Background: To evaluate the effect of pre-sleep protein supplementation after an acute bout of evening resistance training on next day performance and recovery the following day in physically active men.
Methods: Eighteen resistance trained men performed a single bout of resistance exercise then received either a pre-sleep protein (PRO) supplement containing 40 g of casein protein (PRO; n = 10; mean ± SD; age = 24 ± 4 yrs; height = 1.81 ± 0.08 m; weight = 84.9 ± 9.5 kg) or a non-caloric, flavor matched placebo (PLA; n = 8; age = 28 ± 10 yrs; height = 1.81 ± 0.07 m; weight = 86.7 ± 11.0 kg) 30 min before sleep (1 h after a standard recovery drink). Blood samples were obtained pre-exercise and the following morning (+12-h) to measure creatine kinase and C-reactive protein. Visual analog scales were utilized to assess perceived pain, hunger, and recovery. One-repetition maximum (1RM) tests for barbell bench press and squat were performed pre-exercise and the following morning (+12-h). Statistical analysis was performed using SPSS (V.23) and p ≤ 0.05 was considered statistically significant.
Results: There were no significant differences between the groups in next morning performance or muscle damage biomarkers. However, pre-sleep PRO resulted in a lower perception of hunger that approached significance the following morning when compared to PLA (PRO:43.6 ± 31.2, PLA: 69.4 ± 2.22; 95% C.I. = -53.6, 2.0; p = 0.07; d = 0.95).
Conclusions: Following an evening bout of exercise, pre-sleep PRO did not further improve next morning muscle damage biomarkers or maximal strength performance in resistance trained men compared to a non-caloric PLA. However, there may be implications for lower perceived hunger the next morning with pre-sleep PRO consumption compared to PLA.
Background: Exercise modality differentially alters body composition and physical performance. Metabolic changes underlying these outcomes can be tracked through assessment of circulating metabolites. Here, global responses to an acute bout of aerobic or anaerobic exercise were compared in the serum of male and female subjects using a discovery-based metabolomics platform.
Methods: On separate days, 40 healthy, active participants completed 45 min of aerobic cycling or resistance exercise, and blood samples were collected at rest, immediately after (T1) and 1 hour post-exercise (T2) to examine the serum metabolomic landscape.
Results: The two exercise metabolomes appeared more similar than different in this healthy cohort. Overall, metabolomic signatures of both exercise modalities were markedly altered from rest at T1, and returned toward baseline by T2. Metabolomic perturbations at T1 and the T1-T2 rate of recovery post-exercise were greater following aerobic cycling than resistance exercise. Shared signatures included elevations in purine metabolism, substrate catabolism and mobilization, and inflammatory signaling. Aerobic exercise resulted in greater substrate diversity and use of fatty acids, whereas resistance exercise displayed higher purine turnover and glycolytic flux.
Discussion: Individual metabolite differences between conditions were seen in magnitude but not direction. Metabolomic signatures of the exercise responses appeared fairly robust across exercise modalities. An initial perturbation and subsequent shift toward recovery by an hour post-exercise defined the signature in our healthy cohort. The expedited recovery following aerobic cycling may be explained by globally elevated lipid metabolism.
Objective: This study examined the effects of short-term betaine supplementation on muscle endurance, plasma lactate, testosterone and cortisol levels, and the testosterone to cortisol (T/C) ratio in response to acute resistance exercise (RE).
Method: Using a double-blind, crossover study design, 10 handball players (age ± SD = 16 ± 1 yrs) without prior-structured RE experience performed a high-intensity RE session (leg press followed by bench press; 5 sets to volitional fatigue using 80% baseline 1 repetition maximum (1RM)), before and after 14 days of either placebo (maltodextrin) or betaine (2.5 g·d-1) supplementation. A 30-day washout period separated each treatment. 48 h prior to testing sessions, participants recorded their food intake and did not perform strenuous exercise. Venous blood was sampled before supplementation, and before and after each RE session.
Results: After betaine supplementation, participants performed more repetitions (p < 0.001) during the leg press (Betaine: 35.8 ± 4.3; Placebo: 24.8 ± 3.6, Cohen's d = 2.77) and bench press (Betaine: 36.3 ± 2.6; Placebo: 26.1 ± 3.5, Cohen's d = 3.34). Betaine resulted in lower post-exercise cortisol (Betaine: 7.6 ± 1.7; Placebo: 13 ± 3.4 µg.dL-1, p = 0.003, generalized eta squared ( ) = 0.49) and lactate (Betaine: 5.2 ± 0.3; Placebo: 6 ± 0.3 mmol.L-1, p < 0.001, = 0.96) and higher total testosterone (Betaine: 15.2 ± 2.2; Placebo: 8.7 ± 1.7 ng.mL-1, p < 0.001, = 0.87) and T/C ratio (Betaine: 0.21 ± 0.05; Placebo: 0.07 ± 0.02, p < 0.001, = 0.82).
Conclusions: Two weeks of betaine supplementation improved upper- and lower-body muscle endurance and influenced indices of endocrine function following an acute session of high-intensity RE in adolescent handball players.
Background: Although previous studies have shown that aerobic and resistance exercise increase high-density lipoprotein cholesterol (HDL-C) levels, the optimal type of exercise has not been determined. Therefore, the purpose of this study was to investigate the association of jogging (a type of aerobic exercise) and weight training (a type of resistance exercise) with HDL-C levels in Taiwanese adults.
Methods: The data used in this cross-sectional study were obtained from the Taiwan Biobank (TWB), which is a national health resource that contains the genetic information of Taiwanese volunteers aged 30-70 years. A total of 75,635 subjects (47,881 women and 27,754 men) were included in this study. The subjects were divided into four groups: jogging (n = 2,278), weight training (n = 522), mixed exercise (n = 519), and no exercise (n = 72,316). The TWB data were collected through questionnaires (e.g. basic characteristics, lifestyle factors, and disease history), biochemical tests, and anthropometric measurements.
Results: Compared with no exercise, jogging, weight training, and mixed exercise were all associated with higher HDL-C levels (β = 2.5470, 2.6249, and 3.2117, respectively). As seen, the β value was highest for the mixed exercise group, followed by weight training and then jogging (p for trend <0.0001).
Conclusions: In the current study, jogging and weight training were individually associated with higher levels of HDL-C. Engaging in both activities was associated with much higher levels of HDL-C. Our findings suggest that regular jogging and weight training might play an important role in increasing HDL-C levels.
Background: A food and fluid intake program is essential for ultraendurance athletes to maximize performance and avoid possible gastrointestinal symptoms (GIS). However, the ability to follow such a program during a race has been under-assessed. We thus investigated the fluctuations of food and fluid intake during the 24-h run World Championship of 12 elite athletes (6 men and 6 women; age: 46 ± 7 years, height: 170 ± 9 cm, weight: 61.1 ± 9.6 kg, total distance run: 193-272 km) and assessed their ability to follow their nutritional program.
Methods: Real-time overall intake (fluids, energy, and macronutrients) was recorded and compared to that of their program. The temporal difference in absolute values and the degree of divergence from their program were assessed, divided into four 6-h periods. GIS were recorded during the race. A questionnaire identifying the details of their nutritional program and the self-assessed causes of their inability to follow it was completed by the participants the day after the race.
Results: Water, total fluid, carbohydrates (CHO), and energy intake decreased during the last quarter of the 24-h ultramarathon relative to the first half (p = 0.024, 0.022, 0.009, and 0.042). However, the differences were no longer significant after these values were normalized by the number of passages in front of the supply tent. The participants progressively failed to follow their nutritional program, with the intake of their planned items dropping to approximately 50% during the last quarter. However, this was adequately compensated by increases in unplanned foods allowing them to match their expected targets. GIS, lack of appeal of the planned items, and attractivity of unplanned items were the main explanations given for their deviation from the program (64, 27, and 27%, respectively).
Conclusion: Despite evident difficulty in following their nutritional programs (mostly attributed to GIS), elite ultraendurance runners managed to maintain high rates of fluid and food intake during a 24-h ultramarathon and therefore still met their planned elevated nutritional objectives.Abbreviations: CHO: carbohydrates, GIS: gastrointestinal symptoms.
Background: Previous narrative reviews have concluded that dietary nitrate (NO3-) improves maximal neuromuscular power in humans. This conclusion, however, was based on a limited number of studies, and no attempt has been made to quantify the exact magnitude of this beneficial effect. Such information would help ensure adequate statistical power in future studies and could help place the effects of dietary NO3- on various aspects of exercise performance (i.e., endurance vs. strength vs. power) in better context. We therefore undertook a systematic review and individual participant data meta-analysis to quantify the effects of NO3- supplementation on human muscle power.
Methods: The literature was searched using a strategy developed by a health sciences librarian. Data sources included Medline Ovid, Embase, SPORTDiscus, Scopus, Clinicaltrials.gov , and Google Scholar. Studies were included if they used a randomized, double-blind, placebo-controlled, crossover experimental design to measure the effects of dietary NO3- on maximal power during exercise in the non-fatigued state and the within-subject correlation could be determined from data in the published manuscript or obtained from the authors.
Results: Nineteen studies of a total of 268 participants (218 men, 50 women) met the criteria for inclusion. The overall effect size (ES; Hedge's g) calculated using a fixed effects model was 0.42 (95% confidence interval (CI) 0.29, 0.56; p = 6.310 × 10- 11). There was limited heterogeneity between studies (i.e., I2 = 22.79%, H2 = 1.30, p = 0.3460). The ES estimated using a random effects model was therefore similar (i.e., 0.45, 95% CI 0.30, 0.61; p = 1.064 × 10- 9). Sub-group analyses revealed no significant differences due to subject age, sex, or test modality (i.e., small vs. large muscle mass exercise). However, the ES in studies using an acute dose (i.e., 0.54, 95% CI 0.37, 0.71; p = 6.774 × 10- 12) was greater (p = 0.0211) than in studies using a multiple dose regimen (i.e., 0.22, 95% CI 0.01, 0.43; p = 0.003630).
Conclusions: Acute or chronic dietary NO3- intake significantly increases maximal muscle power in humans. The magnitude of this effect-on average, ~ 5%-is likely to be of considerable practical and clinical importance.