首页 > 最新文献

Journal of Sustainable Metallurgy最新文献

英文 中文
The Effect of Composition and Temperature on the Hydrogen Reduction Behavior of Sintered Pellets of Bauxite Residue-Lime Mixtures 成分和温度对铝矾土渣石灰混合物烧结颗粒氢还原行为的影响
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-06-18 DOI: 10.1007/s40831-024-00849-8
Manish Kumar Kar, Casper van der Eijk, Jafar Safarian

This study explores the isothermal hydrogen reduction of sintered pellets made of a mixture of bauxite residue and calcite with varying compositions at different reduction temperatures. Sintered pellets with varying compositions show three primary iron-containing oxide phases including brownmillerite, srebrodolskite, and fayalite; however, brownmillerite is the major phase in all the sintered pellets. The sintered pellets were reduced in a thermogravimetry furnace to establish instantaneous weight reduction with respect to time. Phases and microstructural analysis were carried out using X-ray diffraction and scanning electron microscopy, respectively. Mercury intrusion porosimeter and pycnometer were utilized to assess the porosity and density of the reduced pellets. Thermochemistry calculations were performed using the thermodynamics software FactSage 8.2. The reduction rate is most pronounced at a temperature of 1000 °C for all pellet compositions. It is intriguing to note that the rate of reduction shows minimal variance across pellets with different compositions; however, the higher calcite pellets exhibit a higher initial rate of reduction. Various kinetic models were examined to determine the activation energies for three different composition pellets, and the three-dimensional diffusion model has been well suited for this process. Close activation energies in the range of 84.6 to 94.8 kJ were obtained. A slightly higher activation energy was obtained for lower CaCO3 added pellets, and it was attributed to their reduced porosity and increased sintering, impeding the reaction kinetics. There were no significant differences in the formation of mayenite with varying the calcite amount; however, higher calcite pellets indicated more mayenite formation.

Graphical Abstract

本研究探讨了在不同还原温度下对由不同成分的铝矾土渣和方解石混合物制成的烧结球团进行等温氢还原的过程。不同成分的烧结球团显示出三种主要的含铁氧化物相,包括褐铁矿、钠钙矾土和辉绿岩;然而,褐铁矿是所有烧结球团中的主要相。烧结球团在热重炉中进行还原,以确定随时间变化的瞬时重量减少量。分别使用 X 射线衍射和扫描电子显微镜进行了物相和微观结构分析。汞侵入孔隙度计和比重计用于评估还原颗粒的孔隙度和密度。热化学计算使用热力学软件 FactSage 8.2 进行。对于所有颗粒成分,还原率在温度为 1000 °C 时最为明显。耐人寻味的是,不同成分的颗粒的还原率差异极小;然而,方解石含量较高的颗粒表现出较高的初始还原率。为了确定三种不同成分颗粒的活化能,我们研究了各种动力学模型,发现三维扩散模型非常适合这一过程。得到的活化能在 84.6 至 94.8 千焦之间。CaCO3 添加量较低的颗粒的活化能略高,这是因为它们的孔隙率降低,烧结程度增加,阻碍了反应动力学。方解石含量不同,形成的麦饭石没有明显差异;但是,方解石含量较高的球团表明形成的麦饭石较多。
{"title":"The Effect of Composition and Temperature on the Hydrogen Reduction Behavior of Sintered Pellets of Bauxite Residue-Lime Mixtures","authors":"Manish Kumar Kar, Casper van der Eijk, Jafar Safarian","doi":"10.1007/s40831-024-00849-8","DOIUrl":"https://doi.org/10.1007/s40831-024-00849-8","url":null,"abstract":"<p>This study explores the isothermal hydrogen reduction of sintered pellets made of a mixture of bauxite residue and calcite with varying compositions at different reduction temperatures. Sintered pellets with varying compositions show three primary iron-containing oxide phases including brownmillerite, srebrodolskite, and fayalite; however, brownmillerite is the major phase in all the sintered pellets. The sintered pellets were reduced in a thermogravimetry furnace to establish instantaneous weight reduction with respect to time. Phases and microstructural analysis were carried out using X-ray diffraction and scanning electron microscopy, respectively. Mercury intrusion porosimeter and pycnometer were utilized to assess the porosity and density of the reduced pellets. Thermochemistry calculations were performed using the thermodynamics software FactSage 8.2. The reduction rate is most pronounced at a temperature of 1000 °C for all pellet compositions. It is intriguing to note that the rate of reduction shows minimal variance across pellets with different compositions; however, the higher calcite pellets exhibit a higher initial rate of reduction. Various kinetic models were examined to determine the activation energies for three different composition pellets, and the three-dimensional diffusion model has been well suited for this process. Close activation energies in the range of 84.6 to 94.8 kJ were obtained. A slightly higher activation energy was obtained for lower CaCO<sub>3</sub> added pellets, and it was attributed to their reduced porosity and increased sintering, impeding the reaction kinetics. There were no significant differences in the formation of mayenite with varying the calcite amount; however, higher calcite pellets indicated more mayenite formation.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"27 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NCA-Type Lithium-Ion Battery: A Review of Separation and Purification Technologies for Recycling Metals NCA 型锂离子电池:金属回收分离和提纯技术综述
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-06-17 DOI: 10.1007/s40831-024-00859-6
Anastássia Mariáh Nunes de Oliveira Lima, Denise Crocce Romano Espinosa, Amilton Barbosa Botelho Junior, Jorge Alberto Soares Tenório

End-of-life lithium-ion batteries (LIBs) are waste from electric vehicles that contain valuable and critical metals such as cobalt and lithium in their composition. These metals are at risk of supply due to the increase in demand in the manufacture of technological products and the concentration of reserves in specific countries. When we talk about urban mining, the step of separation and purification is difficult and crucial for development of technology to recover metals because there are many problems when we have a mix and different concentration of these metals. Thus, this study aim is to clarify the techniques used in the recovery of LIBs residues for the NCA type. The NCA-type batteries, which contain, in addition to lithium (Li), cobalt (Co) and nickel (Ni), the element aluminium (Al) in their cathode structure. It is observed was carried out on the recovery of LIBs of all types, and a gap was observed regarding NCA type. Although many studies cover the recovery of metals in cathode structures from LIBs, it is not observed for batteries containing Al. Its observed that aluminium is a problem for the separation process because of its chemical characteristics. Based on this analysis, the recovery of metals presents in the NCA type batteries, the route proposed is that the first step should be the precipitation of aluminium, followed by solvent extraction of cobalt, and the last step is the precipitation of nickel, followed by lithium precipitation.

Graphical Abstract

报废锂离子电池(LIB)是电动汽车产生的废料,其成分中含有钴和锂等贵重金属。由于技术产品制造需求的增加和特定国家储量的集中,这些金属面临供应风险。当我们谈论城市采矿时,分离和提纯步骤对于开发金属回收技术来说是困难和关键的,因为当这些金属混合在一起且浓度不同时,就会出现许多问题。因此,本研究的目的是阐明用于回收 NCA 型 LIBs 残渣的技术。NCA 型电池的阴极结构中除含有锂(Li)、钴(Co)和镍(Ni)元素外,还含有铝(Al)元素。据观察,对所有类型的锂离子电池都进行了回收,但在 NCA 型电池方面还存在差距。尽管许多研究都涉及锂离子电池阴极结构中金属的回收,但却没有发现含铝电池中金属的回收。据观察,由于铝的化学特性,铝是分离过程中的一个问题。基于上述分析,针对 NCA 型电池中出现的金属回收问题,提出的路线是第一步先沉淀铝,然后用溶剂萃取钴,最后一步沉淀镍,再沉淀锂。
{"title":"NCA-Type Lithium-Ion Battery: A Review of Separation and Purification Technologies for Recycling Metals","authors":"Anastássia Mariáh Nunes de Oliveira Lima, Denise Crocce Romano Espinosa, Amilton Barbosa Botelho Junior, Jorge Alberto Soares Tenório","doi":"10.1007/s40831-024-00859-6","DOIUrl":"https://doi.org/10.1007/s40831-024-00859-6","url":null,"abstract":"<p>End-of-life lithium-ion batteries (LIBs) are waste from electric vehicles that contain valuable and critical metals such as cobalt and lithium in their composition. These metals are at risk of supply due to the increase in demand in the manufacture of technological products and the concentration of reserves in specific countries. When we talk about urban mining, the step of separation and purification is difficult and crucial for development of technology to recover metals because there are many problems when we have a mix and different concentration of these metals. Thus, this study aim is to clarify the techniques used in the recovery of LIBs residues for the NCA type. The NCA-type batteries, which contain, in addition to lithium (Li), cobalt (Co) and nickel (Ni), the element aluminium (Al) in their cathode structure. It is observed was carried out on the recovery of LIBs of all types, and a gap was observed regarding NCA type. Although many studies cover the recovery of metals in cathode structures from LIBs, it is not observed for batteries containing Al. Its observed that aluminium is a problem for the separation process because of its chemical characteristics. Based on this analysis, the recovery of metals presents in the NCA type batteries, the route proposed is that the first step should be the precipitation of aluminium, followed by solvent extraction of cobalt, and the last step is the precipitation of nickel, followed by lithium precipitation.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"55 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feasibility of Biochar from Seaweed for Ferroalloy Production 海藻生物炭用于铁合金生产的可行性
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-06-17 DOI: 10.1007/s40831-024-00863-w
Samuel Senanu, Judit Sandquist, Jorunn Skjermo, Stein Rørvik, Magnus Windfeldt

Biochar from seaweed, specifically sugar kelp, cultivated on the Norwegian coastline has been investigated as a possible biocarbon source for the metal industry to reduce the dependency on terrestrial biomass. Pre-processing of the biomass prior to pyrolysis is needed to reduce the water and ash content and was performed by water and acid washing followed by drying. The three types of biochar were obtained after pyrolysis at a temperature of 550 °C. Characterization of the three batches of biochars showed that pre-processing of the seaweed as was done during the water and acid washing, plays an important role on the removal of ash content. Due to the enormous amount of woody biomass needed for example in the ferroalloy industry to replace fossil coal, replacing only parts of the woody biomass with kelp biochar could have a significant impact. Water washing combined with acid washing had the best results considering the ash and fixed carbon contents. Microstructural analysis of the seaweed biochars showed a very porous material with the crystal structure resembling that of charcoal, albeit a lower degree of crystallinity.

Graphical Abstract

从挪威海岸线种植的海藻(特别是糖海带)中提取的生物炭已被研究作为金属工业的一种可能的生物碳源,以减少对陆地生物质的依赖。生物质在热解前需要进行预处理,以减少水分和灰分含量,预处理的方法是水洗和酸洗,然后干燥。在 550 °C 的温度下进行热解后,得到了三种类型的生物炭。对三批生物炭的特性分析表明,在水和酸洗过程中对海藻进行的预处理对去除灰分起着重要作用。例如,铁合金工业需要大量木质生物质来替代化石煤,因此用海带生物炭替代部分木质生物质会产生重大影响。考虑到灰分和固定碳含量,水洗结合酸洗的效果最好。海藻生物炭的微观结构分析表明,海藻生物炭是一种多孔性材料,晶体结构与木炭相似,但结晶度较低。
{"title":"Feasibility of Biochar from Seaweed for Ferroalloy Production","authors":"Samuel Senanu, Judit Sandquist, Jorunn Skjermo, Stein Rørvik, Magnus Windfeldt","doi":"10.1007/s40831-024-00863-w","DOIUrl":"https://doi.org/10.1007/s40831-024-00863-w","url":null,"abstract":"<p>Biochar from seaweed, specifically sugar kelp, cultivated on the Norwegian coastline has been investigated as a possible biocarbon source for the metal industry to reduce the dependency on terrestrial biomass. Pre-processing of the biomass prior to pyrolysis is needed to reduce the water and ash content and was performed by water and acid washing followed by drying. The three types of biochar were obtained after pyrolysis at a temperature of 550 °C. Characterization of the three batches of biochars showed that pre-processing of the seaweed as was done during the water and acid washing, plays an important role on the removal of ash content. Due to the enormous amount of woody biomass needed for example in the ferroalloy industry to replace fossil coal, replacing only parts of the woody biomass with kelp biochar could have a significant impact. Water washing combined with acid washing had the best results considering the ash and fixed carbon contents. Microstructural analysis of the seaweed biochars showed a very porous material with the crystal structure resembling that of charcoal, albeit a lower degree of crystallinity.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"11 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Waste to Wealth: Current Advances in Recycling Technologies for Metal Recovery from Vanadium-Titanium Magnetite Tailings 从废物到财富:从钒钛磁铁矿尾矿中回收金属的再循环技术的最新进展
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-06-17 DOI: 10.1007/s40831-024-00847-w
Cheng Hu, Zhendong Yang, Miao He, Yazhi Zhan, Zhenyu Zhang, Cong Peng, Li Zeng, Yonghong Liu, Zhaoyue Yang, Huaqun Yin, Zhenghua Liu

The burgeoning accumulation of vanadium-titanium magnetite tailings (VTMT) presents a dual challenge of environmental hazard and loss of valuable metal resources. This review arrives at a crucial juncture in global efforts towards a circular economy, focusing on innovative and effective metal recovery technologies. We explore the forefront of recycling methodologies, including suspension magnetization roasting, chlorination roasting, hydrometallurgical methods, and emerging approaches like MnO2 roasting, magnesia and calcium roasting, and microwave oxidation roasting. Our analysis juxtaposes these advanced methods against traditional techniques, emphasizing their superior environmental and resource recovery benefits. Despite promising advancements, these technologies are still in nascent stages, each presenting unique merits and limitations that necessitate further research. This paper delves into the future trajectory of VTMT recycling, emphasizing the integration of technological innovation with environmental and resource stewardship. By tackling the specific challenges of VTMT, we underscore the urgency for holistic, efficient, and eco-friendly solutions. The future of VTMT metal recovery hinges on the progressive refinement and amalgamation of these technologies, underscored by a commitment to balancing ecological concerns with societal demands.

Graphical Abstract

钒钛磁铁矿尾矿(VTMT)的迅速积累带来了环境危害和宝贵金属资源流失的双重挑战。本综述在全球努力实现循环经济的关键时刻发表,重点关注创新和有效的金属回收技术。我们探讨了最前沿的回收方法,包括悬浮磁化焙烧、氯化焙烧、湿法冶金方法,以及二氧化锰焙烧、镁钙焙烧和微波氧化焙烧等新兴方法。我们的分析将这些先进方法与传统技术并列,强调它们在环境和资源回收方面的优势。尽管取得了可喜的进步,但这些技术仍处于初级阶段,每种技术都有其独特的优点和局限性,需要进一步研究。本文深入探讨了 VTMT 循环利用的未来发展轨迹,强调技术创新与环境和资源管理的结合。通过应对 VTMT 所面临的具体挑战,我们强调了全面、高效和生态友好型解决方案的紧迫性。VTMT 金属回收的未来取决于这些技术的逐步完善和融合,同时还要致力于平衡生态问题和社会需求。
{"title":"From Waste to Wealth: Current Advances in Recycling Technologies for Metal Recovery from Vanadium-Titanium Magnetite Tailings","authors":"Cheng Hu, Zhendong Yang, Miao He, Yazhi Zhan, Zhenyu Zhang, Cong Peng, Li Zeng, Yonghong Liu, Zhaoyue Yang, Huaqun Yin, Zhenghua Liu","doi":"10.1007/s40831-024-00847-w","DOIUrl":"https://doi.org/10.1007/s40831-024-00847-w","url":null,"abstract":"<p>The burgeoning accumulation of vanadium-titanium magnetite tailings (VTMT) presents a dual challenge of environmental hazard and loss of valuable metal resources. This review arrives at a crucial juncture in global efforts towards a circular economy, focusing on innovative and effective metal recovery technologies. We explore the forefront of recycling methodologies, including suspension magnetization roasting, chlorination roasting, hydrometallurgical methods, and emerging approaches like MnO<sub>2</sub> roasting, magnesia and calcium roasting, and microwave oxidation roasting. Our analysis juxtaposes these advanced methods against traditional techniques, emphasizing their superior environmental and resource recovery benefits. Despite promising advancements, these technologies are still in nascent stages, each presenting unique merits and limitations that necessitate further research. This paper delves into the future trajectory of VTMT recycling, emphasizing the integration of technological innovation with environmental and resource stewardship. By tackling the specific challenges of VTMT, we underscore the urgency for holistic, efficient, and eco-friendly solutions. The future of VTMT metal recovery hinges on the progressive refinement and amalgamation of these technologies, underscored by a commitment to balancing ecological concerns with societal demands.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"17 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Purifying 7CrSiMnMoV Steel from Scrap Modified with Rare Earth Cerium Alloying 从稀土铈合金化废料中提纯 7CrSiMnMoV 钢
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-06-04 DOI: 10.1007/s40831-024-00852-z
Huihui Wang, Qian Long, Jie Zeng, Xu Gao, You Zhou, Zaixue Zheng, Wanlin Wang

It is crucial to control the sulfur and oxygen in the steel liquid to produce high-cleanliness rare earth steel. This study attempted to investigate the effect of rare earth Ce content on purifying the produced 7CrSiMnMoV steel from scrap steel by modified rare earth inclusions based on a proposed integrated process of high-alkalinity refining slag desulfurization, Si–Mn deoxidation, Al-enhanced deoxidation, and rare earth Ce alloying. The results show that the evolution mechanism of rare earth inclusions is 25% Al2O3⋅25% MgO⋅50% Ce2O3 → 25% Al2O3⋅75% Ce2O3, 12.5% Al2O3⋅MnS⋅Ce2O2S → Ce2O3, Ce2O2S → Ce2S3, Ce2O2S → (Mn Ce)2S3, Ce2O2S, with the rare earth Ce-added content of 0.009%, 0.012%, and 0.100%, respectively. And rare earth Ce can improve the cleanliness of steel liquid by controlling the rare earth Ce-added content to form the M1-Ce2O3 (M1 is Al, Mg, etc.) and M2-Ce2SO2 (M2 is Ca, Mn, etc.) rare earth inclusions; the oxygen and sulfur concentrations can reach 0.0031% and 0.0026%, respectively, with a rare earth Ce content of 0.012%. However, excessive amounts of rare earth Ce could deteriorate the cleanliness of steel liquid.

Graphical Abstract

To produce 7CrSiMnMoV rare earth steel by scrap steel based on an integrated process of high-alkalinity refining slag desulfurization, Si–Mn deoxidation, Al-enhanced deoxidation, and rare earth Ce alloying and purifying steel liquid.Purifying 7CrSiMnMoV rare earth steel liquid by modified rare earth inclusion.Rare earth Ce can improve the cleanliness of steel liquid by controlling the rare earth Ce-added content to form M-Ce2O3 (M is Al, Mg, etc.) and M-Ce2SO2 (M is Ca, Mn, etc.) rare earth inclusions; the oxygen and sulfur concentrations can reach 0.0031% and 0.0026%, respectively, with a rare earth Ce content of 0.012%.

控制钢液中的硫和氧对生产高洁净度稀土钢至关重要。本研究基于提出的高碱度精炼渣脱硫、Si-Mn 脱氧、Al 增强脱氧和稀土 Ce 合金一体化工艺,尝试研究稀土 Ce 含量对从废钢中通过改性稀土夹杂物提纯 7CrSiMnMoV 钢的影响。结果表明,稀土夹杂物的演化机理为 25% Al2O3⋅25% MgO⋅50% Ce2O3 → 25% Al2O3⋅75% Ce2O3, 12.5% Al2O3⋅MnS⋅Ce2O2S → Ce2O3, Ce2O2S → Ce2S3, Ce2O2S → (Mn Ce)2S3, Ce2O2S,稀土 Ce 添加量分别为 0.009%、0.012% 和 0.100%。而稀土 Ce 可以通过控制稀土 Ce 的添加量,形成 M1-Ce2O3(M1 为 Al、Mg 等)和 M2-Ce2SO2(M2 为 Ca、Mn 等)稀土夹杂物,从而提高钢液的洁净度;稀土 Ce 含量为 0.012%时,氧浓度和硫浓度可分别达到 0.0031%和 0.0026%。图解 摘要利用废钢生产 7CrSiMnMoV 稀土钢,采用高碱度精炼渣脱硫、Si-Mn 脱氧、Al 增强脱氧、稀土 Ce 合金净化钢液的综合工艺。通过改性稀土夹杂物净化 7CrSiMnMoV 稀土钢液。通过控制稀土 Ce 的添加量,形成 M-Ce2O3(M 为 Al、Mg 等)和 M-Ce2SO2(M 为 Ca、Mn 等)稀土夹杂物,稀土 Ce 含量为 0.012%时,氧和硫的浓度可分别达到 0.0031%和 0.0026%,从而提高钢液的洁净度。
{"title":"Purifying 7CrSiMnMoV Steel from Scrap Modified with Rare Earth Cerium Alloying","authors":"Huihui Wang, Qian Long, Jie Zeng, Xu Gao, You Zhou, Zaixue Zheng, Wanlin Wang","doi":"10.1007/s40831-024-00852-z","DOIUrl":"https://doi.org/10.1007/s40831-024-00852-z","url":null,"abstract":"<p>It is crucial to control the sulfur and oxygen in the steel liquid to produce high-cleanliness rare earth steel. This study attempted to investigate the effect of rare earth Ce content on purifying the produced 7CrSiMnMoV steel from scrap steel by modified rare earth inclusions based on a proposed integrated process of high-alkalinity refining slag desulfurization, Si–Mn deoxidation, Al-enhanced deoxidation, and rare earth Ce alloying. The results show that the evolution mechanism of rare earth inclusions is 25% Al<sub>2</sub>O<sub>3</sub>⋅25% MgO⋅50% Ce<sub>2</sub>O<sub>3</sub> → 25% Al<sub>2</sub>O<sub>3</sub>⋅75% Ce<sub>2</sub>O<sub>3</sub>, 12.5% Al<sub>2</sub>O<sub>3</sub>⋅MnS⋅Ce<sub>2</sub>O<sub>2</sub>S → Ce<sub>2</sub>O<sub>3</sub>, Ce<sub>2</sub>O<sub>2</sub>S → Ce<sub>2</sub>S<sub>3</sub>, Ce<sub>2</sub>O<sub>2</sub>S → (Mn Ce)<sub>2</sub>S<sub>3</sub>, Ce<sub>2</sub>O<sub>2</sub>S, with the rare earth Ce-added content of 0.009%, 0.012%, and 0.100%, respectively. And rare earth Ce can improve the cleanliness of steel liquid by controlling the rare earth Ce-added content to form the M1-Ce<sub>2</sub>O<sub>3</sub> (M1 is Al, Mg, etc.) and M2-Ce<sub>2</sub>SO<sub>2</sub> (M2 is Ca, Mn, etc.) rare earth inclusions; the oxygen and sulfur concentrations can reach 0.0031% and 0.0026%, respectively, with a rare earth Ce content of 0.012%. However, excessive amounts of rare earth Ce could deteriorate the cleanliness of steel liquid.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3><p>To produce 7CrSiMnMoV rare earth steel by scrap steel based on an integrated process of high-alkalinity refining slag desulfurization, Si–Mn deoxidation, Al-enhanced deoxidation, and rare earth Ce alloying and purifying steel liquid.Purifying 7CrSiMnMoV rare earth steel liquid by modified rare earth inclusion.Rare earth Ce can improve the cleanliness of steel liquid by controlling the rare earth Ce-added content to form M-Ce2O3 (M is Al, Mg, etc.) and M-Ce2SO2 (M is Ca, Mn, etc.) rare earth inclusions; the oxygen and sulfur concentrations can reach 0.0031% and 0.0026%, respectively, with a rare earth Ce content of 0.012%.</p>","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"17 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141254019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Objective Optimization of the Recovery of Base and Precious Metals from Waste Printed Circuit Boards by Two-Stage Hydrometallurgical Process Using Taguchi-Based Grey Relationship Analysis 利用基于田口灰色关系分析的两阶段湿法冶金工艺从废印刷电路板中回收贱金属和贵金属的多目标优化方案
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-06-03 DOI: 10.1007/s40831-024-00850-1
Serdar Aral, Ayşe Vildan Beşe

This study focused on determining the optimum conditions for the maximum recovery of base and precious metals from printed circuit boards of end-of-life desktop computer motherboards using Taguchi-based grey relation analysis. In the first stage of the two-stage study, optimum conditions were investigated for the dissolution of base metals (copper and zinc) in waste printed circuit boards under high-pressure leaching. The dissolution of base metals was performed based on the L25 orthogonal array designed by Taguchi method. In the second step, designed according to Taguchi L9 orthogonal array to recover gold and silver from the solid remaining from the pressure-leaching process. Optimum combinations of parameters in both stages were determined using the multi-criteria optimization technique grey relationship analysis. In the experiments carried out in the determined optimum combinations, 99.62% of copper, 98.76% of zinc, 99.15 of silver and 85.82% of gold in waste printed circuit boards were recovered.

Graphical Abstract

本研究的重点是利用基于田口灰色关系分析的方法,确定从报废台式电脑主板的印刷电路板中最大限度回收贱金属和贵金属的最佳条件。在两阶段研究的第一阶段,研究了高压浸出法溶解废印刷电路板中贱金属(铜和锌)的最佳条件。贱金属的溶解是根据田口方法设计的 L25 正交阵列进行的。第二步,根据 Taguchi L9 正交阵列设计,从压力浸出过程中剩余的固体中回收金和银。两个阶段的最佳参数组合均采用多标准优化技术灰色关系分析法确定。在确定的最佳组合下进行的实验中,废印刷电路板中的铜回收率为 99.62%,锌回收率为 98.76%,银回收率为 99.15%,金回收率为 85.82%。 图文摘要
{"title":"Multi-Objective Optimization of the Recovery of Base and Precious Metals from Waste Printed Circuit Boards by Two-Stage Hydrometallurgical Process Using Taguchi-Based Grey Relationship Analysis","authors":"Serdar Aral, Ayşe Vildan Beşe","doi":"10.1007/s40831-024-00850-1","DOIUrl":"https://doi.org/10.1007/s40831-024-00850-1","url":null,"abstract":"<p>This study focused on determining the optimum conditions for the maximum recovery of base and precious metals from printed circuit boards of end-of-life desktop computer motherboards using Taguchi-based grey relation analysis. In the first stage of the two-stage study, optimum conditions were investigated for the dissolution of base metals (copper and zinc) in waste printed circuit boards under high-pressure leaching. The dissolution of base metals was performed based on the L25 orthogonal array designed by Taguchi method. In the second step, designed according to Taguchi L9 orthogonal array to recover gold and silver from the solid remaining from the pressure-leaching process. Optimum combinations of parameters in both stages were determined using the multi-criteria optimization technique grey relationship analysis. In the experiments carried out in the determined optimum combinations, 99.62% of copper, 98.76% of zinc, 99.15 of silver and 85.82% of gold in waste printed circuit boards were recovered.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"13 22 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141254131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Separation of Cadmium from Cobalt-Rich Solutions Using Cyanex301 and P204/P507 使用 Cyanex301 和 P204/P507 从富钴溶液中高效分离镉
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-06-03 DOI: 10.1007/s40831-024-00854-x
Zhen Qian, Chongyang Li, Limin He, Hufei Chen, Yanmei Peng, Qilong Shi, Xueliang Xiong, Xinbing Xia, Changhong Wang

The presence of cadmium (Cd) in ternary batteries is a known detriment to both their service longevity and cycling performance. Traditional methods for reducing Cd levels in cobalt (Co) sulfate solutions can be effective but often result in significant losses of Co. This study introduces an enhanced dual-extractant system that combines 5% (V/V) di-2-ethylhexyl phosphoric acid (P204) with 5% (V/V) bis (2,4,4-trimethylpentyl) dithiophosphinic acid (Cyanex301) to effectively lower Cd content without substantial Co depletion. Conducted at a pH of 1.8 with a 1:1(V/V) organic-to-aqueous phase ratio at 25 °C for 10 min, our approach achieved a 99.99% extraction efficiency for Cd and limited Co extraction to just 0.53%. Subsequent stripping processes utilized 1 M sulfuric acid and 6 M hydrochloric acid to recover 87.13% of Co and 95.11% of Cd. An efficient process roadmap operated at optimized condition was demonstrated for plant-wide treatment of the cobalt sulfate solution containing Cd. The innovative results hold the potential to accelerate advancements in secondary resource recycling, especially Cd and Co.

Graphical Abstract

众所周知,三元电池中镉 (Cd) 的存在会影响其使用寿命和循环性能。本研究介绍了一种增强型双萃取剂系统,该系统结合了 5%(V/V)二-2-乙基己基磷酸(P204)和 5%(V/V)双(2,4,4-三甲基戊基)二硫代膦酸(Cyanex301),可有效降低镉含量,同时不会造成大量钴损耗。在 pH 值为 1.8、有机相与水相比例为 1:1(V/V)、温度为 25 °C 的条件下进行 10 分钟的萃取,我们的方法实现了 99.99% 的镉萃取效率,并将钴萃取率限制在 0.53%。随后的汽提工艺利用 1 M 硫酸和 6 M 盐酸回收了 87.13% 的钴和 95.11% 的镉。在优化条件下运行的高效工艺路线图已在全厂范围内处理含镉的硫酸钴溶液中得到证实。这些创新成果有望加快二次资源循环利用,特别是镉和钴的循环利用。
{"title":"Efficient Separation of Cadmium from Cobalt-Rich Solutions Using Cyanex301 and P204/P507","authors":"Zhen Qian, Chongyang Li, Limin He, Hufei Chen, Yanmei Peng, Qilong Shi, Xueliang Xiong, Xinbing Xia, Changhong Wang","doi":"10.1007/s40831-024-00854-x","DOIUrl":"https://doi.org/10.1007/s40831-024-00854-x","url":null,"abstract":"<p>The presence of cadmium (Cd) in ternary batteries is a known detriment to both their service longevity and cycling performance. Traditional methods for reducing Cd levels in cobalt (Co) sulfate solutions can be effective but often result in significant losses of Co. This study introduces an enhanced dual-extractant system that combines 5% (<i>V</i>/<i>V</i>) di-2-ethylhexyl phosphoric acid (P204) with 5% (<i>V</i>/<i>V</i>) bis (2,4,4-trimethylpentyl) dithiophosphinic acid (Cyanex301) to effectively lower Cd content without substantial Co depletion. Conducted at a pH of 1.8 with a 1:1(<i>V</i>/<i>V</i>) organic-to-aqueous phase ratio at 25 °C for 10 min, our approach achieved a 99.99% extraction efficiency for Cd and limited Co extraction to just 0.53%. Subsequent stripping processes utilized 1 M sulfuric acid and 6 M hydrochloric acid to recover 87.13% of Co and 95.11% of Cd. An efficient process roadmap operated at optimized condition was demonstrated for plant-wide treatment of the cobalt sulfate solution containing Cd. The innovative results hold the potential to accelerate advancements in secondary resource recycling, especially Cd and Co.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"52 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141254382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sulfur Removal and Iron Recovery from High-Pressure Acid Leaching Residue of Nickel Laterite Ore 从红土镍矿高压酸浸残渣中脱硫和回收铁
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-06-03 DOI: 10.1007/s40831-024-00853-y
Jiyao Wu, Baozhong Ma, Yongqiang Chen, Hui Yang, Chengyan Wang

High-pressure acid leach (HPAL) residue from laterite nickel ore is a potentially valuable resource for ironmaking; however, its efficient utilization is hindered by its high sulfur content. In this study, an effective and straightforward method is proposed for sulfur removal from HPAL residue. The process involves sieving and sodium carbonate leaching, enabling significant sulfur reduction from 5.12 to 0.81% and simultaneous enrichment of iron content from 47.12 to 55.27%. The sulfur content in the treated HPAL residue falls below the permissible level for the ironmaking industry, rendering it suitable for use as a low-grade iron ore. This innovative approach not only facilitates the valuable utilization of HPAL residues but also mitigates solid waste emissions, addressing the economic and environmental challenges associated with large stockpiles of solid waste.

Graphical Abstract

从红土镍矿中提取的高压酸浸出(HPAL)残渣是一种潜在的宝贵炼铁资源,但其高硫含量阻碍了其有效利用。本研究提出了一种有效而简单的方法来去除 HPAL 残留物中的硫。该工艺包括筛分和碳酸钠浸出,可将硫含量从 5.12% 显著降低到 0.81%,同时将铁含量从 47.12% 提高到 55.27%。经过处理的 HPAL 残留物中的硫含量低于炼铁行业允许的水平,因此适合用作低品位铁矿石。这一创新方法不仅促进了对 HPAL 残留物的宝贵利用,还减少了固体废物的排放,解决了与大量固体废物库存相关的经济和环境挑战。
{"title":"Sulfur Removal and Iron Recovery from High-Pressure Acid Leaching Residue of Nickel Laterite Ore","authors":"Jiyao Wu, Baozhong Ma, Yongqiang Chen, Hui Yang, Chengyan Wang","doi":"10.1007/s40831-024-00853-y","DOIUrl":"https://doi.org/10.1007/s40831-024-00853-y","url":null,"abstract":"<p>High-pressure acid leach (HPAL) residue from laterite nickel ore is a potentially valuable resource for ironmaking; however, its efficient utilization is hindered by its high sulfur content. In this study, an effective and straightforward method is proposed for sulfur removal from HPAL residue. The process involves sieving and sodium carbonate leaching, enabling significant sulfur reduction from 5.12 to 0.81% and simultaneous enrichment of iron content from 47.12 to 55.27%. The sulfur content in the treated HPAL residue falls below the permissible level for the ironmaking industry, rendering it suitable for use as a low-grade iron ore. This innovative approach not only facilitates the valuable utilization of HPAL residues but also mitigates solid waste emissions, addressing the economic and environmental challenges associated with large stockpiles of solid waste.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"74 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141254022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Basic Study on the Synergistic Extraction of V and Ga from Bayer Mother Liquor of Alumina Production 从氧化铝生产的拜耳母液中协同提取 V 和 Ga 的基础研究
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-06-03 DOI: 10.1007/s40831-024-00806-5
Zewei Wang, Weiguang Zhang, Yang Chen, Hongyu Lu, Liang Yu, Xuejiao Cao, Yibing Li

The synergistic extraction law of vanadium and gallium from Bayer mother liquor by OH type LSC-600S resin was investigated in this paper. More than 72.21% of vanadium and 74.46% of gallium were adsorbed from Bayer mother liquor, when the conditions were resin of 4 g/L, adsorption time of 100 min, temperature of 70 °C, and stirring rate of 500 r/min. Thermodynamic calculations show that the extraction of vanadium and gallium by the resin proceeds spontaneously, and that an increase in temperature favors the extraction of vanadium and gallium. Theoretical research results showed that, the kinetics of adsorption process followed the pseudo-second-order reaction, and the adsorption isotherm followed the Freundlich isotherm model. The infrared spectrum analysis results showed that, gallium ions in solution interacted with the C=NOH in the resin, and vanadium ions interacted with the C=NOH and C–NH2. The synergistic extraction of vanadium and gallium does not reduce the adsorption capacity of the resin for gallium, but also effectively recovers vanadium. It provides a new method for the recovery of vanadium resources from Bayer mother liquor.

Graphical Abstract

本文研究了 OH 型 LSC-600S 树脂从拜耳公司母液中协同萃取钒和镓的规律。在树脂浓度为 4 g/L、吸附时间为 100 min、温度为 70 ℃、搅拌速度为 500 r/min 的条件下,拜耳母液中钒的吸附率超过 72.21%,镓的吸附率超过 74.46%。热力学计算表明,树脂对钒和镓的萃取是自发进行的,温度升高有利于钒和镓的萃取。理论研究结果表明,吸附过程的动力学遵循伪二阶反应,吸附等温线遵循 Freundlich 等温线模型。红外光谱分析结果表明,溶液中的镓离子与树脂中的 C=NOH 相互作用,钒离子与 C=NOH 和 C-NH2 相互作用。钒和镓的协同萃取不仅不会降低树脂对镓的吸附能力,还能有效地回收钒。它为从拜耳母液中回收钒资源提供了一种新方法。
{"title":"Basic Study on the Synergistic Extraction of V and Ga from Bayer Mother Liquor of Alumina Production","authors":"Zewei Wang, Weiguang Zhang, Yang Chen, Hongyu Lu, Liang Yu, Xuejiao Cao, Yibing Li","doi":"10.1007/s40831-024-00806-5","DOIUrl":"https://doi.org/10.1007/s40831-024-00806-5","url":null,"abstract":"<p>The synergistic extraction law of vanadium and gallium from Bayer mother liquor by OH<sup>−</sup> type LSC-600S resin was investigated in this paper. More than 72.21% of vanadium and 74.46% of gallium were adsorbed from Bayer mother liquor, when the conditions were resin of 4 g/L, adsorption time of 100 min, temperature of 70 °C, and stirring rate of 500 r/min. Thermodynamic calculations show that the extraction of vanadium and gallium by the resin proceeds spontaneously, and that an increase in temperature favors the extraction of vanadium and gallium. Theoretical research results showed that, the kinetics of adsorption process followed the pseudo-second-order reaction, and the adsorption isotherm followed the Freundlich isotherm model. The infrared spectrum analysis results showed that, gallium ions in solution interacted with the C=NOH in the resin, and vanadium ions interacted with the C=NOH and C–NH<sub>2</sub>. The synergistic extraction of vanadium and gallium does not reduce the adsorption capacity of the resin for gallium, but also effectively recovers vanadium. It provides a new method for the recovery of vanadium resources from Bayer mother liquor.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"70 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141254208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Simulation Study of Co-injection of Pulverized Coal and Hydrogen in the Tuyere-Raceway Tuyere-Raceway 煤粉和氢气共注数值模拟研究
IF 2.4 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Pub Date : 2024-06-03 DOI: 10.1007/s40831-024-00840-3
Zhenhua Wang, Junhong Zhang, Chenghao Xie, Lihua Gao, Zhijun He, Wenlong Zhan

Hydrogen can replace partially pulverized coal in the blast furnace injection as the clean and high-calorific energy, which can reduce energy consumption and carbon emission in molten iron production. In this study, a discrete phase model is used to describe the complex flow and thermochemical behavior associated with the co-injection of hydrogen and pulverized coal in the raceway. The effect of hydrogen injection rate on the raceway is studied from the aspects of gas velocity, temperature, concentration distribution and coal burnout rate. It can be concluded that with the hydrogen injection rate increases, the gas velocity slightly increases and the gas temperature decreases significantly at the deeper location of the coke bed. With the hydrogen injection rate increase every 10 m3·t−1, the theoretical combustion temperature decreases about 14 K and the amount of gas in the bosh increases about 46.91 m3. When the hydrogen injection rate increased to 50 m3·t−1, the coke ratio is reduced by 8.66%, and the concentration of CO and hydrogen along the axis of tuyere increases by 0.5% and 7.79%, respectively. However, when the hydrogen injection rate exceeds 30 m3·t−1, the pulverized coal burnout rate decreases.

Graphical Abstract

氢气作为清洁的高热值能源,可替代高炉喷吹中的部分煤粉,从而降低铁水生产的能耗和碳排放。本研究采用离散相模型来描述与滚道中氢气和煤粉共喷相关的复杂流动和热化学行为。从气体速度、温度、浓度分布和煤粉燃尽率等方面研究了氢气注入率对滚道的影响。结果表明,随着氢气喷射速率的增加,焦炭层较深位置的煤气速度略有增加,煤气温度明显下降。注氢率每增加 10 m3-t-1,理论燃烧温度降低约 14 K,焦炭床中的煤气量增加约 46.91 m3。当注氢率增加到 50 m3-t-1 时,焦比降低了 8.66%,CO 和氢气沿塔轴线的浓度分别增加了 0.5%和 7.79%。但当注氢量超过 30 m3-t-1 时,煤粉燃尽率下降。
{"title":"Numerical Simulation Study of Co-injection of Pulverized Coal and Hydrogen in the Tuyere-Raceway","authors":"Zhenhua Wang, Junhong Zhang, Chenghao Xie, Lihua Gao, Zhijun He, Wenlong Zhan","doi":"10.1007/s40831-024-00840-3","DOIUrl":"https://doi.org/10.1007/s40831-024-00840-3","url":null,"abstract":"<p>Hydrogen can replace partially pulverized coal in the blast furnace injection as the clean and high-calorific energy, which can reduce energy consumption and carbon emission in molten iron production. In this study, a discrete phase model is used to describe the complex flow and thermochemical behavior associated with the co-injection of hydrogen and pulverized coal in the raceway. The effect of hydrogen injection rate on the raceway is studied from the aspects of gas velocity, temperature, concentration distribution and coal burnout rate. It can be concluded that with the hydrogen injection rate increases, the gas velocity slightly increases and the gas temperature decreases significantly at the deeper location of the coke bed. With the hydrogen injection rate increase every 10 m<sup>3</sup>·t<sup>−1</sup>, the theoretical combustion temperature decreases about 14 K and the amount of gas in the bosh increases about 46.91 m<sup>3</sup>. When the hydrogen injection rate increased to 50 m<sup>3</sup>·t<sup>−1</sup>, the coke ratio is reduced by 8.66%, and the concentration of CO and hydrogen along the axis of tuyere increases by 0.5% and 7.79%, respectively. However, when the hydrogen injection rate exceeds 30 m<sup>3</sup>·t<sup>−1</sup>, the pulverized coal burnout rate decreases.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"8 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141254133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Sustainable Metallurgy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1