首页 > 最新文献

Journal of the Korean Institute of Resources Recycling最新文献

英文 中文
Separation Behavior of Vanadium and Tungsten from the Spent SCR DeNOX Catalyst by Strong Basic Anion Exchange Resin 强碱性阴离子交换树脂从SCR脱氧废催化剂中分离钒钨的行为
Pub Date : 2020-10-01 DOI: 10.7844/KIRR.2020.29.5.38
Seongwoo Heo, J. Jeon, Chul-Joo Kim, K. Chung, Hoseok Jeon, D. Yoon, Ho-Sung Yoon
In this study, factors affecting the adsorption reaction for the separation/recovery of V and W using Lewatit monoplus MP 600, a strong basic anion exchange resin, from the leachate obtained through the soda roasting-water leaching process from the spent SCR DeNOX catalyst investigated and the adsorption mechanism was discussed based on the results. In the case of the mixed solution of V and W, both ions showed a high adsorption ratio at pH 2-6, but the adsorption of W was greatly reduced at pH 8. In the adsorption isothermal experiment, both V and W were fitted well at the Langmuir adsorption isotherm, and the reaction kinetics were fitted well at pseudo-second-order. As a result of conducting an adsorption experiment by adjusting the pH with H2SO4 to remove Si, which inhibits the adsorption of V and W from the leachate, the lowest W adsorption ratio was SCR 탈질 폐촉매로부터 강염기성 음이온교환수지를 이용한 바나듐/텅스텐 분리거동 고찰 39 자원리싸이클링 제 29권 제 5호, 2020 1. 서 론 전 세계적으로 질소산화물(NOx) 배출에 대한 환경규 제가 강화됨에 따라 질소산화물을 저감하기 위한 기술 중 선택적촉매환원법(Selective Catalytic Reduction : SCR) 에 대한 수요가 증가하고 있다. 선택적촉매환원법은 암모 니아(NH3)를 환원제로 이용하여 촉매 상에서 질소산화물 을 N2와 H2O로 분해하여 질소산화물을 제거하는 방법으 로 80~90%의 높은 탈질 효율을 나타내고 운전과 유지보 수가 용이하다는 장점을 갖는다. SCR 탈질촉매는 일반 적으로 TiO2나 Al2O3를 지지체로 사용하며 V2O5, WO3, Fe2O3, CoO, NiO, MnO2, Cr2O3, CuO 등을 활성성분으 로 사용한다. 다양한 종류의 SCR 탈질촉매 중 V2O5WO3/TiO2 촉매는 높은 NOx 전환율을 갖고 SO2의 산화 를 제한하며 운전온도범위도 넓은 장점을 지녀 상용화 촉 매로서 널리 이용되고 있다. SCR 탈질촉매는 2~5년의 작동 수명을 가지는데 고온에서 장시간 운전 시 비표면적 의 감소, 촉매 활성점의 오염, 인 성분 축적 등으로 인해 촉매 성능이 저하되며 비활성화가 일어난다. 비활성화된 촉매는 화학적 처리나 열처리를 통해 재생하여 사용하지 만, 촉매를 반복하여 재생하게 되면 재생 처리에도 불구 하고 결국 촉매의 기능을 하지 못하는 시점에 도달한다. 이처럼 수명이 끝난 촉매는 매립되어 폐기되는데, 폐촉매 에 함유된 바나듐(V)과 텅스텐(W)으로 인해 심각한 토양 오염이 발생하고 희유금속 자원이 버려지는 문제가 발생 한다. 따라서, 촉매와 함께 폐기되는 V, W 등의 희유금속 자원을 회수하여 재활용하는 것은 폐촉매의 폐기로 인해 발생하는 환경적 문제와 희유금속자원 공급의 불안정성 문제를 위한 해결책이 될 것이다. SCR 탈질폐촉매로부터 V과 W를 추출하기 위한 습식 제련법(hydrometallurgy)은 소다 배소법(soda roasting)수침출(water leaching) 공정을 통해 진행되는데, NaOH, Na2CO3, NaCl을 사용하여 V과 W를 수용성인 NaVO3, Na2WO4의 형태로 전환시켜 티타늄과 분리하여 V과 W 만을 선택적으로 추출할 수 있다. 습식제련법으로 얻어진 침출액은 침전법, 용매추출법, 이온교환법을 사용하여 용 액 내 희유금속을 분리할 수 있는데, 침전법은 공정 중 발 생하는 불순물의 분리가 어렵기 때문에 제품의 순도가 낮 아지는 문제점이 있으며, 용매추출법에 의한 분리, 회수 는 pH와 같은 조건에 따라 추출제 선택에 제한이 있고 부 유물과 침전물을 쉽게 형성하여 용액에 함유된 다른 금속 원소들과의 분리가 어려워지는 문제점이 있다. 반면에 이온교환수지를 사용하여 금속이온을 분리하는 경우에는 용액 내 금속 이온의 극성에 따라 이온교환 수지의 선택이 용이하고 금속 이온의 특성에 따른 분리가 가능하므로 용 액 내 미량의 금속 이온의 선택적 분리가 가능하며 비슷한 화학적 특성을 가져 분리가 어려운 금속원소의 분리도 가 능하다. Wu 등은 강염기성 이온교환 수지 Amberlite IRA900 을 통해 강염기 조건에서 SCR 탈질 폐촉매로부터 텅스텐 을 98% 순도로 회수하였다고 보고하였고 Jeon 등은 SCR 탈질 폐촉매로부터 상용 음이온 교환수지 MP600으로 바 나듐을 분리하는 연구를 수행하였다. Hu 등은 강염기 성 이온교환 수지 D296을 통해 pH 7.2에서 바나듐을 선 택적으로 흡착하여 몰리브덴과 분리하는 연구를 수행하 였고 Yeh 등은 SCR 탈질 폐촉매로부터 연속식 이온교환 반응기를 통해 PH 8에서 바나듐과 비소를 분리하였다고 보고하였다. 이온교환수지를 사용해 SCR 탈질 폐촉매로부터 텅스 텐과 바나듐을 회수하는 연구와 특정 pH 조건에서 이온 교환법을 통해 금속을 분리하는 연구는 다양하게 선행되 어 왔지만, SCR 촉매로부터 특정 pH 조건에서 바나듐을 선택적으로 회수함으로써 텅스텐과 분리하는 연구는 보 고되지 않고 있다. 그러므로 본 연구에서는 SCR 탈질폐 촉매 소다배소-수침출 공정을 통해 얻은 침출액으로부터 바나듐과 텅스텐의 분리/회수를 위한 흡착 반응에 영향을 미치는 인자들을 고찰하고, 이를 통하여 흡 ∙탈착 메커니 즘을 규명하고자 하였
本研究研究了影响lewaitt monoplus mp600强碱性阴离子交换树脂对废SCR脱硝催化剂碱水焙烧浸出液分离回收钒、钨吸附反应的因素,并在此基础上对吸附机理进行了探讨。在V和W的混合溶液中,两种离子在pH 2 ~ 6时均表现出较高的吸附率,但在pH 8时对W的吸附量大大降低。在等温吸附实验中,V和W在Langmuir等温线上拟合良好,反应动力学在拟二阶上拟合良好。由于进行吸附实验通过调整pH值与硫酸去除Si,抑制V的吸附和W的渗滤液,W吸附率最低的是可控硅탈질폐촉매로부터강염기성음이온교환수지를이용한바나듐/텅스텐분리거동고찰39자원리싸이클링제29권제호,2020 1。서론전세계적으로질소산화물(NOx)배출에대한환경규제가강화됨에따라질소산화물을저감하기위한기술중선택적촉매환원법(选择性催化还原:可控硅)에대한수요가증가하고있다。선택적촉매환원법은암모니아(NH3)를환원제로이용하여촉매상에서질소산화물을N2와H2O로분해하여질소산화물을제거하는방법으로80 ~ 90%의높은탈질효율을나타내고운전과유지보수가용이하다는장점을갖는다。可控硅탈질촉매는일반적으로二氧化钛나氧化铝를지지체로사용하며V2O5, WO3, Fe2O3,首席运营官,NiO,汇总,Cr2O3,措등을활성성분으로사용한다。다양한종류의可控硅탈질촉매중V2O5WO3 /二氧化钛촉매는높은氮氧化物전환율을갖고二氧化硫의산화를제한하며운전온도범위도넓은장점을지녀상용화촉매로서널리이용되고있다。可控硅탈질촉매는2 ~ 5년의작동수명을가지는데고온에서장시간운전시비표면적의감소,촉매활성점의오염,인성분축적등으로인해촉매성능이저하되며비활성화가일어난다。비활성화된촉매는화학적처리나열처리를통해재생하여사용하지만,촉매를반복하여재생하게되면재생처리에도불구하고결국촉매의기능을하지못하는시점에도달한다。이처럼수명이끝난촉매는매립되어폐기되는데,폐촉매에함유된바나듐(V)과텅스텐(W)으로인해심각한토양오염이발생하고희유금속자원이버려지는문제가발생한다。따라서,촉매와함께폐기되는V, W등의희유금속자원을회수하여재활용하는것은폐촉매의폐기로인해발생하는환경적문제와희유금속자원공급의불안정성문제를위한해결책이될것이다。可控硅탈질폐촉매로부터V과W를추출하기위한습식제련법(湿法冶金)은소다배소법(苏打焙烧)수침출(水浸出)공정을통해진행되는데,氢氧化钠,Na2CO3,氯化钠을사용하여V과W를수용성인NaVO3, Na2WO4의형태로전환시켜티타늄과분리하여V과W만을선택적으로추출할수있다。습식제련법으로얻어진침출액은침전법,용매추출법,이온교환법을사용하여용액내희유금속을분리할수있는데,침전법은공정중발생하는불순물의분리가어렵기때문에제품의순도가낮아지는문제점이있으며,용매추출법에의한분리,회수는pH와같은조건에따라추출제선택에제한이있고부유물과침전물을쉽게형성하여용액에함유된다른금속원소들과의분리가어려워지는문제점이있다。반면에이온교환수지를사용하여금속이온을분리하는경우에는용액내금속이온의극성에따라이온교환수지의선택이용이하고금속이온의특성에따른분리가가능하므로용액내미량의금속이온의선택적분리가가능하며비슷한화학적특성을가져분리가어려운금속원소의분리도가능하다。吴등은강염기성이온교환수지安伯来特IRA900을통해강염기조건에서可控硅탈질폐촉매로부터텅스텐을순98%도로회수하였다고보고하였고全등은可控硅탈질폐촉매로부터상용음이온교환수지MP600으로바나듐을분리하는연구를수행하였다。胡등은강염기성이온교환수지D296을통해pH值7.2에서바나듐을선택적으로흡착하여몰리브덴과분리하는연구를수행하였고叶등은可控硅탈질폐촉매로부터연속식이온교환반응기를통해pH值8에서바나듐과비소를분리하였다고보고하였다。이온교환수지를사용해可控硅탈질폐촉매로부터텅스텐과바나듐을회수하는연구와특정pH조건에서이온교환법을통해금속을분리하는연구는다양하게선행되어왔지만,可控硅촉매로부터특정pH조건에서바나듐을선택적으로회수함으로써텅스텐과분리하는연구는보고되지않고있다。그러므로본연구에서는可控硅탈질폐촉매소다배소-수침출공정을통해얻은침출액으로부터바나듐과텅스텐의분리/회수를위한흡착반응에영향을미치는인자들을고찰하고,이를통하여흡∙탈착메커니즘을규명하고자하였다。如pH 8.5所示。W在强酸性溶液中很难解吸,而V在强酸性和强碱性溶液中都能很好地解吸。
{"title":"Separation Behavior of Vanadium and Tungsten from the Spent SCR DeNOX Catalyst by Strong Basic Anion Exchange Resin","authors":"Seongwoo Heo, J. Jeon, Chul-Joo Kim, K. Chung, Hoseok Jeon, D. Yoon, Ho-Sung Yoon","doi":"10.7844/KIRR.2020.29.5.38","DOIUrl":"https://doi.org/10.7844/KIRR.2020.29.5.38","url":null,"abstract":"In this study, factors affecting the adsorption reaction for the separation/recovery of V and W using Lewatit monoplus MP 600, a strong basic anion exchange resin, from the leachate obtained through the soda roasting-water leaching process from the spent SCR DeNOX catalyst investigated and the adsorption mechanism was discussed based on the results. In the case of the mixed solution of V and W, both ions showed a high adsorption ratio at pH 2-6, but the adsorption of W was greatly reduced at pH 8. In the adsorption isothermal experiment, both V and W were fitted well at the Langmuir adsorption isotherm, and the reaction kinetics were fitted well at pseudo-second-order. As a result of conducting an adsorption experiment by adjusting the pH with H2SO4 to remove Si, which inhibits the adsorption of V and W from the leachate, the lowest W adsorption ratio was SCR 탈질 폐촉매로부터 강염기성 음이온교환수지를 이용한 바나듐/텅스텐 분리거동 고찰 39 자원리싸이클링 제 29권 제 5호, 2020 1. 서 론 전 세계적으로 질소산화물(NOx) 배출에 대한 환경규 제가 강화됨에 따라 질소산화물을 저감하기 위한 기술 중 선택적촉매환원법(Selective Catalytic Reduction : SCR) 에 대한 수요가 증가하고 있다. 선택적촉매환원법은 암모 니아(NH3)를 환원제로 이용하여 촉매 상에서 질소산화물 을 N2와 H2O로 분해하여 질소산화물을 제거하는 방법으 로 80~90%의 높은 탈질 효율을 나타내고 운전과 유지보 수가 용이하다는 장점을 갖는다. SCR 탈질촉매는 일반 적으로 TiO2나 Al2O3를 지지체로 사용하며 V2O5, WO3, Fe2O3, CoO, NiO, MnO2, Cr2O3, CuO 등을 활성성분으 로 사용한다. 다양한 종류의 SCR 탈질촉매 중 V2O5WO3/TiO2 촉매는 높은 NOx 전환율을 갖고 SO2의 산화 를 제한하며 운전온도범위도 넓은 장점을 지녀 상용화 촉 매로서 널리 이용되고 있다. SCR 탈질촉매는 2~5년의 작동 수명을 가지는데 고온에서 장시간 운전 시 비표면적 의 감소, 촉매 활성점의 오염, 인 성분 축적 등으로 인해 촉매 성능이 저하되며 비활성화가 일어난다. 비활성화된 촉매는 화학적 처리나 열처리를 통해 재생하여 사용하지 만, 촉매를 반복하여 재생하게 되면 재생 처리에도 불구 하고 결국 촉매의 기능을 하지 못하는 시점에 도달한다. 이처럼 수명이 끝난 촉매는 매립되어 폐기되는데, 폐촉매 에 함유된 바나듐(V)과 텅스텐(W)으로 인해 심각한 토양 오염이 발생하고 희유금속 자원이 버려지는 문제가 발생 한다. 따라서, 촉매와 함께 폐기되는 V, W 등의 희유금속 자원을 회수하여 재활용하는 것은 폐촉매의 폐기로 인해 발생하는 환경적 문제와 희유금속자원 공급의 불안정성 문제를 위한 해결책이 될 것이다. SCR 탈질폐촉매로부터 V과 W를 추출하기 위한 습식 제련법(hydrometallurgy)은 소다 배소법(soda roasting)수침출(water leaching) 공정을 통해 진행되는데, NaOH, Na2CO3, NaCl을 사용하여 V과 W를 수용성인 NaVO3, Na2WO4의 형태로 전환시켜 티타늄과 분리하여 V과 W 만을 선택적으로 추출할 수 있다. 습식제련법으로 얻어진 침출액은 침전법, 용매추출법, 이온교환법을 사용하여 용 액 내 희유금속을 분리할 수 있는데, 침전법은 공정 중 발 생하는 불순물의 분리가 어렵기 때문에 제품의 순도가 낮 아지는 문제점이 있으며, 용매추출법에 의한 분리, 회수 는 pH와 같은 조건에 따라 추출제 선택에 제한이 있고 부 유물과 침전물을 쉽게 형성하여 용액에 함유된 다른 금속 원소들과의 분리가 어려워지는 문제점이 있다. 반면에 이온교환수지를 사용하여 금속이온을 분리하는 경우에는 용액 내 금속 이온의 극성에 따라 이온교환 수지의 선택이 용이하고 금속 이온의 특성에 따른 분리가 가능하므로 용 액 내 미량의 금속 이온의 선택적 분리가 가능하며 비슷한 화학적 특성을 가져 분리가 어려운 금속원소의 분리도 가 능하다. Wu 등은 강염기성 이온교환 수지 Amberlite IRA900 을 통해 강염기 조건에서 SCR 탈질 폐촉매로부터 텅스텐 을 98% 순도로 회수하였다고 보고하였고 Jeon 등은 SCR 탈질 폐촉매로부터 상용 음이온 교환수지 MP600으로 바 나듐을 분리하는 연구를 수행하였다. Hu 등은 강염기 성 이온교환 수지 D296을 통해 pH 7.2에서 바나듐을 선 택적으로 흡착하여 몰리브덴과 분리하는 연구를 수행하 였고 Yeh 등은 SCR 탈질 폐촉매로부터 연속식 이온교환 반응기를 통해 PH 8에서 바나듐과 비소를 분리하였다고 보고하였다. 이온교환수지를 사용해 SCR 탈질 폐촉매로부터 텅스 텐과 바나듐을 회수하는 연구와 특정 pH 조건에서 이온 교환법을 통해 금속을 분리하는 연구는 다양하게 선행되 어 왔지만, SCR 촉매로부터 특정 pH 조건에서 바나듐을 선택적으로 회수함으로써 텅스텐과 분리하는 연구는 보 고되지 않고 있다. 그러므로 본 연구에서는 SCR 탈질폐 촉매 소다배소-수침출 공정을 통해 얻은 침출액으로부터 바나듐과 텅스텐의 분리/회수를 위한 흡착 반응에 영향을 미치는 인자들을 고찰하고, 이를 통하여 흡 ∙탈착 메커니 즘을 규명하고자 하였","PeriodicalId":17385,"journal":{"name":"Journal of the Korean Institute of Resources Recycling","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89667017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Titanium Dioxide Recovery from Soda-roasted Spent SCR Catalysts through Sulphuric Acid Leaching and Hydrolysis Precipitation 硫酸浸出与水解沉淀法从碱焙烧SCR废催化剂中回收二氧化钛
Pub Date : 2020-10-01 DOI: 10.7844/KIRR.2020.29.5.48
Seunghyun Kim, H. Trinh, Jaeryeong Lee
Sulphuric acid (H2SO4) leaching and hydrolysis were experimented for the recovery of titanum dioxide (TiO2) from the water-leached residue followed by soda-roasting spent SCR catalysts. Sulphuric acid leaching of Ti was carried out with leachate concentration (4~8 M) and the others were fixed (temp.: 70 °C, leaching time: 3 hrs, slurry density: 100 g/L, stirring speed: 500 rpm). For recovering of Ti from the leaching solution, hydrolysis precipitation was conducted at 100 °C for 2 hours in various mixing ratio (leached solution:distilled water) of 1:9 to 5:5. The maximum leachability was reached to 95.2 % in 6 M H2SO4 leachate. on the other hand, the leachability of Si decreased dramatically 91.7 to 3.0 % with an increase of H2SO4 concentration. Hydrolysis precipitation of Ti was proceeded with leaching solution of 8 M H2SO4 with the lowest content of Si. The yield of precipitation increased proportionally with a dilution ratio of leaching solution. Moreover, it increased generally by · Received : August 25, 2020 · Revised : September 24, 2020 · Accepted : September 29, 2020 § Corresponding Author : Jaeryeong Lee (E-mail : jr-lee@kangwon.ac.kr) Department of Energy & Resources Engineering, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Korea cThe Korean Institute of Resources Recycling. All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited. 소다배소 처리된 탈질 폐촉매로부터 황산침출과 가수분해 침전반응에 의한 TiO2의 회수 49 자원리싸이클링 제 29권 제 5호, 2020 1. 서 론 SCR(Selective Catalytic Reduction) 성능의 탈질촉매 는 화력발전소, 소각장 등에서 발생하는 배출가스 중 대 기오염물질인 NOX를 환원제인 암모니아, 요소와 반응시 켜 인체와 환경에 무해한 N2, H2O로 변환시키는데 사용 되는 촉매로써, 조성이 TiO2 70~80 %, WO3 5~12 %, V2O5 1~5 %인 V2O5-WO3/TiO2 type 촉매가 주로 사용되 고 있다. 이러한 탈질촉매는 현장에 설치된 후, 사용시간 이 경과함에 따라 효율이 점차 감소되기 때문에 일반적으 로 20,000 시간을 주기로 재생하거나 새로운 촉매로 교체 하여야 한다. 교체된 사용 후 폐촉매는 조성에 따라 일반 또는 지정폐기물로 분류되어 매립처리 되고 있으며 2014 년 기준 연간 11,000 톤의 폐촉매가 발생되었고, 이 중 9,600 톤이 매립되고, 1,400 톤만이 재활용되었다. 탈질 폐촉매의 재활용에 관한 연구는 탈질 촉매 원료가 격 중 50 % 이상을 차지하는 텅스텐, 바나듐의 회수에 관 한 연구가 주로 진행되었다. 대표적인 재활용연구로는 탈질 폐촉매를 황산으로 침출 후, 침출액으로부터 용매 추출법을 이용한 바나듐을 회수하는 연구, 탈질 폐촉매 를 탄산나트륨(Na2CO3)을 이용하여 배소처리 후, 수침 출에 의한 텅스텐과 바나듐을 회수하는 연구, 탈질 폐촉 매를 수산화나트륨(NaOH)과 혼합 후, 가압침출하여 텅 스텐(Tungsten, W)과 바나듐(Vanadium, V)을 회수하는 연구 등이 실행되었다. 이렇듯 탈질촉매의 재활용 연구는 대부분 W과 V 회수연구에 집중되어 진행되었다. 탈질촉매의 70 % 이상을 차지하는 TiO2는 대표적 백 색 안료로써 백색도, 굴절율, 은폐력, 착색력이 우수하며, 열적, 화학적으로도 안정하여 플라스틱, 도료, 고무, 제지 산업에서 특성향상 첨가제로 널리 이용되고 있다. 또한, 탈질 폐촉매에서 텅스텐, 바나듐 회수를 위해서도 처리 후 발생되는 대량의 잔사(residue)에 대해 환경적으로 적 절한 TiO2의 회수공정 개발이 요구되고 있는 실정이다. 따라서 본 연구에서는 탈질 폐촉매로부터 W, V 회수 를 위해 소다배소(Na2CO3) 후 수침출을 실시한 잔사로부 터, TiO2를 회수하기 위해 황산을 이용한 산침출과 침출 액의 가수분해 침전반응을 실시하여 TiO2 성분의 회수율 과 회수된 TiO2에 대한 순도 및 형상을 평가하였다.
采用硫酸(H2SO4)浸出法和水解法从水浸渣中回收二氧化钛(TiO2),然后对SCR废催化剂进行碱焙烧。硫酸浸出Ti的浸出液浓度为4~8 M,其他浸出液浓度固定(浸出液温度为70℃,浸出时间为3 h,料浆密度为100 g/L,搅拌速度为500 rpm)。为了从浸出液中回收Ti,在100℃下以1:9 ~ 5:5的混合比例(浸出液:蒸馏水)水解沉淀2小时。在6 M H2SO4渗滤液中,浸出率最高达95.2%。另一方面,随着H2SO4浓度的增加,Si的浸出率急剧下降91.7% ~ 3.0%。用8 M H2SO4浸出液水解沉淀Ti,浸出液中Si含量最低。浸出液的稀释比越大,沉淀得率越高。·收稿日期:2020年8月25日·修稿日期:2020年9月24日·收稿日期:2020年9月29日·通讯作者:Jaeryeong Lee (E-mail: jr-lee@kangwon.ac.kr)江原大学能源与资源工程系,1 Gangwondaehak-gil, Chuncheon-si, jiangwon -do 24341, Korea c韩国资源回收研究所。版权所有。这是一篇根据知识共享署名非商业许可(http://creativecommons.org/licenses/by-nc/3.0/)条款发布的开放获取文章,该许可允许在任何媒介上不受限制地进行非商业使用、分发和复制,前提是正确引用原创作品。소다배소처리된탈질폐촉매로부터황산침출과가수분해침전반응에의한二氧化钛의회수49자원리싸이클링제29권제호,2020 1。서론可控硅(选择性催化还原)성능의탈질촉매는화력발전,소소각장등에서발생하는배출가스중대기오염물질인氮氧化物를환원제인암모니아,요소와반응시켜인체와환경에무해한N2, H2O로변환시키는데사용되는촉매로써,조성이二氧化钛70 ~ 80%,WO3 5 ~ 12%, V2O5 1 ~ 5%인V2O5-WO3 /二氧化钛类型촉매가주로사용되고있다。이러한탈질촉매는현장에설치된후,사용시간이경과함에따라효율이점차감소되기때문에일반적으로20000시간을주기로재생하거나새로운촉매로교체하여야한다。교체된사용후폐촉매는조성에따라일반또는지정폐기물로분류되어매립처리되고있으며2014년기준연11000톤간의폐촉매가발생되었고,이중9600톤이매립되고,1400톤만이재활용되었다。탈질폐촉매의재활용에관한연구는탈질촉매원료가격중50%이상을차지하는텅스텐,바나듐의회수에관한연구가주로진행되었다。대표적인재활용연구로는탈질폐촉매를황산으로침출후,침출액으로부터용매추출법을이용한바나듐을회수하는연구,탈질폐촉매를탄산나트륨(Na2CO3)을이용하여배소처리후,수침출에의한텅스텐과바나듐을회수하는연구,탈질폐촉매를수산화나트륨(氢氧化钠)과혼합,후가압침출하여텅스텐(钨、W)과바나듐(钒(V)을회수하는연구등이실행되었다。大数据:大数据:大数据:大数据:大数据:大数据:大数据:大数据:大数据:大数据탈질촉매70%의이상을차지하는二氧化钛는대표적백색안료로써백색도,굴절율,은폐력,착색력이우수하며,열적,화학적으로도안정하여플라스틱,도료,고무,제지산업에서특성향상첨가제로널리이용되고있다。또한,탈질폐촉매에서텅스텐,바나듐회수를위해서도처리후발생되는대량의잔사(残渣)에대해환경적으로적절한二氧化钛의회수공정개발이요구되고있는실정이다。따라서본연구에서는탈질폐촉매로부터W, V회수를위해소다배소(Na2CO3)후수침출을실시한잔사로부터,二氧化钛를회수하기위해황산을이용한산침출과침출액의가수분해침전반응을실시하여二氧化钛성분의회수율과회수된二氧化钛에대한순도및형상을평가하였다。
{"title":"Titanium Dioxide Recovery from Soda-roasted Spent SCR Catalysts through Sulphuric Acid Leaching and Hydrolysis Precipitation","authors":"Seunghyun Kim, H. Trinh, Jaeryeong Lee","doi":"10.7844/KIRR.2020.29.5.48","DOIUrl":"https://doi.org/10.7844/KIRR.2020.29.5.48","url":null,"abstract":"Sulphuric acid (H2SO4) leaching and hydrolysis were experimented for the recovery of titanum dioxide (TiO2) from the water-leached residue followed by soda-roasting spent SCR catalysts. Sulphuric acid leaching of Ti was carried out with leachate concentration (4~8 M) and the others were fixed (temp.: 70 °C, leaching time: 3 hrs, slurry density: 100 g/L, stirring speed: 500 rpm). For recovering of Ti from the leaching solution, hydrolysis precipitation was conducted at 100 °C for 2 hours in various mixing ratio (leached solution:distilled water) of 1:9 to 5:5. The maximum leachability was reached to 95.2 % in 6 M H2SO4 leachate. on the other hand, the leachability of Si decreased dramatically 91.7 to 3.0 % with an increase of H2SO4 concentration. Hydrolysis precipitation of Ti was proceeded with leaching solution of 8 M H2SO4 with the lowest content of Si. The yield of precipitation increased proportionally with a dilution ratio of leaching solution. Moreover, it increased generally by · Received : August 25, 2020 · Revised : September 24, 2020 · Accepted : September 29, 2020 § Corresponding Author : Jaeryeong Lee (E-mail : jr-lee@kangwon.ac.kr) Department of Energy & Resources Engineering, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Korea cThe Korean Institute of Resources Recycling. All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited. 소다배소 처리된 탈질 폐촉매로부터 황산침출과 가수분해 침전반응에 의한 TiO2의 회수 49 자원리싸이클링 제 29권 제 5호, 2020 1. 서 론 SCR(Selective Catalytic Reduction) 성능의 탈질촉매 는 화력발전소, 소각장 등에서 발생하는 배출가스 중 대 기오염물질인 NOX를 환원제인 암모니아, 요소와 반응시 켜 인체와 환경에 무해한 N2, H2O로 변환시키는데 사용 되는 촉매로써, 조성이 TiO2 70~80 %, WO3 5~12 %, V2O5 1~5 %인 V2O5-WO3/TiO2 type 촉매가 주로 사용되 고 있다. 이러한 탈질촉매는 현장에 설치된 후, 사용시간 이 경과함에 따라 효율이 점차 감소되기 때문에 일반적으 로 20,000 시간을 주기로 재생하거나 새로운 촉매로 교체 하여야 한다. 교체된 사용 후 폐촉매는 조성에 따라 일반 또는 지정폐기물로 분류되어 매립처리 되고 있으며 2014 년 기준 연간 11,000 톤의 폐촉매가 발생되었고, 이 중 9,600 톤이 매립되고, 1,400 톤만이 재활용되었다. 탈질 폐촉매의 재활용에 관한 연구는 탈질 촉매 원료가 격 중 50 % 이상을 차지하는 텅스텐, 바나듐의 회수에 관 한 연구가 주로 진행되었다. 대표적인 재활용연구로는 탈질 폐촉매를 황산으로 침출 후, 침출액으로부터 용매 추출법을 이용한 바나듐을 회수하는 연구, 탈질 폐촉매 를 탄산나트륨(Na2CO3)을 이용하여 배소처리 후, 수침 출에 의한 텅스텐과 바나듐을 회수하는 연구, 탈질 폐촉 매를 수산화나트륨(NaOH)과 혼합 후, 가압침출하여 텅 스텐(Tungsten, W)과 바나듐(Vanadium, V)을 회수하는 연구 등이 실행되었다. 이렇듯 탈질촉매의 재활용 연구는 대부분 W과 V 회수연구에 집중되어 진행되었다. 탈질촉매의 70 % 이상을 차지하는 TiO2는 대표적 백 색 안료로써 백색도, 굴절율, 은폐력, 착색력이 우수하며, 열적, 화학적으로도 안정하여 플라스틱, 도료, 고무, 제지 산업에서 특성향상 첨가제로 널리 이용되고 있다. 또한, 탈질 폐촉매에서 텅스텐, 바나듐 회수를 위해서도 처리 후 발생되는 대량의 잔사(residue)에 대해 환경적으로 적 절한 TiO2의 회수공정 개발이 요구되고 있는 실정이다. 따라서 본 연구에서는 탈질 폐촉매로부터 W, V 회수 를 위해 소다배소(Na2CO3) 후 수침출을 실시한 잔사로부 터, TiO2를 회수하기 위해 황산을 이용한 산침출과 침출 액의 가수분해 침전반응을 실시하여 TiO2 성분의 회수율 과 회수된 TiO2에 대한 순도 및 형상을 평가하였다.","PeriodicalId":17385,"journal":{"name":"Journal of the Korean Institute of Resources Recycling","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81323196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Improvement Plan for Calculation of Financial Contributions to Treatment of Waste Electrical and Electronic Equipments 废旧电器电子设备处理经费分摊计算改进方案
Pub Date : 2020-08-01 DOI: 10.7844/KIRR.2020.29.4.45
Hansu Kim, Dae-Bong Kim
{"title":"Improvement Plan for Calculation of Financial Contributions to Treatment of Waste Electrical and Electronic Equipments","authors":"Hansu Kim, Dae-Bong Kim","doi":"10.7844/KIRR.2020.29.4.45","DOIUrl":"https://doi.org/10.7844/KIRR.2020.29.4.45","url":null,"abstract":"","PeriodicalId":17385,"journal":{"name":"Journal of the Korean Institute of Resources Recycling","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81245094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production Technology of Titanium by Kroll Process Kroll法生产钛的工艺
Pub Date : 2020-08-01 DOI: 10.7844/KIRR.2020.29.4.3
H. Sohn
Titanium sponge is industrially produced by the Kroll process. In order to understand the importance of the emerging smelting and recycling process, it is necessary to review the conventional production process of titanium. Therefore this paper provides a general overview of the conventional titanium manufacturing system mainly by the Kroll process. The Kroll process can be divided into four sub-processes as follows: (1) Chlorination of raw TiO2 with coke, by the fluidized bed chlorination or molten salt chlorination (2) Magnesium reduction of TiCl4 and vacuum distillation of MgCl2 and Mg by reverse U-type or I-type with reductiondistillation integrated retorts (3) Electrolysis process of MgCl2 by monopolar cells or multipolar cells to electrolyze into chlorine gas and Mg. (4) Crushing and melting process in which sponge titanium is crushed and then melted in a vacuum arc furnace or an electron beam furnace Although the apparatus and procedures have improved over the past 80 years, the Kroll process is the costly and time-consuming batch operation for the reduction of TiCl4 and the separation of MgCl2.
海绵钛采用克罗尔法工业化生产。为了了解新兴的冶炼和回收工艺的重要性,有必要对传统的钛生产工艺进行回顾。因此,本文概述了以Kroll工艺为主的传统钛制造系统。Kroll工艺可分为4个子过程:(1)原料TiO2用焦炭氯化,采用流化床氯化或熔盐氯化;(2)TiCl4的镁还原和MgCl2和Mg的真空蒸馏,采用反u型或i型还原蒸馏集成釜;(3)MgCl2的单极电池或多极电池电解,电解成氯气和Mg。(4)粉碎熔融工艺,将海绵钛粉碎后在真空电弧炉或电子束炉中熔化,虽然在过去的80年里,设备和程序都有了改进,但Kroll工艺对于还原TiCl4和分离MgCl2来说是昂贵且耗时的批量操作。
{"title":"Production Technology of Titanium by Kroll Process","authors":"H. Sohn","doi":"10.7844/KIRR.2020.29.4.3","DOIUrl":"https://doi.org/10.7844/KIRR.2020.29.4.3","url":null,"abstract":"Titanium sponge is industrially produced by the Kroll process. In order to understand the importance of the emerging smelting and recycling process, it is necessary to review the conventional production process of titanium. Therefore this paper provides a general overview of the conventional titanium manufacturing system mainly by the Kroll process. The Kroll process can be divided into four sub-processes as follows: (1) Chlorination of raw TiO2 with coke, by the fluidized bed chlorination or molten salt chlorination (2) Magnesium reduction of TiCl4 and vacuum distillation of MgCl2 and Mg by reverse U-type or I-type with reductiondistillation integrated retorts (3) Electrolysis process of MgCl2 by monopolar cells or multipolar cells to electrolyze into chlorine gas and Mg. (4) Crushing and melting process in which sponge titanium is crushed and then melted in a vacuum arc furnace or an electron beam furnace Although the apparatus and procedures have improved over the past 80 years, the Kroll process is the costly and time-consuming batch operation for the reduction of TiCl4 and the separation of MgCl2.","PeriodicalId":17385,"journal":{"name":"Journal of the Korean Institute of Resources Recycling","volume":"98 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89898151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Status and Future Prospects for Plastics Recycling 塑料回收利用的现状与展望
Pub Date : 2020-08-01 DOI: 10.7844/KIRR.2020.29.4.31
Young-Ju Cho, Bong-Gyoo Cho
Recently, plastic recycling has emerged as a social issue, and its importance is increasing. Therefore, this article reviewed the current status and the future directions of domestic plastic recycling. Plastic recycling is major economic and social problems not only in South Korea but also worldwide and is being treated as an important factor for protecting the environment and for sustainability in the next generation. In particular, China, which has been dealing with a large amount of plastic waste generated around the world, has banned importing plastic waste, therefore, other countries have faced the problem of recycling plastics in their countries. In South Korea, the landfill and incineration of the waste are becoming more difficult by the Framework Act on Resources Circulation, therefore, the recycling and reuse of plastics are a very important.
最近,塑料回收已经成为一个社会问题,它的重要性越来越大。因此,本文综述了国内塑料回收利用的现状及未来发展方向。塑料回收不仅在韩国,而且在世界范围内都是一个重大的经济和社会问题,被视为保护环境和下一代可持续发展的重要因素。特别是一直在处理世界各地产生的大量塑料垃圾的中国,禁止进口塑料垃圾,因此,其他国家也面临着在本国回收塑料的问题。在韩国,由于《资源循环框架法》的实施,垃圾的填埋和焚烧变得更加困难,因此,塑料的回收再利用是一个非常重要的问题。
{"title":"Status and Future Prospects for Plastics Recycling","authors":"Young-Ju Cho, Bong-Gyoo Cho","doi":"10.7844/KIRR.2020.29.4.31","DOIUrl":"https://doi.org/10.7844/KIRR.2020.29.4.31","url":null,"abstract":"Recently, plastic recycling has emerged as a social issue, and its importance is increasing. Therefore, this article reviewed the current status and the future directions of domestic plastic recycling. Plastic recycling is major economic and social problems not only in South Korea but also worldwide and is being treated as an important factor for protecting the environment and for sustainability in the next generation. In particular, China, which has been dealing with a large amount of plastic waste generated around the world, has banned importing plastic waste, therefore, other countries have faced the problem of recycling plastics in their countries. In South Korea, the landfill and incineration of the waste are becoming more difficult by the Framework Act on Resources Circulation, therefore, the recycling and reuse of plastics are a very important.","PeriodicalId":17385,"journal":{"name":"Journal of the Korean Institute of Resources Recycling","volume":"71 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91382780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Aggregation of Thin Copper Wire by Ball Milling Treatment 球磨处理细铜丝的团聚
Pub Date : 2020-08-01 DOI: 10.7844/KIRR.2020.29.4.67
Jisu Hwang, S. S. Cho, Chang Jun Seong, Kyoungkeun Yoo
Recycling processes of spent copper wires cosisnt of several steps of cutting and chopping processes for peeling covering materials followed by gravity separation processes, where copper is recovered. Because copper thin wires could be lost during further recycling processes, the wire may need to be further treated. In the present study, the copper thin wire was treated with ball milling to prevent the loss. Since the aggregation of the copper wire could be formed by bending and entangling the copper wire each other, the degree of flexion of the copper wire was measured after ball milling. When the 0.5 cm and 3 cm copper wires were used, the 0.5 cm copper wire was not bent and the 3 cm copper wires were aggregated regardless of the ball addition. When the 1 cm and 2 cm copper wires were used, the degree of flexion was remarkable when the balls were added. In the tests using 2 cm copper wires, the aggregation ratio of the copper wire gradually increased with the amount of the 20 mm alumina ball, and when 200 ml of 30 mm alumina ball was used, the aggregation ratio increased to 89.29 %, but after increasing the ball amount further, the aggregation ratio decreased. Thus, it is expected that the loss of the copper wire could be reducedif when the copper thin wire is treated with ball milling by the aggregation of copper thin wires.
废铜线的回收过程包括切割和切碎剥离覆盖材料的几个步骤,然后是重分离过程,其中铜被回收。由于铜细导线在进一步的回收过程中可能会丢失,因此导线可能需要进一步处理。本研究采用球磨法处理铜细丝,以防止损耗。由于铜线相互弯曲和缠绕会形成铜线的聚集,所以球磨后测量铜线的弯曲程度。当使用0.5 cm和3cm的铜线时,无论是否添加球,0.5 cm的铜线都不弯曲,3cm的铜线都聚集。当使用1厘米和2厘米的铜线时,加入球后弯曲程度显著。在使用2 cm铜丝的试验中,随着20 mm氧化铝球用量的增加,铜丝的聚集率逐渐增加,当使用200 ml 30 mm氧化铝球时,聚集率增加到89.29%,但进一步增加球量后,聚集率下降。因此,对铜细线进行球磨处理,通过铜细线的聚集可以减少铜细线的损耗。
{"title":"Aggregation of Thin Copper Wire by Ball Milling Treatment","authors":"Jisu Hwang, S. S. Cho, Chang Jun Seong, Kyoungkeun Yoo","doi":"10.7844/KIRR.2020.29.4.67","DOIUrl":"https://doi.org/10.7844/KIRR.2020.29.4.67","url":null,"abstract":"Recycling processes of spent copper wires cosisnt of several steps of cutting and chopping processes for peeling covering materials followed by gravity separation processes, where copper is recovered. Because copper thin wires could be lost during further recycling processes, the wire may need to be further treated. In the present study, the copper thin wire was treated with ball milling to prevent the loss. Since the aggregation of the copper wire could be formed by bending and entangling the copper wire each other, the degree of flexion of the copper wire was measured after ball milling. When the 0.5 cm and 3 cm copper wires were used, the 0.5 cm copper wire was not bent and the 3 cm copper wires were aggregated regardless of the ball addition. When the 1 cm and 2 cm copper wires were used, the degree of flexion was remarkable when the balls were added. In the tests using 2 cm copper wires, the aggregation ratio of the copper wire gradually increased with the amount of the 20 mm alumina ball, and when 200 ml of 30 mm alumina ball was used, the aggregation ratio increased to 89.29 %, but after increasing the ball amount further, the aggregation ratio decreased. Thus, it is expected that the loss of the copper wire could be reducedif when the copper thin wire is treated with ball milling by the aggregation of copper thin wires.","PeriodicalId":17385,"journal":{"name":"Journal of the Korean Institute of Resources Recycling","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90798142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Synthesis of Na Compounds from Sodium Concentrated Solution Using Carbonation and Cryo-crystallization 用碳酸化和低温结晶法从浓钠溶液中合成Na化合物
Pub Date : 2020-08-01 DOI: 10.7844/KIRR.2020.29.4.58
Seungwoo Lee, S. Chae, J. Bang
Carbonation (step I) and cryo-crystallization (crystallization at low temperature) (step II) were performed to synthesize Na compounds from sodium concentrated solution. In the step 1, the solubility and pH of carbon dioxide (95 wt.%) affecting carbonation could be changed by the variation of reaction temperature. The step II was performed at 2 °C after carbonation. The injection of carbon dioxide was carried out twice for the stable production and the saturated solubility of carbonate ions in solution. Firstly, we tried to inject CO2 for controlling the solubility of CO2 by changing the reaction temperature from 35 °C to 10 °C, and the second injection was aimed at 10 °C for inducing nucleation of Na compound through carbonation after NaCl solution addition. In the cryo-crystallization step, the crystal growth of Na compounds could be induced by slowing the carbonation rate through reaction temperature change from 10 °C to 2 °C. In this study, the effect on NaOH concentration was examined and the purity of Na compound was increased when 2M NaOH was used. In addition, the synthesized Na compounds were mostly rod-shaped and consisted of sodium carbonate or sodium carbonate with monohydrate.
以浓钠溶液为原料,经碳化(步骤一)和低温结晶(步骤二)制备Na化合物。在步骤1中,二氧化碳(95 wt.%)的溶解度和pH值可以通过反应温度的变化而改变。第二步碳化后在2°C下进行。为了稳定生产和碳酸盐离子在溶液中的饱和溶解度,进行了两次二氧化碳的注入。首先,我们尝试注入CO2,通过将反应温度从35℃改变到10℃来控制CO2的溶解度,第二次注入的目标是在10℃下加入NaCl溶液后通过碳化诱导Na化合物成核。在低温结晶阶段,通过将反应温度从10℃降低到2℃,减缓碳化速率,可以诱导Na化合物的晶体生长。本研究考察了使用2M NaOH对NaOH浓度的影响,提高了Na化合物的纯度。此外,合成的Na化合物多为棒状,由碳酸钠或碳酸钠与一水化合物组成。
{"title":"Synthesis of Na Compounds from Sodium Concentrated Solution Using Carbonation and Cryo-crystallization","authors":"Seungwoo Lee, S. Chae, J. Bang","doi":"10.7844/KIRR.2020.29.4.58","DOIUrl":"https://doi.org/10.7844/KIRR.2020.29.4.58","url":null,"abstract":"Carbonation (step I) and cryo-crystallization (crystallization at low temperature) (step II) were performed to synthesize Na compounds from sodium concentrated solution. In the step 1, the solubility and pH of carbon dioxide (95 wt.%) affecting carbonation could be changed by the variation of reaction temperature. The step II was performed at 2 °C after carbonation. The injection of carbon dioxide was carried out twice for the stable production and the saturated solubility of carbonate ions in solution. Firstly, we tried to inject CO2 for controlling the solubility of CO2 by changing the reaction temperature from 35 °C to 10 °C, and the second injection was aimed at 10 °C for inducing nucleation of Na compound through carbonation after NaCl solution addition. In the cryo-crystallization step, the crystal growth of Na compounds could be induced by slowing the carbonation rate through reaction temperature change from 10 °C to 2 °C. In this study, the effect on NaOH concentration was examined and the purity of Na compound was increased when 2M NaOH was used. In addition, the synthesized Na compounds were mostly rod-shaped and consisted of sodium carbonate or sodium carbonate with monohydrate.","PeriodicalId":17385,"journal":{"name":"Journal of the Korean Institute of Resources Recycling","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83645704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective Extraction of Cobalt and Nickel in the Presence of Magnesium from Sulphate Solutions by Versatic Acid 10 在镁存在下,Versatic酸选择性萃取硫酸盐溶液中的钴和镍[j]
Pub Date : 2020-08-01 DOI: 10.7844/KIRR.2020.29.4.51
Yeon-Chul Cho, Jae-Woo Ahn, Jae young Lee
Separation of Co and Ni over Mg from the sulfuric acid solutions using Cyanex272, PC88A and Versatic acid 10 as an extractant was carried out. From the comparative studies about the extraction behavior of Co, Ni and Mg, Versatic acid 10 was superior to Cyanex272 and PC88A for the selective extraction of cobalt and nickel from the mixed solutions. About 98% of Ni and Co were extracted at equilibrium pH 7.0 and less than 5% of Mg was co-extracted by Versatic acid 10. McCabe-Thiele diagram indicated two stages requirement for Co and Ni extraction by 10% Versatic acid 10 at pH 7.0 and phase ratio (A/O) of 2.0. The loaded Co and Ni in organic phase was stripped effectively the sulfuric acid concentration above 70 g/L. 99.78% of cobalt and 98.42% of nickel were stripped.
以氰ex272、PC88A和Versatic acid 10为萃取剂,从硫酸溶液中分离Co和Ni / Mg。从Co、Ni和Mg的萃取行为对比研究来看,Versatic acid 10在选择性萃取混合溶液中的钴和镍方面优于Cyanex272和PC88A。在平衡pH 7.0下,约98%的Ni和Co被萃取,少于5%的Mg被Versatic acid 10共萃取。McCabe-Thiele图表明,在pH 7.0、A/O比2.0条件下,10% Versatic酸10萃取Co和Ni需要两个阶段。当硫酸浓度大于70 g/L时,有机相中负载的Co和Ni被有效剥离。99.78%的钴和98.42%的镍被剥离。
{"title":"Selective Extraction of Cobalt and Nickel in the Presence of Magnesium from Sulphate Solutions by Versatic Acid 10","authors":"Yeon-Chul Cho, Jae-Woo Ahn, Jae young Lee","doi":"10.7844/KIRR.2020.29.4.51","DOIUrl":"https://doi.org/10.7844/KIRR.2020.29.4.51","url":null,"abstract":"Separation of Co and Ni over Mg from the sulfuric acid solutions using Cyanex272, PC88A and Versatic acid 10 as an extractant was carried out. From the comparative studies about the extraction behavior of Co, Ni and Mg, Versatic acid 10 was superior to Cyanex272 and PC88A for the selective extraction of cobalt and nickel from the mixed solutions. About 98% of Ni and Co were extracted at equilibrium pH 7.0 and less than 5% of Mg was co-extracted by Versatic acid 10. McCabe-Thiele diagram indicated two stages requirement for Co and Ni extraction by 10% Versatic acid 10 at pH 7.0 and phase ratio (A/O) of 2.0. The loaded Co and Ni in organic phase was stripped effectively the sulfuric acid concentration above 70 g/L. 99.78% of cobalt and 98.42% of nickel were stripped.","PeriodicalId":17385,"journal":{"name":"Journal of the Korean Institute of Resources Recycling","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74637969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Current Status and Utilization Technology of End-of-Life Photovoltaic Modules 报废光伏组件现状及利用技术
Pub Date : 2020-08-01 DOI: 10.7844/KIRR.2020.29.4.15
Jaiyoung Cho, Areum Park, H. Yun, Yun-Su Jun, Joon-Soo Kim
Recently, it is increasing a amount of installed solar-cell rapidly, and end-of-life photovoltaic(ELP) modules are generated in according to the reduction of cell efficiency largely. Recycling of ELP modules are begun at an advanced nation already, but there are bring about environmental contamination and resource recovery problems owing to not treated ELP modules because of economic cost completely. First of all, there were researched basic study for treatment conditions of used solar cell inspection, dismantling of aluminum frame, crushing / grinding & separation of tempered glass, removal of back sheet & EVA film, leaching & precipitation recovery of valuable metals and treatment of waste water. Therefore, we establish optimum conditions through carried out of designed apparatus, installation of equipment, test operation & trouble shooting in scale of 1ton/day pilot plant test. Following to economic review, it does have the economic efficiency until to the case of tempered glass recovery, but does not have the economic value in case of total processes until to recover the valuable metals. However, there are guaranteed economic value if we are gained a large amount of the expenses through EPR supported system. It was confirmed the commercialized possibility of ELP modules recycling if there were established on the collecting ELP modules, reusing criteria, economical technology, enactment of directives and enforcement of EPR supported system efficiently.
近年来,太阳能电池的安装量在迅速增加,而报废光伏(ELP)组件的生产在很大程度上是根据电池效率的降低而产生的。目前,发达国家已经开始了对ELP组件的回收利用,但由于经济成本的原因,ELP组件没有得到完全的处理,带来了环境污染和资源回收问题。首先,对废旧太阳能电池的处理条件进行了基础研究,包括检查、铝骨架拆解、钢化玻璃破碎/研磨/分离、背板和EVA膜的去除、有价金属的浸出与沉淀回收、废水处理等。因此,我们通过设计设备,安装设备,试运行和故障排除,在1吨/天的中试规模上确定了最佳条件。从经济角度来看,在钢化玻璃回收之前,它确实具有经济效益,但在回收有价金属之前,它不具有全工序的经济价值。然而,如果我们通过EPR支持系统获得大量的费用,则有保证的经济价值。通过对ELP模块的收集、再利用标准、经济技术、指令的制定和EPR支持系统的有效实施,证实了ELP模块回收商业化的可能性。
{"title":"Current Status and Utilization Technology of End-of-Life Photovoltaic Modules","authors":"Jaiyoung Cho, Areum Park, H. Yun, Yun-Su Jun, Joon-Soo Kim","doi":"10.7844/KIRR.2020.29.4.15","DOIUrl":"https://doi.org/10.7844/KIRR.2020.29.4.15","url":null,"abstract":"Recently, it is increasing a amount of installed solar-cell rapidly, and end-of-life photovoltaic(ELP) modules are generated in according to the reduction of cell efficiency largely. Recycling of ELP modules are begun at an advanced nation already, but there are bring about environmental contamination and resource recovery problems owing to not treated ELP modules because of economic cost completely. First of all, there were researched basic study for treatment conditions of used solar cell inspection, dismantling of aluminum frame, crushing / grinding & separation of tempered glass, removal of back sheet & EVA film, leaching & precipitation recovery of valuable metals and treatment of waste water. Therefore, we establish optimum conditions through carried out of designed apparatus, installation of equipment, test operation & trouble shooting in scale of 1ton/day pilot plant test. Following to economic review, it does have the economic efficiency until to the case of tempered glass recovery, but does not have the economic value in case of total processes until to recover the valuable metals. However, there are guaranteed economic value if we are gained a large amount of the expenses through EPR supported system. It was confirmed the commercialized possibility of ELP modules recycling if there were established on the collecting ELP modules, reusing criteria, economical technology, enactment of directives and enforcement of EPR supported system efficiently.","PeriodicalId":17385,"journal":{"name":"Journal of the Korean Institute of Resources Recycling","volume":"112 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86288563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Analysis of Global Trends on Resource Productivity and Its Promotion Strategy 全球资源生产率趋势分析及其提升策略
Pub Date : 2020-06-30 DOI: 10.7844/KIRR.2020.29.3.24
Hong-Yoon Kang
Management of resource productivity is important for the reduction of natural resources and energy consumption. This is closely linked to circular economy which has recently been stressed worldwidely. Resource productivity is a key indicator which is to be managed in various industry sectors. Especially Korea which is heavily dependent on the natural resources import from overseas needs to give attention to this point. Nevertheless resource productivity related domestic researches and policies are extremely rare. This paper thus presents trends on resources productivities and their management policies of European countries and OECD G7 countries compared to the situation of Korea. In addition, the decoupling phenomenon of DMC (domestic material consumption) and GDP of Europe is analyzed and the resource productivity promotion strategy of Korea is proposed.
管理资源生产力对于减少自然资源和能源消耗是重要的。这与最近全世界都在强调的循环经济密切相关。资源生产率是各工业部门管理的关键指标。特别是依赖海外资源进口的韩国,更有必要关注这一点。然而,国内与资源生产力相关的研究和政策却极为罕见。因此,本文以韩国为例,介绍了欧洲国家和经合组织(OECD)七国集团(G7)国家的资源生产率和管理政策的发展趋势。此外,分析了欧洲国内物质消费与GDP的脱钩现象,并提出了韩国的资源生产率提升战略。
{"title":"Analysis of Global Trends on Resource Productivity and Its Promotion Strategy","authors":"Hong-Yoon Kang","doi":"10.7844/KIRR.2020.29.3.24","DOIUrl":"https://doi.org/10.7844/KIRR.2020.29.3.24","url":null,"abstract":"Management of resource productivity is important for the reduction of natural resources and energy consumption. This is closely linked to circular economy which has recently been stressed worldwidely. Resource productivity is a key indicator which is to be managed in various industry sectors. Especially Korea which is heavily dependent on the natural resources import from overseas needs to give attention to this point. Nevertheless resource productivity related domestic researches and policies are extremely rare. This paper thus presents trends on resources productivities and their management policies of European countries and OECD G7 countries compared to the situation of Korea. In addition, the decoupling phenomenon of DMC (domestic material consumption) and GDP of Europe is analyzed and the resource productivity promotion strategy of Korea is proposed.","PeriodicalId":17385,"journal":{"name":"Journal of the Korean Institute of Resources Recycling","volume":"60 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84924775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of the Korean Institute of Resources Recycling
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1