-00895-2
Anthony de Schutter, Luka Ceyssens, Giuseppe Granata, Tom Van Gerven

This work studies mineral carbonation of steel slags with the aim to reduce the amount of slag that is landfilled. Besides permanently storing carbon dioxide (CO2), carbonating the slags can improve their quality for use in beneficial applications and reduces the leaching of harmful heavy metals. In order to intensify the mineral carbonation process, mechanical activation is used to improve both the carbonation kinetics and yield. The milling is performed in a planetary ball mill which allows for high-intensity grinding, resulting in a fast reduction of the particle size and quick amorphization and disturbance of the crystal structure, allowing high reaction rates to be achieved. The effects of the three main processing parameters of a planetary ball mill—bead-to-powder ratio (R), bead size (D) and milling speed (S)—are investigated. Under optimal conditions, more than 50% of the maximum CO2 uptake is achieved in only 6 min, representing a very significant improvement over regular slurry carbonation. Quantitative XRD allows to identify the reactivity of the different crystalline phases present in the slag under different milling conditions. With the help of a mass balance, the formation of an inert outer layer consisting of silica (SiO2) is confirmed. This explains both the shell diffusion mechanism controlling the carbonation reaction and the total conversion being limited to 50–60%.

Graphical Abstract

这项研究对钢渣进行矿物碳化,目的是减少钢渣的填埋量。除了永久储存二氧化碳(CO2)外,对钢渣进行碳化还能提高钢渣的质量,使其用于有益用途,并减少有害重金属的沥滤。为了强化矿物碳化过程,采用了机械活化技术来提高碳化动力学和产量。研磨是在行星式球磨机中进行的,这种球磨机可以进行高强度研磨,从而快速减小粒度、快速变质和扰乱晶体结构,实现高反应速率。研究了行星式球磨机的三个主要加工参数--珠粉比(R)、珠粒度(D)和研磨速度(S)--的影响。在最佳条件下,只需 6 分钟就能达到最大二氧化碳吸收量的 50%以上,与普通的浆料碳酸化相比,这是一个非常显著的进步。定量 XRD 可以确定不同研磨条件下炉渣中不同结晶相的反应性。在质量平衡的帮助下,确认了由二氧化硅(SiO2)组成的惰性外层的形成。这既解释了控制碳化反应的壳扩散机制,也解释了总转化率仅限于 50-60% 的原因。
{"title":"Improving the Carbonation of Steel Slags Through Concurrent Wet Milling","authors":"Anthony de Schutter, Luka Ceyssens, Giuseppe Granata, Tom Van Gerven","doi":"10.1007/s40831-024-00895-2","DOIUrl":"https://doi.org/10.1007/s40831-024-00895-2","url":null,"abstract":"<p>This work studies mineral carbonation of steel slags with the aim to reduce the amount of slag that is landfilled. Besides permanently storing carbon dioxide (CO<sub>2</sub>), carbonating the slags can improve their quality for use in beneficial applications and reduces the leaching of harmful heavy metals. In order to intensify the mineral carbonation process, mechanical activation is used to improve both the carbonation kinetics and yield. The milling is performed in a planetary ball mill which allows for high-intensity grinding, resulting in a fast reduction of the particle size and quick amorphization and disturbance of the crystal structure, allowing high reaction rates to be achieved. The effects of the three main processing parameters of a planetary ball mill—bead-to-powder ratio <span>(R)</span>, bead size <span>(D)</span> and milling speed <span>(S)</span>—are investigated. Under optimal conditions, more than 50% of the maximum CO<sub>2</sub> uptake is achieved in only 6 min, representing a very significant improvement over regular slurry carbonation. Quantitative XRD allows to identify the reactivity of the different crystalline phases present in the slag under different milling conditions. With the help of a mass balance, the formation of an inert outer layer consisting of silica (SiO<sub>2</sub>) is confirmed. This explains both the shell diffusion mechanism controlling the carbonation reaction and the total conversion being limited to 50–60%.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"15 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pyrometallurgical Reduction of Copper Slag with Biochar for Metal Recovery 用生物炭对铜渣进行火法冶金还原以回收金属
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-08-06 DOI: 10.1007/s40831-024-00885-4
Desmond Attah-Kyei, Dmitry Sukhomlinov, Lassi Klemettinen, Radoslaw Michallik, Hugh O’Brien, Pekka Taskinen, Daniel Lindberg

Large amounts of slag are generated during pyrometallurgical processing in copper production. Due to the presence of valuable elements, the improper disposal of huge quantities of copper slag produced, results in significant loss of resources as well as environmental issues. Analyses of the copper slag show that it contains valuable metals, particularly copper and nickel. In this work, four biochars were employed as fossil-free reducing agents to recover valuable metals from the slag. Reduction experiments were performed in a vertical furnace at temperatures 1250, 1300 and 1350 °C for 60 min in order to investigate the effect of temperature. Moreover, the effect of time on reduction progress was studied at 1250 °C and the concentrations of CO and CO2 in the off-gas were measured with a gas analyzer. Copper slag was reacted with metallurgical coke for comparison and the products were analyzed with EPMA and LA-ICPMS. The results revealed that reduction rapidly progresses to the formation of metal alloy within 10 min. Valuable metals like copper, nickel and arsenic were the first to be reduced to the metal phase. As reduction time increased, iron was also reduced and combined with the metal droplet. The use of biochar as reductant was shown to be more effective than coke especially at lower temperatures. In addition, thermodynamic modelling was performed with FactSage and HSC and compared with the experimental results. The simulations with HSC showed the sequence of reactions taking place and the calculations by FactSage were in agreement with the experiments.

Graphical Abstract

铜生产的火法冶金加工过程中会产生大量铜渣。由于铜渣中含有有价元素,大量铜渣的不当处置会造成严重的资源损失和环境问题。对铜渣的分析表明,铜渣中含有有价金属,尤其是铜和镍。在这项工作中,采用了四种生物渣作为无化石还原剂,从铜渣中回收有价金属。还原实验在立式炉中进行,温度分别为 1250、1300 和 1350 ℃,持续 60 分钟,以研究温度的影响。此外,还研究了在 1250 ℃ 下时间对还原过程的影响,并用气体分析仪测量了废气中 CO 和 CO2 的浓度。铜渣与冶金焦炭进行了反应对比,并用 EPMA 和 LA-ICPMS 对产物进行了分析。结果表明,还原作用在 10 分钟内迅速发展到形成金属合金。铜、镍和砷等贵重金属首先被还原成金属相。随着还原时间的延长,铁也被还原并与金属液滴结合。使用生物炭作为还原剂比焦炭更有效,尤其是在较低温度下。此外,还利用 FactSage 和 HSC 进行了热力学建模,并与实验结果进行了比较。HSC 模拟显示了反应发生的顺序,FactSage 的计算结果与实验结果一致。
{"title":"Pyrometallurgical Reduction of Copper Slag with Biochar for Metal Recovery","authors":"Desmond Attah-Kyei, Dmitry Sukhomlinov, Lassi Klemettinen, Radoslaw Michallik, Hugh O’Brien, Pekka Taskinen, Daniel Lindberg","doi":"10.1007/s40831-024-00885-4","DOIUrl":"https://doi.org/10.1007/s40831-024-00885-4","url":null,"abstract":"<p>Large amounts of slag are generated during pyrometallurgical processing in copper production. Due to the presence of valuable elements, the improper disposal of huge quantities of copper slag produced, results in significant loss of resources as well as environmental issues. Analyses of the copper slag show that it contains valuable metals, particularly copper and nickel. In this work, four biochars were employed as fossil-free reducing agents to recover valuable metals from the slag. Reduction experiments were performed in a vertical furnace at temperatures 1250, 1300 and 1350 °C for 60 min in order to investigate the effect of temperature. Moreover, the effect of time on reduction progress was studied at 1250 °C and the concentrations of CO and CO<sub>2</sub> in the off-gas were measured with a gas analyzer. Copper slag was reacted with metallurgical coke for comparison and the products were analyzed with EPMA and LA-ICPMS. The results revealed that reduction rapidly progresses to the formation of metal alloy within 10 min. Valuable metals like copper, nickel and arsenic were the first to be reduced to the metal phase. As reduction time increased, iron was also reduced and combined with the metal droplet. The use of biochar as reductant was shown to be more effective than coke especially at lower temperatures. In addition, thermodynamic modelling was performed with FactSage and HSC and compared with the experimental results. The simulations with HSC showed the sequence of reactions taking place and the calculations by FactSage were in agreement with the experiments.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"78 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization and Kinetic Study of Manganese Leaching from Pyrolusite Ore in Hydrochloric Acid Solutions with Oxalic Acid 盐酸溶液中草酸浸出焦锰矿的优化和动力学研究
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-08-06 DOI: 10.1007/s40831-024-00869-4
Mehmet Kayra Karacahan

The leaching behavior of pyrolusite minerals was examined in hydrochloric acid solutions, including oxalic acid, to evaluate the influence of various experimental conditions. The optimum parameters for the leaching process were found in the first stage, and the process's kinetics were assessed in the second. The concentrations of oxalic acid, hydrochloric acid, and temperature were chosen as independent variables in the optimization experiments, with the central composite design used to analyze the experimental data. The optimum concentrations for oxalic acid, hydrochloric acid, and temperature were determined to be 0.75 mol/L, 1.2 mol/L, and 60 °C, respectively. The leaching rate was determined to be 97.4% for 120 min of response time in optimum situations. The kinetic assessment experiments studied the effects of solid/liquid ratio, particle size, stirring speed, and temperature on the manganese leaching rate from pyrolusite. In the studies, the leaching rate was shown to rise with increasing temperature and stirring speed, as well as with decreasing particle size and solid/liquid ratio. The kinetic analysis revealed that the leaching kinetics matched the mixed kinetic model, and a mathematical model for the leaching process was developed. This process's activation energy was determined to be 29.05 kJ/mol.

Graphical Abstract

研究了辉绿岩矿物在盐酸溶液(包括草酸)中的浸出行为,以评估各种实验条件的影响。第一阶段找到了浸出过程的最佳参数,第二阶段评估了浸出过程的动力学。在优化实验中,草酸、盐酸和温度的浓度被选为自变量,并采用中心复合设计来分析实验数据。确定草酸、盐酸和温度的最佳浓度分别为 0.75 摩尔/升、1.2 摩尔/升和 60 °C。在最佳情况下,浸出率在 120 分钟的反应时间内达到 97.4%。动力学评估实验研究了固液比、粒度、搅拌速度和温度对辉绿岩锰浸出率的影响。研究表明,随着温度和搅拌速度的增加,以及粒度和固液比的减小,锰的浸出率也随之增加。动力学分析表明,浸出动力学符合混合动力学模型,并建立了浸出过程的数学模型。该过程的活化能被确定为 29.05 kJ/mol。
{"title":"Optimization and Kinetic Study of Manganese Leaching from Pyrolusite Ore in Hydrochloric Acid Solutions with Oxalic Acid","authors":"Mehmet Kayra Karacahan","doi":"10.1007/s40831-024-00869-4","DOIUrl":"https://doi.org/10.1007/s40831-024-00869-4","url":null,"abstract":"<p>The leaching behavior of pyrolusite minerals was examined in hydrochloric acid solutions, including oxalic acid, to evaluate the influence of various experimental conditions. The optimum parameters for the leaching process were found in the first stage, and the process's kinetics were assessed in the second. The concentrations of oxalic acid, hydrochloric acid, and temperature were chosen as independent variables in the optimization experiments, with the central composite design used to analyze the experimental data. The optimum concentrations for oxalic acid, hydrochloric acid, and temperature were determined to be 0.75 mol/L, 1.2 mol/L, and 60 °C, respectively. The leaching rate was determined to be 97.4% for 120 min of response time in optimum situations. The kinetic assessment experiments studied the effects of solid/liquid ratio, particle size, stirring speed, and temperature on the manganese leaching rate from pyrolusite. In the studies, the leaching rate was shown to rise with increasing temperature and stirring speed, as well as with decreasing particle size and solid/liquid ratio. The kinetic analysis revealed that the leaching kinetics matched the mixed kinetic model, and a mathematical model for the leaching process was developed. This process's activation energy was determined to be 29.05 kJ/mol.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"46 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryo-Assisted Nitrogen Treatment for the Fabrication of Nanoengineered, Mixed Transition Metal Oxide Anode from Inorganic Domestic Waste, for Lithium-Ion Batteries 利用无机生活垃圾制造锂离子电池用纳米工程混合过渡金属氧化物阳极的低温辅助氮气处理技术
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-08-05 DOI: 10.1007/s40831-024-00891-6
Humza Ashraf, B. Deniz Karahan

A novel method for the fabrication of nanoengineered, mixed transition metal oxide anode active material is proposed based on implementing liquid nitrogen treatment during the chemical precipitation process, for the first time in open literature. Such interference in the precipitation is believed to change the surface energy of the nuclei leading to differentiation in the growth process. To exemplify this hypothesis with an environmentally friendly approach, kitchen scourer pads, an existing waste, are used as a starting material instead of using a mixture of primary quality metals’ salts. Therefore, in this study, firstly, an optimization is realized to leach the scouring pad with 100% efficiency. Then, by applying a conventional chemical precipitation to this leachate at pH 5.5, Sample 1-P is produced. Herein, innovatively liquid nitrogen treatment is carried out during the chemical precipitation to produce Sample 2-P. Lastly, these precipitates (Samples 1-P, 2-P) are calcinated in the air to form mixed transition metal oxide powders: Samples 1 and 2, respectively. Structural, chemical, and morphological characterizations are carried out to examine the effect of liquid nitrogen treatment on the powders’ properties. To discuss the effect of nitrogen treatment on the electrochemical performances of the anode active materials (Sample 1 and Sample 2), galvanostatic tests are realized. The results show that Sample 2 demonstrates a higher 1st discharge capacity (1352 mAh/g) and retains 62% of its performance after 200 cycles when 50 mA/g current load is applied. Moreover, this electrode delivers around 500 mAh/g at 1 A/g current load. The remarkable cycle performance of Sample 2 is believed to be related to the superior chemical, structural, and physical properties of the electrode active material.

Graphical Abstract

基于在化学沉淀过程中实施液氮处理,提出了一种制造纳米工程混合过渡金属氧化物阳极活性材料的新方法,这在公开文献中尚属首次。沉淀过程中的这种干扰被认为会改变晶核的表面能,从而导致生长过程中的分化。为了以环保的方法来验证这一假设,我们使用了厨房中的废弃物--刮板垫作为起始材料,而不是使用初级优质金属盐的混合物。因此,在本研究中,首先要进行优化,以 100%的效率沥滤擦洗垫。然后,在 pH 值为 5.5 的条件下,对沥滤液进行传统的化学沉淀,得到 1-P 样品。在此,创新性地在化学沉淀过程中进行液氮处理,生产出样品 2-P。最后,将这些沉淀物(样品 1-P、2-P)在空气中煅烧,形成混合过渡金属氧化物粉末:分别为样品 1 和样品 2。为了研究液氮处理对粉末特性的影响,我们进行了结构、化学和形态表征。为了讨论氮处理对阳极活性材料(样品 1 和样品 2)电化学性能的影响,还进行了电静电测试。结果表明,样品 2 显示出更高的首次放电容量(1352 mAh/g),并且在施加 50 mA/g 电流负载的 200 次循环后仍能保持 62% 的性能。此外,该电极在 1 A/g 电流负载下可提供约 500 mAh/g。样品 2 的出色循环性能被认为与电极活性材料卓越的化学、结构和物理特性有关。
{"title":"Cryo-Assisted Nitrogen Treatment for the Fabrication of Nanoengineered, Mixed Transition Metal Oxide Anode from Inorganic Domestic Waste, for Lithium-Ion Batteries","authors":"Humza Ashraf, B. Deniz Karahan","doi":"10.1007/s40831-024-00891-6","DOIUrl":"https://doi.org/10.1007/s40831-024-00891-6","url":null,"abstract":"<p>A novel method for the fabrication of nanoengineered, mixed transition metal oxide anode active material is proposed based on implementing liquid nitrogen treatment during the chemical precipitation process, for the first time in open literature. Such interference in the precipitation is believed to change the surface energy of the nuclei leading to differentiation in the growth process. To exemplify this hypothesis with an environmentally friendly approach, kitchen scourer pads, an existing waste, are used as a starting material instead of using a mixture of primary quality metals’ salts. Therefore, in this study, firstly, an optimization is realized to leach the scouring pad with 100% efficiency. Then, by applying a conventional chemical precipitation to this leachate at pH 5.5, Sample 1-P is produced. Herein, innovatively liquid nitrogen treatment is carried out during the chemical precipitation to produce Sample 2-P. Lastly, these precipitates (Samples 1-P, 2-P) are calcinated in the air to form mixed transition metal oxide powders: Samples 1 and 2, respectively. Structural, chemical, and morphological characterizations are carried out to examine the effect of liquid nitrogen treatment on the powders’ properties. To discuss the effect of nitrogen treatment on the electrochemical performances of the anode active materials (Sample 1 and Sample 2), galvanostatic tests are realized. The results show that Sample 2 demonstrates a higher 1st discharge capacity (1352 mAh/g) and retains 62% of its performance after 200 cycles when 50 mA/g current load is applied. Moreover, this electrode delivers around 500 mAh/g at 1 A/g current load. The remarkable cycle performance of Sample 2 is believed to be related to the superior chemical, structural, and physical properties of the electrode active material.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"58 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Economics of Electrowinning Iron from Ore for Green Steel Production 从矿石中电解铁用于绿色钢铁生产的经济学研究
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-08-05 DOI: 10.1007/s40831-024-00878-3
Matthew S. Humbert, Geoffrey A. Brooks, Alan R. Duffy, Chad Hargrave, M. Akbar Rhamdhani

The transition to green steel production is pivotal for reducing global carbon emissions. This study presents a comprehensive techno-economic analysis of various green steel production methods, including hydrogen reduction and three different electrolysis techniques: aqueous hydroxide electrolysis (AHE), molten salt electrolysis, and molten oxide electrolysis (MOE). By comparing process flow diagrams, capital and operational expenditures, specific energy consumption, and production footprint, this work provides a high-level assessment of the economic viability of these processes as they mature. The analysis reveals that MOE, despite its ongoing development, offers a promising route for iron production given its ability to process a wide range of ore qualities and the potential to sell electrolyte as a cement product. However, the best balance between deployment ready technology and economic benefit is AHE. Operational challenges are also discussed, such as electrolyte loss and slag handling. We suggest that the sale of by-products like oxygen may not significantly impact the economics due to market saturation. The findings underscore the importance of continued research and development in process optimization to realize the full potential of green steel technologies. All the calculations have been released as supplementary electronic material (MS Excel workbook). The format has been inspired by the techno-economic assessment template (TECHTEST) distributed by the US Dept. of Energy.

Graphical Abstract

向绿色钢铁生产过渡对减少全球碳排放至关重要。本研究对各种绿色钢铁生产方法进行了全面的技术经济分析,包括氢还原和三种不同的电解技术:氢氧化物水溶液电解 (AHE)、熔盐电解和熔融氧化物电解 (MOE)。通过比较工艺流程图、资本和运营支出、特定能耗和生产足迹,这项研究对这些成熟工艺的经济可行性进行了高层次评估。分析表明,尽管 MOE 仍在不断发展,但由于其能够处理各种矿石质量,并有可能将电解液作为水泥产品出售,因此为铁生产提供了一条前景广阔的途径。然而,在技术部署就绪和经济效益之间取得最佳平衡的是 AHE。我们还讨论了运行方面的挑战,如电解质流失和炉渣处理。我们建议,由于市场饱和,出售氧气等副产品可能不会对经济效益产生重大影响。研究结果强调了在工艺优化方面继续研发以充分发挥绿色钢铁技术潜力的重要性。所有计算结果已作为补充电子材料(MS Excel 工作簿)发布。其格式借鉴了美国能源部发布的技术经济评估模板(TECHTEST)。
{"title":"Economics of Electrowinning Iron from Ore for Green Steel Production","authors":"Matthew S. Humbert, Geoffrey A. Brooks, Alan R. Duffy, Chad Hargrave, M. Akbar Rhamdhani","doi":"10.1007/s40831-024-00878-3","DOIUrl":"https://doi.org/10.1007/s40831-024-00878-3","url":null,"abstract":"<p>The transition to green steel production is pivotal for reducing global carbon emissions. This study presents a comprehensive techno-economic analysis of various green steel production methods, including hydrogen reduction and three different electrolysis techniques: aqueous hydroxide electrolysis (AHE), molten salt electrolysis, and molten oxide electrolysis (MOE). By comparing process flow diagrams, capital and operational expenditures, specific energy consumption, and production footprint, this work provides a high-level assessment of the economic viability of these processes as they mature. The analysis reveals that MOE, despite its ongoing development, offers a promising route for iron production given its ability to process a wide range of ore qualities and the potential to sell electrolyte as a cement product. However, the best balance between deployment ready technology and economic benefit is AHE. Operational challenges are also discussed, such as electrolyte loss and slag handling. We suggest that the sale of by-products like oxygen may not significantly impact the economics due to market saturation. The findings underscore the importance of continued research and development in process optimization to realize the full potential of green steel technologies. All the calculations have been released as supplementary electronic material (MS Excel workbook). The format has been inspired by the techno-economic assessment template (TECHTEST) distributed by the US Dept. of Energy.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"97 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen Production from Natural Gas Using Hot Blast Furnace Slag: Techno-economic Analysis and CFD Modeling 利用热风炉炉渣从天然气中制氢:技术经济分析和 CFD 建模
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-08-02 DOI: 10.1007/s40831-024-00862-x
Allan Runstedtler, Haining Gao

A process for thermal decomposition of methane to hydrogen and solid carbon is presented and examined. It utilizes the high-temperature heat from the slag by-product of blast furnace ironmaking to drive a thermal decomposition reaction, making it a waste-heat-to-hydrogen technology. This is accomplished via dry granulation of molten slag that feeds a fluidized bed reactor to effect methane–slag contact. First, the proposed process and the heat and mass balances are presented. It is found that it could produce an amount of hydrogen that is equivalent to about 20% of the reductant, depending on the iron-to-slag ratio. Then, a techno-economic analysis investigates the capital and operating costs of the process, compares the hydrogen production cost to that of other processes, and examines cost sensitivity to the prices of process inputs and outputs. This analysis suggests that the process would be suitable for on-site hydrogen production and use within a plant. In addition, using the hot slag to drive the methane decomposition would reduce hydrogen production cost by 15% compared to combusting a portion of the natural gas itself. Finally, a computational fluid dynamics (CFD) modeling study of the fluidized bed reactor examines the thermal decomposition of methane and its dependence on reaction kinetics as well as reactor design and operation. The bed operated in the bubbling regime at an average temperature between 1020 and 1060 °C and resulted in as high as 82% conversion of the methane to hydrogen, with additional optimization still possible.

Graphical Abstract

本文介绍并研究了一种将甲烷热分解为氢气和固体碳的工艺。它利用高炉炼铁副产品炉渣的高温热量来驱动热分解反应,使其成为一种废热制氢技术。该技术通过对熔融炉渣进行干法造粒来实现,熔融炉渣进入流化床反应器,实现甲烷与炉渣的接触。首先,介绍了拟议的工艺以及热量和质量平衡。研究发现,根据铁渣比,该工艺可产生相当于约 20% 还原剂的氢气。然后,技术经济分析调查了该工艺的资本和运营成本,将氢气生产成本与其他工艺进行了比较,并研究了成本对工艺投入和产出价格的敏感性。该分析表明,该工艺适合现场制氢和在工厂内使用。此外,与燃烧部分天然气本身相比,利用热渣驱动甲烷分解可将制氢成本降低 15%。最后,流化床反应器的计算流体动力学(CFD)建模研究考察了甲烷的热分解及其与反应动力学、反应器设计和运行的关系。流化床在平均温度介于 1020 和 1060 °C之间的鼓泡状态下运行,甲烷转化为氢气的转化率高达 82%,而且还有可能进一步优化。
{"title":"Hydrogen Production from Natural Gas Using Hot Blast Furnace Slag: Techno-economic Analysis and CFD Modeling","authors":"Allan Runstedtler, Haining Gao","doi":"10.1007/s40831-024-00862-x","DOIUrl":"https://doi.org/10.1007/s40831-024-00862-x","url":null,"abstract":"<p>A process for thermal decomposition of methane to hydrogen and solid carbon is presented and examined. It utilizes the high-temperature heat from the slag by-product of blast furnace ironmaking to drive a thermal decomposition reaction, making it a waste-heat-to-hydrogen technology. This is accomplished via dry granulation of molten slag that feeds a fluidized bed reactor to effect methane–slag contact. First, the proposed process and the heat and mass balances are presented. It is found that it could produce an amount of hydrogen that is equivalent to about 20% of the reductant, depending on the iron-to-slag ratio. Then, a techno-economic analysis investigates the capital and operating costs of the process, compares the hydrogen production cost to that of other processes, and examines cost sensitivity to the prices of process inputs and outputs. This analysis suggests that the process would be suitable for on-site hydrogen production and use within a plant. In addition, using the hot slag to drive the methane decomposition would reduce hydrogen production cost by 15% compared to combusting a portion of the natural gas itself. Finally, a computational fluid dynamics (CFD) modeling study of the fluidized bed reactor examines the thermal decomposition of methane and its dependence on reaction kinetics as well as reactor design and operation. The bed operated in the bubbling regime at an average temperature between 1020 and 1060 °C and resulted in as high as 82% conversion of the methane to hydrogen, with additional optimization still possible.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"190 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-Carbon Assisted Carbothermal Reduction Process for the Recovery of Lithium and Cobalt from the Spent Lithium-Ion Batteries 从废旧锂离子电池中回收锂和钴的生物碳辅助碳热还原工艺
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-07-26 DOI: 10.1007/s40831-024-00890-7
Akhila Vasamsetti, Arrthi Ravitchandiran, Saradh Prasad Rajendra, Mohamad S. AlSalhi, Rajamohan Rajaram, Subramania Angaiah

The increase in demand for lithium-ion batteries is due to their usage in many electronic gadgets and electric vehicles. Recycling spent lithium-ion batteries plays an essential role in reducing environmental pollution and material and economic scarcity. In this paper, we employed an efficient and environmentally friendly bio-carbon based carbothermal reduction followed by a water leaching process to recover lithium and cobalt from LiCoO2(LCO)-based lithium-ion batteries. Here, the carbonized flamboyant pods (CFP) are used as a reducing agent for the carbothermal reduction process. During the carbothermal reduction process, the bio-carbon converts LiCoO2 into Co3O4 and Li2CO3. Afterwards, lithium is leached out by deionized water with a leaching efficiency of 98%, leaving Co in the residue as Co3O4. This residue is further undergoing a smelting process to recover 98.5% of Co as Co3O4. This carbothermal green recovery process is energy conserving, environmentally friendly and will bring perspective for sustainable recycling of LIBs with a minimized secondary waste.

Graphical Abstract

锂离子电池需求的增加是由于其在许多电子小工具和电动汽车中的应用。回收利用废旧锂离子电池对减少环境污染、降低材料和经济稀缺性起着至关重要的作用。在本文中,我们采用了一种基于生物碳的高效环保型碳热还原法,然后通过水浸法从基于钴酸锂 (LCO) 的锂离子电池中回收锂和钴。在这里,碳化绒荚(CFP)被用作碳热还原过程的还原剂。在碳热还原过程中,生物碳将 LiCoO2 转化为 Co3O4 和 Li2CO3。之后,锂被去离子水浸出,浸出效率高达 98%,残留物中的钴则为 Co3O4。残渣再经过熔炼过程,以 Co3O4 的形式回收 98.5%的钴。这种碳热绿色回收工艺既节能又环保,将为锂电池的可持续回收利用带来新的前景,同时最大限度地减少二次废物。
{"title":"Bio-Carbon Assisted Carbothermal Reduction Process for the Recovery of Lithium and Cobalt from the Spent Lithium-Ion Batteries","authors":"Akhila Vasamsetti, Arrthi Ravitchandiran, Saradh Prasad Rajendra, Mohamad S. AlSalhi, Rajamohan Rajaram, Subramania Angaiah","doi":"10.1007/s40831-024-00890-7","DOIUrl":"https://doi.org/10.1007/s40831-024-00890-7","url":null,"abstract":"<p>The increase in demand for lithium-ion batteries is due to their usage in many electronic gadgets and electric vehicles. Recycling spent lithium-ion batteries plays an essential role in reducing environmental pollution and material and economic scarcity. In this paper, we employed an efficient and environmentally friendly bio-carbon based carbothermal reduction followed by a water leaching process to recover lithium and cobalt from LiCoO<sub>2</sub>(LCO)-based lithium-ion batteries. Here, the carbonized flamboyant pods (CFP) are used as a reducing agent for the carbothermal reduction process. During the carbothermal reduction process, the bio-carbon converts LiCoO<sub>2</sub> into Co<sub>3</sub>O<sub>4</sub> and Li<sub>2</sub>CO<sub>3</sub>. Afterwards, lithium is leached out by deionized water with a leaching efficiency of 98%, leaving Co in the residue as Co<sub>3</sub>O<sub>4</sub>. This residue is further undergoing a smelting process to recover 98.5% of Co as Co<sub>3</sub>O<sub>4</sub>. This carbothermal green recovery process is energy conserving, environmentally friendly and will bring perspective for sustainable recycling of LIBs with a minimized secondary waste.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"166 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141784141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Sustainable Metallurgy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1