This study set out to determine the sanitary risk scores and microbial health risks associated with wells and boreholes in Ilara-Mokin and Ibule-Soro, Nigeria. Water samples (n = 96) were collected over a period of five months to determine the levels of enteric bacteria and to perform a Quantitative Microbial Risk Assessment (QMRA) of drinking water quality. Sanitary risk scores revealed `medium' and `low' overall risks for the wells and boreholes, respectively. Three risk factors (faulty fence; small apron; pollution sources) exhibited high significant (p < 0.01) association with the presence of E. coli and thermotolerant coliforms in water samples from the wells. E. coli and Salmonella ranged from 1.82 to 2.28 and 2.15 to 2.63 log10 CFU/100 ml respectively in water from the wells, but were below detection limit in water from the boreholes. Shigella and Campylobacter were detected in all water samples. Estimated risks of infection associated with Shigella (2.1 × 10-2 to 2.3 × 10-1) were higher than those of Campylobacter (6.7 × 10-2 to 1.9 × 10-1) and Salmonella (1.9×10-3 to 5.6×10-3). Adaption of water safety plans may be advantageous in these settings, since intentional ingestion of water from the wells and boreholes may pose potential risks of diarrheal illness to humans.
Rivers are impacted by microbial faecal pollution from various sources. We report on a short-term faecal pollution event at the pre-alpine Austrian river Traisen caused by the large cultural event FM4 Frequency music festival, with around 200,000 visitors over 4 days. We observed a massive increase of the faecal indicator bacteria (FIB) intestinal enterococci during the event, while Escherichia coli concentrations were only slightly elevated. This increase poses a significant potential health threat to visitors and people recreating downstream of the festival area. A plausible explanation for the uncoupling of the two FIBs may have been a differential persistence caused by a combination of factors including water temperature, solar radiation, and the excessive presence of personal care products (PCPs) in the river water. However, a potential impact of PCPs on FIB assay performance cannot be ruled out. Our observations are relevant for other intensively used bathing sites; detailed investigations on persistence and assay performance of the FIB in response to different ingredients of PCPs are highly recommended. We conclude that for future festivals at this river or other festivals taking place under similar settings, a more effective management is necessary to reduce deterioration in water quality and minimise health risks.
The present study was undertaken to evaluate the prevalence, underlying resistance mechanism, and virulence involved in Pseudomonas aeruginosa (n = 35) isolated from freshwater fishes in Andhra Pradesh, India. Antibiogram studies revealed that 68.5, 62.8, 37.1, 11.4, 8.5, 57.1, 54.2, and 48.5% of isolates had resistance to oxytetracycline, co-trimoxazole, doxycycline, enrofloxacin, ciprofloxacin, cefotaxime, ceftazidime, and ampicillin, respectively. The resistant isolates harboured the tetA (85.7%), tetD (71.4%), tetM (91.4%), sul1 (80%), blaCTX-M (57.1%), blaTEM (42.8%), and blaSHV (48.5%) genes. In total, 50% of the isolates were altered as multi-drug resistant, and the multiple antibiotic resistance index was calculated as 0.4. Furthermore, 37.3, 48.5, and 14.2% of isolates were categorized as strong, moderate, and weak biofilm formers, possessing pslA (91.5%) and pslD (88.6%) biofilm encoding genes. In total, 82.8% of the isolates exhibited efflux pump activity and harboured the mexA (74.2%), mexB (77.1%), and oprM (37.1%) genes. Virulent genes oprL, toxA, exoS, and phzM were detected in 68.5, 68.5, 100, and 17.1% of isolates, respectively. The data suggested that P. aeruginosa harbours multiple resistance mechanisms and virulence factors that may contribute to antibiotic resistance and pathogenicity, and their distribution in fish culture facilities highlights the public health hazards of the food chain.